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Fibroblast growth factor 23 (FGF23) has been described as an important regulator of
mineral homeostasis, but has lately also been linked to iron deficiency, inflammation, and
erythropoiesis. FGF23 is essential for the maintenance of phosphate homeostasis in the
body and activating mutations in the gene itself or inactivating mutations in its upstream
regulators can result in severe chronic hypophosphatemia, where an unbalanced mineral
homeostasis often leads to rickets in children and osteomalacia in adults. FGF23 can be
regulated by changes in transcriptional activity or by changes at the post-translational
level. The balance between O-glycosylation and phosphorylation is an important
determinant of how much active intact or inactive cleaved FGF23 will be released in the
circulation. In the past years, it has become evident that iron deficiency and inflammation
regulate FGF23 in a way that is not associated with its classical role in mineral metabolism.
These conditions will not only result in an upregulation of FGF23 transcription, but also in
increased cleavage, leaving the levels of active intact FGF23 unchanged. The exact
mechanisms behind and function of this process are still unclear. However, a deeper
understanding of FGF23 regulation in both the classical and non-classical way is
important to develop better treatment options for diseases associated with disturbed
FGF23 biology. In this review, we describe how the currently known upstream regulators
of FGF23 change FGF23 transcription and affect its post-translational modifications at the
molecular level.
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INTRODUCTION

In 1959 a first mention was made by Andrea Prader of a circulating “rachitonic” substance that was
the cause of tumor-induced osteomalacia (TIO). He described a case of an 11-year-old girl, who
suddenly developed severe rickets. A tumor was identified between her ribs, and resection resulted
in curation of her rickets (1, 2). The first evidence of a circulating phosphaturic factor comes from
experiments in hyp mice, a model for X-linked hypophosphatemic rickets (XLH), in 1989, where it
was shown that a circulating factor in hyp mice could induce hypophosphatemia in wild-type mice
(3). This concept was already suggested a year earlier, when a resected tumor from a TIO patient
caused hypophosphatemia when transplanted into a nude mouse (4). This phosphaturic factor was
first identified as fibroblast growth factor 23 (FGF23) in 2000 by the autosomal-dominant
n.org February 2021 | Volume 12 | Article 5880961
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hypophosphatemic rickets (ADHR) consortium when mutations
in FGF23 where found to be causing ADHR (5). Besides FGF23,
other phosphatonins such as FGF7, secreted-frizzled related
protein (sFRP4) and matrix extracellular phosphoglycoprotein
(MEPE), have been identified but descriptions of these factors are
beyond the scope of this review (6).

FGF23 is predominantly produced by osteocytes and
osteoblasts in the skeleton and has a key function in regulating
phosphate homeostasis (7). When serum phosphate levels rise due
to bone resorption or absorption of dietary phosphate, FGF23
levels increase. FGF23 can bind to the fibroblast growth factor
receptor 1 (FGFR1) in the kidneys, but needs its co-receptor, a-
klotho, to execute its functions (8). Binding of FGF23 in the kidney
has several effects. First of all, the expression of type II sodium-
phosphate cotransporter NaPi-2a (encoded by SLC34A1), present
in the cell surface of the renal proximal tubules is downregulated,
resulting in decreased phosphate reabsorption (9). Secondly,
FGF23 inhibits 1a-hydroxylase in the kidney, the key enzyme
for the conversion of inactive 25-hydroxyvitamin D (25(OH)D) to
the active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (10).
Reduced levels of 1,25(OH)2D3 result in lower expression of
NaPi-2b (SLC34A2) in the small intestine, and therefore less
absorption of dietary phosphate (11, 12). The parathyroid gland
is another important target for FGF23, where it is able to
downregulate parathyroid hormone (PTH) synthesis and
secretion in a a-klotho-dependent manner (13, 14). PTH has an
important role in regulating renal phosphate reabsorption as it
downregulates NaPi-2a/c (SLC34A1/SLC34A3) to reduce renal
reabsorption and it activates 1a-hydroxylase (15).

FGF23 is a member of the fibroblast growth factor (FGF)
family, which has a plethora of functions. The FGFs are divided
into subfamilies based on their structure and phylogenic
Frontiers in Endocrinology | www.frontiersin.org 2
analyses (16). FGF23 is a member of the FGF19 subfamily,
which consists of FGF19, FGF21, and FGF23. The FGFs in this
subfamily function as circulating hormones, and are therefore
also called endocrine FGFs (17, 18). Several upstream regulators
inhibit or induce the expression of FGF23 in the osteocytes and
late osteoblasts, which will be extensively discussed in this
review. The FGF23 gene consists of three exons, that encode
for a glycoprotein of 251 amino acids (19). This glycoprotein
consists of three domains with the first 24 amino acids being the
signal sequence, the middle part of 155 amino acids forming the
core FGF homology domain and the last 72 amino acids
comprising the C-terminal (20). The C-terminus of FGF23 is
important for binding to klotho, while the N-terminus contains
the FGFR binding domain (Figure 1) (17). The cleaved C-
terminal domain competes with FGF23 for binding to klotho,
and can therefore inhibit the formation of the FGF23/FGFR/
Klotho complex (21). Studies performing overexpression of
FGF23 in Chinese hamster ovary (CHO) cells have shown that
the mature FGF23 protein lacks the signal peptide (22). Western
blotting analyses of the recombinant media of these cells using an
antibody against the C-terminus resulted in two products, one of
~30 kDa and a smaller one of ~10 kDa. This indicated that
proteolytic processing is taking place before FGF23 is
secreted (22).

FGF23 can be cleaved by subtilisin-like proprotein convertases
at a consensus sequence (Arg176-X-X-Arg179), that is unique for
FGF23 as it does not appear in other members of the FGF family
(Figure 1) (22, 23). Alternatively, FGF23 can be O-glycosylated at
Thr178 by polypeptide N-acetylgalactosaminyltransferase 3 (Gal-
NAc-T3, encoded by GalNT3), which protects FGF23 from
proteolytic cleavage (24). Phosphorylation of FGF23 at Ser180 via
the secretory protein kinase family with sequence similarity-20
FIGURE 1 | FGF23 processing. The premature FGF23 protein is a 251-amino acid long glycoprotein. In order to form the mature form of FGF23 the first 25 amino
acids are removed through cleavage. FGF23 can be O-glycosylated at Thr178, which protects it from cleavage and results in active FGF23 in the circulation. The
alternative is for FGF23 to be phosphorylated at Ser180. This results in cleavage at the consensus sequence (Arg176-X-X-Arg179) and inactive cleaved FGF23 in the
circulation.
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member C (FAM20C) prevents this O-glycosylation and thereby
makes FGF23 more prone to cleavage by the proprotein
convertase furin (24, 25). The balance between these processes
determines the ratio between active intact FGF23 (iFGF23) and
inactive cleaved FGF23 (cFGF23) that will be released into the
circulation (26, 27).

Although still quite limited and with many more to discover,
there are a number of factors known to regulate the expression
and/or cleavage of FGF23. Below we provide a current overview
of both classical and non-classical regulators of FGF23.
CLASSICAL FGF23 REGULATION

Local FGF23 Regulators in Osteocytes
DMP1
Dentin matrix protein 1 (DMP1) is an extracellular matrix pro-
peptide that is produced by osteocytes and a member of the small
integrin binding ligand N-linked glycoprotein (SIBLING) family
(28). DMP1 is a suppressor of FGF23 as inactivating mutations
in DMP1 result in autosomal recessive hypophosphatemic
rickets (ARHR), a disease where overproduction of FGF23
results in renal phosphate wasting, osteomalacia, and rickets
(29). In mouse models of Dmp1 deficiency increased Fgf23
transcription results from paracrine stimulation of Fgfr1, and
downstream activation of the nuclear factor of activated T cells
(Nfat) pathway (Figure 2) (30, 31). The FGF23 promotor
Frontiers in Endocrinology | www.frontiersin.org 3
contains an NFAT response element, which controls FGF23
expression in response to calcium and inflammatory stimuli
(32). Dussold et al. showed that Nfat1 mRNA expression is
increased in bone of chronic kidney disease (CKD) mice and that
Dmp1 inhibits Nfat1 signaling that is activated in CKD, thereby
preventing Fgf23 transcription (Figure 2) (32). This only occurs
in mice with early CKD but not in more advanced stages,
suggesting that other stimuli such as elevated PTH and chronic
inflammation may override this effect. In DMP1-treated mice
with advanced CKD, there is a small decrease in circulating
Fgf23, despite transcription levels remaining stable. This might
indicate that DMP1 also has a post-translational effect on FGF23
(32). However, this study only measured the total levels of serum
FGF23 and to gain more insight in how DMP1 might affect
FGF23 processing, levels of both iFGF23 and cFGF23 should be
measured. In conclusion, although it is clear that DMP1 has an
inhibitory effect on FGF23 transcription in CKD, studies are
needed to describe its function in a healthy situation. Moreover,
there are indications that DMP1 affects post-translational FGF23
modification, although it is unclear what the exact role of DMP1
in this process could be.

PHEX
Mutations in phosphate regulating endopeptidase homolog
X-linked (PHEX) result in the most common form of chronic
hypophosphatemia, named X-linked hypophosphatemia
(XLH), by causing elevated levels of FGF23 (33). Hyp mice
FIGURE 2 | Schematic overview of classical FGF23 regulation. cKL binds to the FGFR1 and activates FGF23 transcription via the MAPK pathway. 1,25(OH)2D3
binds to the VDR, which heterodimerizes with the RXRs and can bind to the VDRE in the FGF23 promotor. PTH binds to the PTHR1 on the cell membrane, and
activates the cAMP/PKA pathway. This has two effects: 1) NURR1 mRNA increases, resulting in increased FGF23 transcription; 2) inhibition of SOST, thereby
indirectly stimulating FGF23 transcription by releasing the suppression of the WNT pathway. Both Ca2+ and Pi can activate FGF23 transcription independently. Ca2+

enters the cell via a Ca2+ transporter. In the cells it inhibits DMP1, an inhibitor of the NFAT1 pathway, thus activating the NFAT pathway, leading to FGF23
transcription stimulation. Phosphate enters the cells through phosphate transporters. In the cell it stimulates FGF23 through the production of ROS through a yet
unknown mechanism. Furthermore, it increases expression of GalNT3, resulting in protection from cleavage of the full-length FGF23 protein. Also, CCPs can increase
FGF23 transcription but the mechanism remains unknown. Lastly, PHEX is able to inhibit FGF23 transcription through a yet unknown mechanism and interact with
PC2 to increase FGF23 cleavage. 1,25D, 1,25-dihydroxyvitamin D3; Ca

2+, calcium; cAMP, Cyclic adenosine 3′,5′-monophosphate; CCP, calciprotein particles;
cFGF23, cleaved fibroblast growth factor 23; cKL, cleaved klotho; DMP1, dentin matrix protein 1; iFGF23, intact fibroblast growth factor 23; FGFR1, fibroblast
growth receptor 1; GalNt3, polypeptide N-acetylgalactosaminyltransferase 3; MAPK, mitogen-activated protein kinase; NADPH, nicotinamide adenine dinucleotide
phosphate; NFAT, nuclear factor of activated T cells; Nurr1, nuclear receptor related-1 protein; PC2, proprotein convertase; PHEX, phosphate regulating
endopeptidase homolog X-linked; Pi, phosphate; PKA, protein kinase A; PTH, parathyroid hormone; PTHR1, parathyroid hormone receptor 1; ROS, reactive oxygen
species; RXR, retinoid X receptor; SOST, sclerostin; VDR, vitamin D receptor.
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have an inactivating mutation of Phex, which mimics XLH in
humans. They have a lower serum phosphate level due to
high circulating levels of FGF23, which can be restored by a
high phosphate diet (34). Moreover, dietary phosphate has
been shown to improve bone growth and mineralization in
hyp mouse, similar to what has been observed for patients
with XLH (35).

PHEX is predominantly expressed by osteocytes and
osteoblasts and encodes for an enzyme that degrades local
SIBLINGs, in particular osteopontin (OPN) (36). Despite being
an enzyme, it is thought that PHEX mostly suppresses the
transcription of FGF23 rather than its degradation, though the
mechanism behind this is unknown (37, 38). There is some
evidence that PHEX might indirectly play a role in FGF23
cleavage. Proprotein convertase (PC2), encoded by the
proprotein convertase subtilisin/kexin-type-2 (PCSK2) gene,
has been shown to be upregulated by PHEX, which can result
in FGF23 cleavage in vitro (Figure 2) (39). Moreover, PC2 may
promote the formation of PHEX-DMP1-integrin complexes that
suppress FGF23 production when they are activated by
neuroendocrine protein 7B2•PC2 (40). However, despite the
fact that PC2 cleaves FGF23 in vitro, there is no evidence that
the two proteins are in physical contact within the osteocyte (23).

PHEXmutations are X chromosome-linked, so females with a
loss of function mutation in one PHEX allele should also have an
unaffected second allele. This should result in functional
proteins, but nevertheless women develop XLH as well (41).
Preferential X chromosome inactivation in woman has been
proposed as a mechanism to explain why XLH is not a recessive
disease. However, a PCR analysis of 13 female XLH patients
showed no significant difference in X inactivation patterns in
peripheral blood cells. compared to healthy controls (42).
Moreover, a case study of identical twins, of which only one
was affected with XLH, also did not reveal a difference in X
inactivation patterns as analyzed in peripheral blood cells (43).
Nonetheless, it should be noted that X inactivation pattern in
blood cells may not be representative for other tissues, especially
in twins (44). It is therefore possible that in these cases there is
preferential X inactivation in other tissues, such as bone,
resulting in the XLH phenotype. All in all, even though
mutations in PHEX have been established to disturb FGF23
regulation, the exact regulation of FGF23 by PHEX remains
largely unknown to date.
Circulating FGF23 Regulators
1,25-Dihydroxyvitamin D3

In vivo studies show that C57Bl/6 mice injected with 1,25(OH)2D3

have significantly higher Fgf23 serum levels compared to vehicle
injected mice. This increase was mostly attributed to increased
Fgf23 expression in the bone. When UMR106 osteosarcoma cells
were treated with vitamin D, a significant upregulation of Ffg23
expression was found after 4 h. Addition of actinomycin D, a gene
transcription inhibitor, completely abolished the upregulation of
Fgf23, thus showing that increased Fgf23 expression by 1,25(OH)
2D3 is due to a transcriptional effect (45). This effect is believed to
bemodulated via the vitamin D receptor (VDR) in osteocytes (46).
Frontiers in Endocrinology | www.frontiersin.org 4
This is also showed in patients with inactivating mutations in the
VDR gene who have lower FGF23 serum levels (47). When 1,25
(OH)2D3 binds to the VDR, it heterodimerizes with the retinoid X
receptors (RXR), this complex can bind to the vitamin D response
element (VDRE) in the promotor of target genes (Figure 2) (48).
Treatment with 1,25(OH)2D3 in hypoparathyroid patients
increases serum FGF23 and rapidly decreases serum phosphate,
despite the fact that 1,25(OH)2D3 increases phosphate absorption
in the gut (49). Moreover, Ito et al. demonstrated 1,25(OH)2D3-
enhanced FGF23 promoter activity and mRNA expression in
human chronic myelogenous leukemia K562 cells (46). Animal
experiments have also shown that 1,25(OH)2D3 regulates Fgf23
levels. VDR null mice have low serum Fgf23 levels, which can be
normalized with a rescue diet to normalize low phosphate levels
and secondary hyperparathyroidism (50). However, thus far it has
been unclear whether 1,25(OH)2D3 directly stimulates FGF23
expression in osteocytes via the VDR, because osteocytes have
proven difficult to isolate and culture (51). Yashiro et al. have
shown that 1,25(OH)2D3 treatment results in increased Fgf23
expression in the murine MC3T3-E1 osteocyte-like cell line.
Knockdown of the VDR in osteocytes decreased Fgf23
expression significantly, indicating that the response of Fgf23 to
1,25(OH)2D3 is primarily mediated through the VDRE in the
promoter of the Fgf23 gene (52).

It is important to note that some of the work on Fgf23
regulation by 1,25(OH)2D3 is performed using mice and rats,
which are both nocturnal species. Both mice and humans use
UV-exposure as a 1,25(OH)2D3 source, but as mice are
nocturnal, they have less opportunity to expose themselves to
UV light. Additionally, both humans and mice use their diet as a
source of vitamin D (53). Mutations in the Vdr or Cyp27b1 genes
in mice result in phenotypes similar to those seen in humans
with these mutations (54–57). Even though vitamin D
metabolism is different in mice and human, it does not
preclude the use of mice as a suitable model to study the effect
of 1,25(OH)2D3 on Fgf23.

PTH
Secondary hyperparathyroidism is a common complication of
CKD triggered by hypocalcemia, hyperphosphatemia, and low
vitamin D levels. These elevated PTH levels are usually found in
combination with increased FGF23 levels (58). Moreover, it was
found that PTH infusion resulted in increased FGF23 levels in
healthy men, thus indicating that FGF23 is upregulated in
patients with hyperparathyroidsism (59). PTH binds to the
parathyroid hormone 1 receptor (PTH1R), which is expressed
in numerous tissues including kidney and bone and activates
several intracellular secondary messengers (Figure 2) (60, 61). In
bone a major physiological role of PTH is to bind to the PTH1R
on cells of the osteoblast lineage and enhancing the release of
receptor activator of nuclear factor-kB ligand (RANKL), which
then binds to its receptor RANK on osteoclast precursors,
thereby enhancing osteoclast formation or activity (62). Data
from osteoblast-like UMR-106 cells shows that PTH can also
stimulate FGF23 production in osteoblasts by binding to the
PTH1R and stimulating both the protein kinase A (PKA) and
Wnt pathways (63). One study showed that PTH increases levels
February 2021 | Volume 12 | Article 588096
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of nuclear receptor related-1 protein (NURR1) mRNA via the
PKA pathway, and that overexpression of NURR1 stimulates
FGF23 in the absence of PTH in UMR-106 cells. Knockdown of
NURR1 prevented an increase in FGF23, indicating that NURR1
is essential for the stimulation of FGF23 by PTH in bone cells
(64). Regulation of FGF23 by PTH via the Wnt pathway is
through inhibition of sclerostin (SOST), a potent inhibitor of the
Wnt pathway (65, 66). This effect is mediated by the PKA
pathway. In adult Sabra rats, administration of Forskolin, a
PKA inhibitor, resulted in decreased levels of SOST mRNA
(62). Together, this indicates that activation of the PKA
pathway by PTH both directly stimulates FGF23 transcription
by increasing NURR1 expression, as well as indirectly by
inhibition of SOST (Figure 2).

a-Klotho
a-Klotho plays an important role in phosphate regulation by
FGF23 as a co-receptor for FGFR1 in the kidney. Mice lacking a-
klotho have an identical phenotype as the FGF23 KO mice, as
FGF23 cannot fulfill its phosphaturic function in the kidney
without a-klotho (8). Moreover, in a mouse model with a 70%
reduction of a-klotho expression in the distal renal tubules,
significantly higher levels of serum FGF23 were found (67). This
indicates that the body attempts to compensate for lower levels of
a-klotho expression, by upregulating FGF23. There are several
isoforms of aklotho, of which the membrane-bound klotho is
important for the interaction with FGF23 in the kidney.
However, the circulating or cleaved form of klotho (cKL) has
also been associated with FGF23 regulation (68). This relation
between cKL and upregulation of FGF23 was discovered in 2008.
An infant was diagnosed with severe hypophosphatemia, but no
mutations were found DMP1, PHEX, FGFR1, or FGF23. She was
found to have a chromosomal translocation (t9:13) in proximity
to the a-Klotho locus. Analysis of the patient’s serum revealed
elevated levels of cKL and FGF23, and resulted in the hypothesis
that cKL can drive FGF23 expression (69). In a mouse model
mimicking this translocation, the treatment with cKl resulted in
significantly higher levels of serum Fgf23 and a 150-fold increase
of Fgf23 mRNA in bone (70). Moreover, c-fos and early growth
response protein 1 (Egr1) were upregulated, both targets of the
mitogen-activated protein kinase (MAPK) pathway, which is
believed to be involved in activating Fgf23 transcription (Figure
2) (70, 71). It is hypothesized that cKl plays a role in fine-tuning
the levels of iFGF23, since activity of the FGFR1c was initiated by
cKl in the presence of iFGF23 (70). To investigate this
relationship, the osteoblastic cell line UMR-106 was treated
with FGF23, cKl or a combination. While the combination
resulted in upregulated levels of EGR1 and FGF23, the single
treatments were not capable of achieving this (72). Moreover,
deletion of FGFR1 by CRISPR/Cas9 also ablated this response
(72). This implicates a relation between circulating cKl and
circulating FGF23 levels. Administration of cKl to a-klotho
null mice, resulted in upregulation of Fgf23 and the prevention
of hyperphosphatemia and vascular calcification (72). This may
represent a mechanism to prevent hyperphosphatemia when the
circulating levels of FGF23 are not adequate. In this respect, cKl
might also be of clinical interest, as it is able to prevent
Frontiers in Endocrinology | www.frontiersin.org 5
hyperphosphatemia even in the absence of functional a-klotho.
It still needs to be determined whether cKl in normal
circumstances is able to change levels of FGF23 expression.

Phosphate
A major regulator of FGF23 levels is serum phosphate, which is
critically maintained stable in the circulation by a combination of
renal reabsorption, intestinal absorption, and bone resorption.
Controlled feeding studies showed that high dietary phosphate
intake results in higher levels of FGF23, while low intake results in
a decrease (73–75). However, the mechanism behind phosphate-
mediated FGF23 regulation remains unknown. Several studies
measured phosphate levels in the serum before and after meals,
but did not find a relation with diet (76, 77). Moreover,
hyperphosphatemia in glial cells missing homolog 2 (Gcm2) null
mice and the addition of phosphate to osteoblast cultures did not
result in increased Fgf23 transcripts, a result that was also found in
other studies (78–80). However, a study by Takashi et al. showed
that mice fed a high phosphate diet have increased levels of serum
Fgf23 compared to mice on a low phosphate diet (71). They found
in UMR106 cells that this was not caused by the upregulation of
Fgf23 transcription, but rather by increased expression of GalNt3,
which results in a higher level of active iFGF23 in the circulation
(71). Nonetheless, other studies do show that high extracellular
phosphate results in enhanced FGF23 transcription (81, 82).
When 4 mM phosphate was added to IDG-SW3 cells, this
resulted in a 38-fold increase in Fgf23 expression. Interestingly,
this effect was not found in the presence of 10 mM phosphate (82).
Another study reported that phosphate enhances FGF23
transcription in UMR-106 cells. In addition, they also found
that phosphate resulted in increased production of reactive
oxygen species (ROS). When an inhibitor of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase was used,
not only the production of ROS diminishes, but also FGF23
transcription (Figure 2) (81). There are no studies that show in
vivo that ROS production is correlated with FGF23 production but
it is known that patients with renal failure have increased ROS
production (83). Studies assessing whether production of ROS is
correlated with the risk of adverse events in the presence of high
FGF23 levels are therefore warranted. It is interesting that FGF23
is mostly known as a phosphaturic hormone, but that the exact
mechanism by which phosphate regulates it (production, cleavage,
secretion) remains largely unclear. This underlines the importance
for more research about FGF23 regulation by phosphate in both
healthy individuals and patients with abnormal phosphate levels.

Calcium
A study in rats showed that increased Fgf23 transcription in
response to high dietary phosphate is only possible when serum
calcium levels are also high (84). This is in agreement with another
study showing that it is not the increase of phosphate itself that
increases Fgf23 transcription, but rather the formation of
calciprotein particles (CCPs) (85). CCPs are colloidal
nanoparticles that consist of calcium and phosphate circulating
in the blood and are potentially harmful as they contribute to
vascular calcification. UMR106 cells treated with synthesized
CCPs showed increased FGF23 mRNA (85). Moreover, in
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C57BL/6 mice it was shown that the amount of plasma CCPs were
increased after a high dietary phosphate load. In this study they
also showed that the high phosphate diet also resulted in more
circulating FGF23 and increased levels of mRNA Fgf23 in the bone
(85). The authors hypothesize that this mechanism might
constitute a negative feedback loop, since activating FGF23
results in lower levels of serum phosphate, which in turn will
decrease the amount of harmful CCPs that can be formed
(Figure 2). There is also evidence that calcium itself is able to
upregulate FGF23 expression. In CKD, serum FGF23 levels are
elevated due to hyperphosphatemia, and dietary phosphate
restriction and phosphate binders are being used to keep FGF23
levels under control. Interestingly, studies showed that calcium-
containing phosphate binders do not result in a decrease of serum
FGF23 levels, while calcium-free phosphate binders do decrease
FGF23 levels (86). Indicating that calcium itself might also
modulate FGF23 in the absence of phosphate. Moreover,
Cyp27b1−/− mice fed a high calcium diet had higher levels of
serum FGF23. Besides, adding calcium to the culture medium of
MC3T3-E1 cells resulted in higher Fgf23 expression (87). A recent
study in B6 wild-type mice showed that an injection of calcium led
to increased levels of circulating Fgf23 in 6 h. When an NFAT-
inhibitor, 11R-VIVIT, was used, this decrease was partially
inhibited. DMP1 overexpression in B6 DMPTG mice also
partially prevented this increase (32). Together, this indicates
that at least part of the increase of FGF23 levels can be
explained by a direct induction by calcium through DMP1
inhibition and the NFAT-pathway (Figure 2). However, since
inhibiting the NFAT pathway did not completely eradicate the
FGF23 induction by calcium, research is needed to study whether
the remaining effect is by the formation of CCPs or a
tertiary mechanism.
Frontiers in Endocrinology | www.frontiersin.org 6
NON-CLASSICAL FGF23 REGULATION

Iron Deficiency
In 1982 a link between iron and hypophosphatemia was first
described in patients receiving repeated intravenous therapy with
saccharated ferric oxide (88). Later, clinical observations in
ADHR patients suggested that there is a correlation between
iron and FGF23 (89). In ADHR patients with low serum iron
levels, higher levels of both iFGF and cFGF23 were found, while
low serum iron levels in healthy individuals only result in
elevated cFGF23 but not iFGF23 (90). A recent study in a
mouse model of CDK showed that anemia is the primary
driver of increased Fgf23 in CDK and that this can be rescued
by treating the mice with erythropoiesis stimulating agents (91).
These observations suggested that there is a role for iron in
FGF23 regulation. In a study where wild-type mice were treated
with hepcidin, a reactant that causes inflammation-induced iron
deficiency, Fgf23 transcription was increased along with elevated
levels of cFgf23, but not iFgf23 (92). A similar result was found in
mice treated with low-iron diets and iron chelators, where
mRNA levels of Fgf23 were increased, but levels of iFgf23 were
only slightly elevated (Figure 3). Interestingly, the levels of
iFgf23 significantly increased in CKD mice when iron
deficiency was induced (92). This indicates that iron deficiency
increases transcription and cleavage of FGF23 simultaneously,
and that elevated circulating levels of iFGF23 are only present in
situations where FGF23 cleavage is impaired, such as in CKD
and ADHR patients. Paradoxically, when otherwise healthy
women with iron deficiency were treated with ferric
carboxymaltose, half of them developed hypophosphatemia
(93). This was attributed to an acute increase in iFGF23 levels,
while cFGF23 levels were decreased. When these women were
FIGURE 3 | Schematic overview of non-classical FGF23 regulation. Hypoxia, iron deficiency, and inflammation all result in Hif1a stabilization. Hif1a, which can be
stimulated by inflammation, binds to the HRE in the FGF23 promotor and stimulate expression. Hif1a can also indirectly regulate FGF23: 1) it stimulates EPO, which
directly stimulates FGF23 transcription and 2) it inhibits GalNt3, resulting in increased FGF23 cleavage. Insulin is able to inhibit FGF23 transcription through the Pi3K/
Akt pathway, while leptin stimulates FGF23 transcription through a yet unknown mechanism. cFGF23, cleaved fibroblast growth factor 23; EPO, erythropoietin;
iFGF23, intact fibroblast growth factor 23; GalNt3, polypeptide N-acetylgalactosaminyltransferase 3; HIF1a, hypoxia inducible factor 1 a; PI3K/Akt,
phosphatidylinositol 3-kinase/protein kinase B.
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treated with iron dextran the levels of cFGF23 decreased as
expected but without the spike in iFGF23 (93). The mechanism
by which ferric carboxymaltose increases iFGF23 levels is
unknown. It could be possible that it promotes O-glycosylation
of FGF23 and thereby protects it from cleavage. It should be
noted that considering the fact that iron dextran administration
did not cause this acute rise in iFGF23, it could be caused by the
sugar molecule rather than the iron supplementation.
Nevertheless, clinicians should be aware of the effect that iron
supplementation can have on mineral homeostasis.

Inflammation
In clinical studies, it has been shown that increased inflammation
markers correlate with increased serum FGF23 levels, however, the
balance between its production and cleavage is maintained, as in
iron deficiency (Figure 3) (94, 95). Moreover, a recent study using a
mouse model of CKD has shown that production of the pro-
inflammatory protein IL-1b is the driving stimulus for upregulation
of Fgf23 expression in early CKD. The usage of a neutralizing
antibody to IL-1b blocked the expression of Fgf23 (96). Treatment
with inflammatory factors in IDG-SW3 cells also resulted in
increased Fgf23 mRNA levels, but not iFgf23 in conditioned
medium (97). In mice that were pretreated with a furin inhibitor,
serum iFGF23 levels increased rapidly following treatment with
inflammatory factors, further indicating an essential role for furin in
the cleavage of intact FGF23 (92). Part of the increased Fgf23mRNA
may be mediated through an enhancer region 16 kDa upstream of
the Fgf23 gene (98). Although deletion of the enhancer in a mouse
model did result in lower levels of Fgf23 mRNA upon stimulation
with LPS, TNF-a, and IL-1b, levels of circulating iFGF23 did not
change (85).

In multiple inflammatory conditions, there is a role for
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) (99). Several studies have shown that NF-kB is involved
in increased FGF23 transcription, viaOrai1 activation (100, 101).
It is therefore possible that part of the increased transcription of
FGF23 can be explained by NF-kB activation.

Erythropoietin
Both inflammation and functional iron deficiency stimulate
Fgf23 transcription indirectly through the production of
erythropoietin (EPO) (102). Injection of recombinant human
EPO in mice resulted in increased Fgf23 mRNA and cFgf23, but
only marginally increased iFgf23, indicating that production and
cleavage of FGF23 are directly linked, as observed in
inflammation and iron deficiency (102, 103). It is currently
unknown why both transcription and cleavage are upregulated
during iron deficiency and inflammation. One hypothesis is that
cFGF23 has a role in a hitherto undiscovered endocrine feedback
loop involved in iron homeostasis and erythropoiesis, without
affecting phosphate and calcium homeostasis (104). In a mouse
model of acute blood loss, increased levels of cFgf23 were found
while GalNt3 mRNA was decreased (105). This might be a
mechanism by which changes in oxygen tension and
erythropoiesis promote cFGF23 levels, without disturbing the
levels of biological active iFGF23 (Figure 3) (104). Most
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experiments involving EPO are relatively short term, e.g.,
several hours or days of EPO treatment, while in a clinical
setting EPO is given for months or even years. Therefore,
research has been done in Tg6 mice, a model constitutively
overexpressing human EPO (106). In these mice both iFgf23 and
cFgf23 were increased at 6–8 weeks compared to their wild-type
littermates (107). Moreover, these mice showed signs of
disturbed mineral metabolism, including reduced trabecular
bone mineral density, low renal aklotho, urinary calcium
wasting, and reduced expression of renal and intestinal
phosphate transporters (107). Together this indicates that
long-term increases in EPO are able to disturb mineral
metabolism, and that the relation between bone mineralization
and EPO therapy should be investigated in a clinical setting.

HIF1a
Iron deficiency and inflammation are both able to alter FGF23
transcription via hypoxia inducible factor 1 a (HIF1a). HIF1a is
stabilized in case of hypoxia or iron deficiency and activates
downstream pathways (92). Moreover, HIF1a is believed to be
involved in altered FGF23 cleavage seen in inflammation and iron
deficiency. When HIF1a inhibitors were given simultaneously with
the IL-1b treatment, iFGF23 levels were elevated in wild-type mice,
indicating that HIF1a is directly involved in increased FGF23
cleavage caused by inflammation (92). However, HIF1a may not
directly stimulate FGF23, but instead act through EPO. In a study in
rats it was shown that treatment with human recombinant EPO
resulted in a higher increase in cFGF23 compared to the ones
treated with a HIF propyl-hydroxylase (PH) inhibitor, which
stabilizes HIF (105). In rats that were pre-treated with anti-EPO
antibodies, the increased cFGF caused by HIF PH inhibitor
treatment was completely abolished, indicating that EPO may be
the mediator in the increase of cFGF23 in response to HIF
stabilization (108). Nonetheless there are some studies that
suggest that HIF1a stabilization directly influences FGF23
transcription (Figure 3). Fluorescent-tagged antibodies for both
HIF1a and FGF23 co-localize in perivascular cells in resected
tumors of patients with TIO and chromatin immunoprecipitation
assays showed that HIF1a might bind to a HIF-binding site within
the FGF23 promotor (109).

For a deeper understanding of the interplay between iron,
inflammation, EPO and HIF1a more research to FGF23 biology
is needed. The cFGF23 fragments that are increased during iron
deficiency and inflammation, do not seem to represent the
classical role of FGF23 in maintaining mineral homeostasis. It
is therefore important to study how exactly these processes are
able to increase both FGF23 transcription and cleavage.

Insulin and Diabetes
In clinical studies diabetes was found to be associated with higher
serum levels of FGF23 (110, 111). Both diabetes type 1 and 2 are
associated with high levels of inflammation, which is positively
correlated with high levels of FGF23 (112, 113). It is therefore
possible that the relation between diabetes and high FGF23 levels
is mostly explained by inflammation. However, Bär et al. showed
in UMR106 cells that insulin treatment is able to suppress FGF23
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gene expression in the absence of inflammatory factors (114).
Most of the downstream effects of insulin are mediated through
the PI3K/PKB/Akt signaling pathway, and inhibition of this
pathway or its downstream transcription factor, FOXO1,
ablated the effect of insulin on FGF23 expression (Figure 3)
(114, 115). Moreover, in a diabetic mouse model, where use of
streptozocin ablates insulin production through pancreatic b-cell
destruction, a spike in serum Fgf23 was seen, which could be
prevented by giving the mice daily injections of insulin (114).
Finally, the authors looked at a correlation between FGF23 levels
and fasted insulin concentration in healthy human volunteers.
They found that the baseline insulin concentration was inversely
correlated with FGF23 levels. When the volunteers were
subjected to a glucose challenge, the increase in insulin was
also inversely correlated with FGF23 levels (114). Together these
results indicate that insulin is an inhibitor of FGF23, at least
partially independent of the inflammation associated
with diabetes.

Leptin
Leptin (encoded by LEP) is a hormone mainly produced by
adipocytes and secreted in response to a change in body energy
stores (116). Leptin deficient ob/ob mice overexpress 25(OH)D,
1,25(OH)2D3, and 1a-hydroxylase and a lower expression of
Fgf23 (117, 118). Administration of leptin to these mice
corrects for the overexpression of 25(OH)D, 1,25(OH)2D3, and
1a-hydroxylase (117). However, leptin does not inhibit 1a-
hydroxylase in primary cell cultures, suggesting the
involvement of another factor (118). Moreover, when leptin is
administrated to ob/ob mice this results in an increase of serum
Fgf23 levels, while decreasing serum phosphate, calcium and 1,25
(OH)2D3, an effect that was not found in leptin receptor-deficient
db/db mice (118). The authors also investigated whether
administrating Fgf23 to ob/ob mice had similar effects as
leptin, which resulted in a normalization of 1a-hydroxylase
expression (118). Together this indicates that leptin is able to
directly stimulate Fgf23 expression in ob/obmice (Figure 3). In a
clinical study, higher levels of leptin have also been associated
with higher levels of FGF23. However, this association was not
found to be significant when leptin was included in a
multivariate-adjusted model (119). Even though there are some
strong indications that leptin indeed stimulates FGF23, the
mechanism behind it is unknown. Additional work should
reveal the interaction between these hormones in order to add
leptin to the definitive list of FGF23 regulators.
DISCUSSION

Since the discovery of FGF23 in the year 2000, much knowledge
has been gathered about the upstream regulators of this
hormone. In this review, we distinguish the classical regulation
of FGF23 involved in phosphate metabolism and the non-
classical regulation affected by inflammation and iron or
insulin levels. Irregularity in these processes underlie disorders
in bone and mineral metabolism and insights in FGF23
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regulation should provide insights with potential therapeutic
consequences. Even though insights in FGF23 biology are
advancing, many of the mechanisms behind it are still unclear.

Considerations When Studying
FGF23 Regulation
FGF23 is primarily produced by osteocytes, which are
challenging cells to study (120). Osteocytes are terminally
differentiated cells and are hard to isolate in sufficient
quantities. In the past years several cell lines have been
developed from mouse osteocytes, which are also used in a
large portion of the studies described in this review (121).
However, these cell models have their limitations, as they have
to be modified in order to dedifferentiate and proliferate, while
osteocytes in vivo do not (122–124). Much of the research
discussed in this review was performed in osteoblast cell lines
(e.g., MC3T-E1), but it still remains controversial whether
osteoblasts are truly a source of FGF23, as it is mostly
described as a late osteocyte marker (123, 125, 126). Moreover,
the osteosarcoma cell line UMR106 is often used, but as this is a
cancerous cell line, FGF23 regulation might be altered/deranged
(127). Because all these cell lines differ from the osteocytes found
in vivo it is hard to state with certainty that mechanism found in
these cell lines are representative of the situation in humans
or animals.

Secondly, osteocytes are embedded in the mineralized bone
matrix, and therefore might behave differently than when they
are cultured on a flat surface. Research progress regarding 3D
culture models might be a solution for this problem. One recent
study showed that primary murine osteoblasts gain a more
osteocyte-like pattern when cultured in 3D and dedifferentiated
to a more osteoblast-like pattern when placed back in 2D (128).
For OCY454 cells it has been shown that culturing in a 3D
scaffold resulted in a more robust increase in Fgf23 transcription
following PTH treatment (124). Another study showed that
primary human osteocytes had a higher expression of SOST
and FGF23 when they were cultured in 3D in hypoxic conditions
(129). Together these results indicate that optimizing the culture
conditions for osteocytes is important to study FGF23 as it would
function in vivo.

The most promising option to study FGF23 regulation might
be the culture of human bone chips, as they will mimic the in vivo
situation more closely (130). However, limited availability and
donor variation makes it difficult to produce consistent results.
There is a long way to go before we can study human FGF23
biology in its natural human environment, but with the currently
available models it will be possible to gain valuable insights in
FGF23 regulation.

Biological Role for cFGF23
The intent of classical FGF23 regulation is unambiguous:
maintaining phosphate homeostasis in the body. For non-
classical FGF23 regulation this is not as straightforward, as
inflammation or iron deficiency will not only result in higher
FGF23 expression but also in increased cleavage. It is currently
unclear whether this is a protective mechanism to maintain
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mineral homeostasis when HIF1a is stabilized or that the
cFGF23 fragments have a yet undefined function. Based on
findings in mice where cFGF23 inhibited FGF23 signaling, it
can be hypothesized that cFGF23 acts as a competitive inhibitor
to the FGF-receptor (21). Still, healthy humans and animals with
iron deficiency often have normal serum phosphate levels (90,
131, 132). This makes it unlikely that cFGF23 would have a role
in FGF23 inhibition in healthy individuals, as they would be
expected to present with hyperphosphatemia. It is also possible
that cFGF23 plays a role in a yet to be discovered feedback loop
in maintaining iron homeostasis and erythropoiesis. Further
research needs to be done to identify the precise effect of
cFGF23 fragments, as they seem to have no role in classical
FGF23 regulation but might have unique properties instead.
FGF23 Cleavage Machinery
The discovery of genetic mutations affecting FGF23 cleavage
elegantly showed that the intracellular FGF23 cleavage
machinery is essential for its functioning. Although it is clear
that proteases such as furin are involved in cleaving FGF23, and
that phosphorylation by FAM20C and O-glycosylation by Gal-
NAc-T3 regulate this process, the exact mechanisms of FGF23
cleavage are unknown (24). The mechanisms by which FAM20C
is transcriptionally and functionally regulated remains to be
elucidated, though studies suggest that changes in Gal-NAc-T3
and FAM20C activity or transcription seem to be regulated by
iron, iron deficiency and elevated serum phosphate (24, 133,
134). It is likely that FGF23 cleavage is far more complicated than
this but whether and how other upstream regulators affect
cleavage and which other proteins might be involved remain
unanswered questions. For deeper understanding of FGF23
regulation it is therefore important to study how this process
exactly works and what effect upstream regulators have.
Emerging Regulators
Apart from the factors described here, some other upstream
regulators of FGF23 have emerged in the past years and
undoubtedly there are more to be discovered. Factors that were
found to cause an upregulation of FGF23 expression are glycerol-
3-phosphate, cytoskeleton reorganization, NF-kB/Orai1
signaling, aldosterone, and cytosolic calcium activity (100, 101,
135, 136). These factors are mostly described in single in vitro
studies or small clinical studies, and it is therefore not yet fully
understood why and how they affect FGF23 transcription. This
emphasizes how much there is still to uncover about FGF23 and
all of its potential upstream regulators. Additionally, recent
advances in RNA sequencing and bioinformatics have revealed
hitherto unknown roles of circular RNAs, long non-coding
RNAs (lncRNAs), Piwi-interacting (pi)RNAs, and micro (mi)
RNAs in various signaling pathways (137, 138). However, the
role of these non-coding RNAs in osteocyte function is still
unexplored (139). Studies to the role these non-coding RNAs in
osteocyte function and FGF23 signaling, could therefore unravel
a whole new class of FGF23 regulators.
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Therapeutic Therapies for FGF23-
Mediated Pathologies
Conventional treatment for children with XLH consists of 1,25
(OH)2D3 and phosphate supplementation, which results in
improved growth and less rachitic deformities. However,
outcomes are variable and the treatment comes with adverse
effects such as hypercalcemic hyperparathyroidism and
nephrocalcinosis (140). A new promising therapy is the
monoclonal FGF23 antibody burosumab, which has been
shown to normalize phosphate levels in both adults and
children. Burosumab is currently FDA approved for the
treatment of XLH and future studies need to show whether this
drug can also be used in other FGF23-mediated pathologies, such
as TIO (140, 141). Besides these established therapies,
experimental treatments included the use of growth hormone,
which seemed to improve growth during the therapy but did not
result in a significant difference in adult height (142). Some new
treatment options are currently being tested in hyp mice. These
include 1) the use of hexa-D-arginine which increases the
expression of 7B2, which indirectly suppresses FGF23 expression
(39) and and 2) methods to block the FGFR in hyp mouse, which
results in improved growth (143). Many of the current therapies
focus on blocking FGF23 activity or managing the effect of high
FGF23 levels. This underlines the importance of developing
therapies that will target the upstream regulators of FGF23
directly, instead of managing the downstream consequences.
CONCLUSION

Advances over the past 20 years have provided knowledge
regarding several regulators of FGF23 both involved in mineral
metabolism and possible alternative processes. Moreover, it has
become clear that FGF23 transcription and cleavage are
independently regulated processes. The way upstream regulators
affect these actions is not always clear. It is also yet to be discovered
why the osteocyte would increase FGF23 production in response
to some of these factors, only to immediately cleave them. Future
research answering these questions might not only provide
valuable insights in the molecular mechanisms regulating
FGF23, but may also be of use to develop new therapeutic
strategies for patients with FGF23-associated disorders.
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