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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis and is highly 

metastatic. Our prior studies have demonstrated the critical role of axon guidance pathway genes 

in PDAC and the connection between neuronal development and the tumor microenvironment. A 

recent study newly identified 20 neuronal development genes [disks large homolog 2 (DLG2), 

neuron-glial-related cell adhesion molecule (NRCAM), neurexin3 (NRXN3), mitogen-activated 

protein kinase 10 (MAPK10), platelet-derived growth factor D (PDGFD), protein kinase C epsilon 

(PRKCE), potassium calcium-activated channel subfamily M alpha 1 (KCNMA1), polycystic 
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kidney and hepatic disease 1 (PKHD1), neural cell adhesion molecule 1 (NCAM1), neuregulin-1 

(NRG1), zinc finger protein 667 (ZNF667), cystic fibrosis transmembrane conductance regulator 

(CFTR), acyl-CoA medium-chain synthetase-3 (ACSM3), complement 6 (C6), protein tyrosine 

phosphatase receptor type M (PTPRM), hypoxia-inducible factor 1 alpha (HIF1A), adenylyl 

cyclase 5 (ADCY5), adherens junctions-associated protein 1 (AJAP1), neurobeachin (NBEA), 

sodium voltage-gated channel alpha subunit 9 (SCN9A)] that are associated with perineural 

invasion and poor prognosis of PDAC. The relationship between genetic alterations in these 20 

genes and tumor immune microenvironment (TME) has not previously been investigated.

Methods: We hence applied the sequential multiplex immunohistochemistry results of biopsy 

specimens from 63 PDAC patients to investigate this relationship.

Results: We found that, except for PTPRM and NBEA, genetic alterations involving these 20 

genes are associated with significant changes in the densities of major immune cell subtypes. 

Except for AJAP1, the copy number loss involving this panel of neuronal development genes 

is significantly associated with changes in immune cell infiltrates. In contrast, the copy number 

gain in fewer genes, including NRXN3, ZNF667, ACSM3, C6, ADCY5, SCN9A, and PRKCE, is 

significantly associated with changes in immune cell infiltrates.

Conclusions: Our study suggested that neuronal development genes play a role in modulating 

TME in a pancreatic cancer setting.
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Introduction

The annual incidence of pancreatic cancer is increasing worldwide and is projected to 

become the second-leading cause of cancer death by 2040 in the US (1). Pancreatic ductal 

adenocarcinoma (PDAC), accounting for approximately 90% of pancreatic cancer, is an 

aggressive disease characterized by a dismal outcome with a 5-year survival rate of 12% 

(2). The poor prognosis can be attributed to delayed diagnosis, invasive tumor nature, 

frequent metastasis, and high resistance against all conventional therapies (3). The tumor 

immune microenvironment (TME) surrounding PDAC cells significantly determines tumor 

growth, metastatic ability, and treatment resistance (4). Additionally, accumulating evidence 

indicates the important role of neural signaling, neural regulation, and neurotransmitters in 

the TME and development of PDAC (5–7). In 2012, the International Cancer Genomics 

Consortium (ICGC) found that PDAC was enriched with axon guidance gene family 

genetic alterations. This suggests the potential involvement of the nervous system in PDAC 

carcinogenesis and has led to a rising interest in this aspect of neuronal mechanism (8).

Axon guidance family molecules have been studied for their roles in angiogenesis, 

tumorigenesis, and immune regulation (9–12). Semaphorins (SEMA) are a large family 

of axon guidance molecules and have been recognized as critical contributors to neural 

development, the immune response, and tumor progression (13). In our previous studies, 

PDAC cells secreted Sema3D, which is regulated by Annexin A2 (ANXA2) and binds 
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Plexin D1 (PLXND1) and neuropilin-1 through an autocrine signaling mechanism. 

This binding interaction was also shown to promote invasion and metastasis of PDAC 

(14,15). In addition, we also proved that the SEMA3D-PLXND1 axon guidance pathway 

mediates paracrine signaling between tumor cells and nerves to enhance innervation and 

perineural invasion (PNI) in PDAC (16). Our group found that nerve-derived Sema3D 

and potentially other SEMA promote tumor progression and metastasis by reprograming 

tumor-associated macrophages toward M2 polarization. In a recent single-nucleus and 

spatial transcriptome profiling study of PDAC (17), 20 neuronal development genes 

[disks large homolog 2 (DLG2), neuron-glial-related cell adhesion molecule (NRCAM), 

neurexin3 (NRXN3), mitogen-activated protein kinase 10 (MAPK10), platelet-derived 

growth factor D (PDGFD), PRKCE, potassium calcium-activated channel subfamily M 

alpha 1 (KCNMA1), polycystic kidney and hepatic disease 1 (PKHD1), neural cell 

adhesion molecule 1 (NCAM1), neuregulin-1 (NRG1), zinc finger protein 667 (ZNF667), 

cystic fibrosis transmembrane conductance regulator (CFTR), acyl-CoA medium-chain 

synthetase-3 (ACSM3), complement 6 (C6), protein tyrosine phosphatase receptor type 

M (PTPRM), hypoxia-inducible factor 1 alpha (HIF1A), adenylyl cyclase 5 (ADCY5), 

adherens junctions-associated protein 1 (AJAP1), neurobeachin (NBEA), sodium voltage-

gated channel alpha subunit 9 (SCN9A)] were found to be associated with PNI and poor 

prognosis in their independent cohorts. We aim to further investigate the findings of Hwang 

et al. (17) by examining the relationships between specific genetic alterations in neuronal 

development genes and the TME.

Methods

Patient specimens

Specimens from 89 pancreatic cancer patients treated at the Johns Hopkins Hospital, 

comprised of 41 surgically resectable and 48 locally advanced pancreatic cancer (LAPC) 

patients, were included in the study (available at https://cdn.amegroups.cn/static/public/

10.21037apc-23-13-1.xlsx). The study was conducted in accordance with the Declaration 

of Helsinki (as revised in 2013). The study was approved by the institutional review 

board of Johns Hopkins Medicine (J1568). These specimens were archived from two 

clinical trials (NCT02451982; NCT02648282), and written informed consent to allow the 

usage of archived specimens for other studies (the Johns Hopkins Medical Institution 

Institutional Review Board approved protocols at the Johns Hopkins Pancreatic Cancer 

Precision Medicine Center of Excellence Program) including this study was obtained 

from all the patients. Specimens were either biopsy specimens collected via endoscopic 

ultrasound-guided fine needle core biopsies or surgically resected tumors. The demographics 

of the human cohort were described in the studies by Li et al. (18).

Sequential multiplex immunohistochemistry (mIHC)

The sequential mIHC was performed on biopsy specimens before the patients received any 

experimental therapy, the method to analyze the percentage of immune cell infiltration, 

and markers to identify immune cells, as described in the study by Li et al. (18). The 

published quantitative results were used without any modification for the analysis in this 

study. Sixty-three out of 89 patients have mIHC quantitative results available for this study.
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Statistical analysis

Welch’s t-test was performed to compare the two groups. We assume the sample means 

being compared for two normally distributed populations, and the populations have equal 

variances. A P value <0.05 was considered statistically significant. Statistical analyses and 

graphs were generated using GraphPad Prism v.9.5.1.

Results

A decrease in intratumoral CD8+ T cells is associated with the genetic alteration of 
neuronal development genes

Following our previous studies suggesting axon guidance molecules such as the class 3 

SEMA modulate the TME, we attempted to understand how the genetic alteration of 

axon guidance genes correlates with the infiltration of immune cell subtypes in PDACs. 

In addition to those axon guidance genes reported to be associated with PDACs by our 

group and others, Hwang et al. (17) recently identified 20 PDAC-associated neuronal 

development genes through a comprehensive approach. We, therefore, analyzed the genetic 

alterations in these 20 neuronal development genes in our published PDAC patient 

cohorts whose intratumoral immune infiltrates have been characterized. The whole exome 

sequencing (WES) and whole genomic sequencing (WGS) data were obtained from the 

Precision Medicine Application Platform at Johns Hopkins, where the WES and WGS 

data are deposited. Due to the lack of functional assays to determine the significance 

and functions of the missense mutations, we focused on the copy number gain or loss in 

this study. Fifty-two of 89 PDACs have both WGS and WES data; for these cases, we 

determined the copy number gain (3 or more copies) or loss (0 or 1 copy) by using the 

WGS data (available at https://cdn.amegroups.cn/static/public/10.21037apc-23-13-1.xlsx). 

The remaining 37 PDACs have only WES data; we determined the copy number gain or loss 

using the WES data for these cases. We performed Welch’s t-test to compare the subgroup 

with the copy number gain or loss with the subset without either gain or loss (Tables S1,S2).

In many of these 20 genes, either there is a gain or loss, and CD8+ T cells were significantly 

decreased compared to PDAC without gain or loss of these genes (Figure 1). Nevertheless, 

the loss was more likely and significantly associated with decreased intratumor CD8+ T 

cells. The only exception is that loss of ZNF667 is associated with an increase in CD8+ T 

cells.

An increase in intratumoral B cells and a decrease in intratumoral natural killer (NK) cells 
is associated with the loss of neuronal development genes

An increase in intratumoral B cells is associated with the loss of CFTR, ACSM3, and 

HIF1A. In contrast, gain in any of these 20 genes is not associated with a significant change 

in B cell infiltration (Figure 2A). The only exception is that CFTR gain is associated with 

decreased B cell infiltration. NK cells vary in association with axon guidance genes (Figure 

2B). However, a significant reduction of NK cells is associated with the gain of NRCAM, 

KCNMA1, HIF1A, and CFTR genes. In contrast, a significant decrease in NK cells is 

associated with the loss of ZNF667 and C6.
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Genetic alterations in neuronal development genes are correlated with changes in CD4+ T 
cell infiltration, including their subtypes

A significant decrease in intratumoral CD4+ T cell infiltration is associated with the loss 

of the MAPK10, NRG1, and C6 genes (Figure 3). In contrast, a significant increase in 

the T helper 1 (Th1) subtype is associated with the loss of the ZNF667, KCNMA1, and 

PKHD1 gene, and a significant decrease in the Th2 subtype is associated with the gain of 

the NRCAM and PKHD1 genes. A significant decrease in the Th17 subtype is associated 

with the loss of DLG2, PDGFD, protein kinase C epsilon (PRKCE), ADCY5 and NCAM1. 

The only significant increase in the regulatory T (Treg) subtype is associated with the loss of 

PRKCE. Interestingly, a considerable decrease in Th1, Th2, and Th17 infiltrations is related 

to the loss of ADCY15.

Genetic alterations in neuronal development genes are associated with T cell exhaustion

A significant decrease in the PD-1+CD4+ T cells is associated with the loss of DLG2, 

PDGFD, ADCY15, and NCAM1, while a significant decrease in the PD-1+CD8+ T cells is 

associated with the loss of ADCY15 and MAPK10 (Figure 4). A significant decrease in the 

EOMES+CD8+ T cells is associated with the loss of NRXN3.

A significant decrease in M1-like tumor-associated macrophages (TAM), M2-like TAM, and 
tumor-associated neutrophils (TAN) is associated with the loss of neuronal development 
genes

A significant decrease in M1-like TAM infiltration is associated with the loss of C6, 

ADCY5, and SCN9A. A significant decrease in the infiltration of M2-like TAM is 

associated with the loss of NRXN3, C6, HIF1A, ADCY5, and SCN9A (Figure 5). Thus, 

a decrease in both M1-like and M2-like TAMs is associated with the loss of the same genes. 

It should be noted that a significant reduction in the CD66b+ TAN is associated with the loss 

of ZNF667.

Changes in dendritic cell (DC) count are linked to genetic alterations in neuronal 
development genes

A significant decrease in the immature DCs is associated with the gain of DLG2, PDGFD, 

NCAM1, NRG1, NCAM1, and PKHD1 genes, and a significant decrease in the mature DCs 

is associated with the gain of MAPK10, PRKCE, PKHD1, NRG1, and AJAP1 genes (Figure 

6). It should be noted that a significant decrease in the immature DCs is associated with the 

loss of ADCY5 and that a significant increase in the mature DCs is associated with the loss 

of PRKCE.

Discussion

In this study, we performed a comprehensive analysis of the association of the PDAC-related 

neuronal development genes with the modulation of major immune cell subtypes in the 

tumor microenvironment of PDAC. Except for PTPRM and NBEA, genetic alterations 

involving this 20-gene panel are associated with significant changes in specific immune cell 

subtypes. Except for AJAP1, the loss involving this panel of neuronal development genes 

is significantly associated with changes in immune cells. In contrast, gain in specific genes, 
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including NRXN3, ZNF667, ACSM3 C6, ADCY5, SCN9A, and PRKCE, is significantly 

associated with changes in immune cells. Where there is a loss involving this panel of 

neuronal development genes, a decrease was noted in most immune cell subtypes examined. 

Among the immune cell subtypes, CD8+ T cells were most commonly decreased due to the 

loss in the neuronal development genes, followed by Th17, M2-like TAM, and PD-1+CD4+ 

T cells. Interestingly, where there is a gain in these neuronal development genes, only a 

decrease was observed as a statistically significant change in the immune infiltrates across 

all the immune cell subtypes examined. Additionally, immature DCs are the most commonly 

decreased subtype, followed by mature DC, CD8+ T cells, and NK cells. Our results suggest 

that genetic alterations in the neuronal development genes in PDAC lead to a decrease in 

adaptive and effector cell immune response. Although some of these neuronal development 

genes were implicated in the immune modulation in literature as described below- for most 

of these genes, it is the first time that their potential roles in the TME of PDACs have been 

demonstrated.

The DLG2 gene encodes an excitatory postsynaptic scaffold protein, which is a member of 

the membrane-associated guanylate kinase (MAGUK) family and is abundantly expressed in 

brain tissues (19). In the transcriptomic profiling studies, researchers found the expression 

of DLG2 in mast cells, splenic red pulp macrophages, and plasmacytoid DCs that produce 

interferons-β (20). However, there was a lack of data supporting the role of the DLG2 
expression in the TME, except for one study showing that DLG2 stimulated inflammasome 

formation and increased apoptosis in macrophage-like cells (21). Our results show that loss 

of DLG2 was significantly associated with a decrease of intratumoral PD-1+CD4+ T cells, 

Th17, and CD8+ T cells in PDAC, and gain of DLG2 was significantly associated with an 

increase of immature DCs and CD8+ T cells.

The NRCAM gene encodes a transmembrane protein composed of multiple 

immunoglobulin-like C2 domains and a fibronectin type III domain. NRCAM plays an 

essential role in neuronal development, including neuron-neuron adhesion, axon growth, 

signal transduction, synapse formation, and formation of myelinated nerve structures 

(22,23). Only one study reported that the differentiation of Th1 cells was affected by 

regulating NRCAM gene transcription in Graves’ disease (24). Our results showed that loss 

of NRCAM was significantly associated with decreased CD8+ T cells in PDAC; gain of 

NRCAM was significantly associated with reduced NK cells and Th2 cells.

NRXN3 gene, a member of the neurexin gene family, is a synaptic modulator and encodes 

a protein that functions in the vertebrate nervous system as a cell adhesion molecule during 

synaptogenesis and intercellular signaling (25–27). The role of NRXN3 in the TME has not 

been previously studied. Our results show that loss of NRXN3 was significantly associated 

with a decrease of CD8+ T cells, EOMES+CD8+ T cells, and M2-like TAMs in PDAC, and 

gain of NRXN3 was significantly associated with an increase of M2-like TAMs.

MAPK10 involves various processes such as neuronal proliferation, differentiation, 

migration, and programmed cell death. In a recently published study of ovarian cancer, 

expression of MAPK10 has been found to be positively correlated with the infiltration of 

eosinophils and naive B cells and negatively correlated with the infiltration of NK cells and 
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memory B cells (28). Another study of breast cancer showed that mutations in MAPK10 
were associated with a decreased infiltration of activated CD4+ T cells (29). Consistently, 

our results showed that loss of MAPK10 was significantly associated with a decrease of 

CD4+ T cells, PD-1+CD8+ T cells, and mature DCs in PDAC; gain of MAPK10 was 

significantly associated with an increase of PD-1+CD8+ T cells and mature DCs.

NCAM1 is a synaptic adhesion molecule that supports synaptic connections by 

trans-homophilic binding. NCAM1 has been implicated in several brain-related 

biological processes, including neuronal migration, axonal branching, fasciculation, and 

synaptogenesis, with a pivotal role in synaptic plasticity. In human hematopoiesis, NCAM1 
(also called CD56) is highly expressed in NK cells (30,31). In addition, NCAM1 expression 

was found in rare subsets of T and B lymphocytes, DCs, and neural or mesenchymal stem 

cells (32). However, no study evaluates the immune-modulating effect of NCAM1. Our 

results showed that loss of NCAM1 was significantly associated with a decrease of Th17 

and PD-1+CD4+ T cells in PDAC; gain of NCAM1 was significantly associated with an 

increase of CD8+ T cells and immature DCs.

NRG1 belongs to the epidermal growth factor (EGF) family, contains an EGF-like domain, 

and is a HER3 (ERBB3) ligand. NRG1 is primarily known for its essential role in Schwann 

cell and oligodendrocyte differentiation, maintenance, and myelination in the central and 

peripheral nervous systems (33). Furthermore, through the NRG1-HER3 signaling axis, 

NRG1 contributes to malignant tumor development in several cancer types, including 

gastric, pancreatic, breast cancer, squamous cell carcinoma, and non-small-cell lung cancer. 

Additionally, its overexpression is closely associated with poor prognosis (34–36). A recent 

study indicated that NRG1 augments regulatory populations of macrophages, T cells, and 

B cells peripherally and in injured spinal cord tissue (37). In a study of colorectal cancer, 

NRG1 expression was positively correlated with activated DCs, neutrophils, plasma cells, 

and resting CD4+ memory T cells and negatively with memory B cells and macrophage 

M1 (38). In addition, a study of oral squamous cell carcinoma also showed that NRG1 
expression was negatively correlated with the infiltration of B cells and CD8+ T cells (39). 

Our results show that loss of the NRG1 gene was significantly associated with a decrease 

of CD4+ T cells in PDAC; gain of NRG1 was significantly associated with a decrease of 

mature DCs and immature DCs.

ZNF667 is a novel C2H2 zinc finger protein that is found to be significantly upregulated 

during myocardial and cerebral ischemic preconditioning (40,41). A recent study 

showed that ZNF667 exhibited anti-inflammatory effects in LPS-induced macrophages by 

suppressing the mTOR-dependent expression of glycolytic genes and glycolysis (42). Our 

results show that loss of ZNF667 is significantly associated with a decrease of NK cells and 

TAN and an increase of CD8+ T cells in PDAC.

HIF1A is involved in cellular metabolism, cell death, and proliferation of neuronal 

progenitors in the sympathetic system (43,44). HIF1A is a crucial regulator of immune 

cell function in health and disease (45). HIF1A regulates M1 macrophage polarization, 

DC maturation and migration, and neutrophil NET formation and survival (46,47). Our 

results showed that loss of HIF1A was significantly associated with a decrease of M2-like 
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TAMs and an increase of B cells in PDAC. In contrast, a gain of HIF1A was significantly 

associated with reduced NK cells.

PDGFD gene belongs to the PDGF family of proteins, which can regulate neurogenesis 

and diverse functions in the brain. A recent study found that exogenous administration of 

PDGFB, which shares the same binding receptor with PDGFD, promotes the proliferation of 

neural progenitor cells (48). Another study found that PDGFD significantly correlates with 

plasma cells, CD4 memory T cells, follicular helper T cells, monocytes, macrophage M0 

and M1, DCs, and mast cells in gastric cancer (49). Our results showed that loss of PDGFD 
was significantly associated with a decrease of Th17 and PD-1+CD4+ T cells in PDAC; gain 

of PDGFD was significantly associated with a decrease of CD8+ T cells and immature DCs.

ACSM3 is a member of the acyl-CoA synthase gene family, which regulates cellular 

phospholipid acyl-chain diversity in the brain (50). A study of melanoma found that 

ACSM3 was positively correlated with central memory and naïve CD8+ cells, regulatory 

T cells, macrophages, and DCs (51). Our study found that loss of ACSM3 was significantly 

associated with an increase of B cells in PDAC.

AJAP1 is an integral transmembrane protein that interacts with the E-cadherin-catenin 

complex at adherens junctions, which mediate adhesion between pre-and postsynaptic 

membranes (52). The role of the AJAP1 expression in the TME was not previously reported. 

Our study found that the gain of AJAP1 was significantly associated with a decrease of 

mature DCs and Th1 cells in PDAC.

KCNMA1 gene encodes a protein that forms large-conductance calcium-activated potassium 

channels in cells. These channels play a crucial role in regulating the flow of potassium 

ions across cell membranes, an essential step in various physiological processes, including 

neurotransmitter release (53). Mutations of the KCNMA1 gene can lead to channel 

dysfunction and are associated with neurological conditions, including seizures, movement 

disorders, developmental delay, and intellectual disability (54). The role of KCNMA1 in 

the TME was not reported. Our results showed that loss of KCNMA1 was significantly 

associated with a decrease of CD8+ T cells and an increase of Th1 cells in the tumor 

microenvironment of PDAC; gain of KCNMA1 was significantly associated with a decrease 

of CD8+ T cells, NK cells, and immature DCs.

PKHD1 gene encodes a protein known as fibrocystin/polyductin, which is primarily 

found in the primary cilia of renal epithelial cells. Mutations of the PKHD1 gene are 

associated with autosomal recessive polycystic kidney disease (ARPKD), a rare genetic 

disorder characterized by the formation of cysts in the kidneys and liver (55,56). During 

embryogenesis, PKHD1 is widely expressed in epithelial derivatives, including neural 

tubules (57). The role of PKHD1 in the TME has not been previously studied. Our results 

found that loss of PKHD1 was significantly associated with a decrease of CD8+ T cells and 

an increase of Th1 and Th2 cells in PDAC; gain of PKHD1 was significantly associated with 

a decrease of mature DCs, immature DCs, and Th2 cells.

CFTR gene encodes channel proteins that belong to the ATP-binding cassette transporter 

superfamily. CFTR binds ATP and promotes substrate transport across membranes. 
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Mutations in the CFTR gene are the cause of cystic fibrosis. CFTR has been reported to 

be involved in modulating neuronal excitability through chloride transporters in both the 

peripheral and central nervous systems (58). One study on cystic fibrosis showed that CFTR 
regulated B cell activation and lymphoid follicle development. However, the role of CFTR in 

the TME was not studied. Our results showed that loss of CFTR was significantly associated 

with a decrease of CD8+ T cells in PDAC; gain of CFTR was significantly associated with a 

decrease of NK cells.

The C6 gene encodes a component of the complement cascade as a part of the membrane 

attack complex that can be incorporated into the cell membrane and cause cell lysis. C6 

is part of the immune system and is crucial in defending the body against infections and 

pathogens. In addition to being a component of innate and adaptive immunity, complement 

proteins regulate several physiologic processes, including synaptic pruning during brain 

development (59–62). However, the role of the C6 expression in the TME was not well 

studied. Our results showed that loss of C6 was significantly associated with a decrease of 

NK cells, CD4+ T cells, M1-like TAM, and M2-like TAMs in PDAC.

ADCY5 is a member of membrane-bound adenylyl cyclase enzymes that regulate cellular 

activities by mediating G protein-coupled receptor signaling through synthesizing the second 

messenger cAMP (63). ADCY5 is highly expressed in the brain and myocardium (64). 

Mutations in ADCY5 have mainly been linked to various complex movement disorders 

often associated with neurodevelopmental phenotypes (65). However, the role of ADCY5 
in the TME was not reported. Our results showed that loss of ADCY5 was significantly 

associated with a decrease of immature DCs, Th1, Th2, Th17, PD-1+CD4+ T cells, 

PD-1+CD8+ T cells, M1-like TAMs, M2-like TAMs, and immature DCs in PDAC.

SCN9A, known as Nav1.7, are voltage-gated sodium channels that are preferentially 

expressed in the dorsal root ganglia and sympathetic neurons (66–68). SCN9A mediates 

cellular excitability and plays a crucial role in gating pain transmission from the periphery to 

the central nervous system (69,70). The role of SCN9A in the TME was not reported. Our 

results showed that loss of SCN9A was significantly associated with a decrease of M1-like 

TAMs and M2-like TAMs in PDAC.

PRKCE belongs to a family of serine- and threonine-specific protein kinases that can be 

activated by calcium and the second messenger, diacylglycerol. The gene product of PRKCE 
plays an essential role in regulating multiple cellular processes, including neuron growth and 

immune response (71,72). Our results show that loss of PRKCE was significantly associated 

with a decrease of Th17 cells and an increase of Treg cells and mature DCs in PDAC.

PTPRM is a member of the protein tyrosine phosphatase (PTP) family (73). PTPRM is a key 

regulator of neurite outgrowth and synapse formation in cortical neurons (74,75). NBEA is 

a kinase anchor protein that contributes to the regulation of protein trafficking and recycling 

of ionotropic glutamate and GABA receptors (76,77). NBEA has also been implicated in 

vesicular traffic at the synapse and has been shown to be required for normal development 

of the synapses (78). The role of PTPRM or NBEA in the TME was not reported. Our 
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results showed that neither the genetic alterations of PTPRM nor NBEA were significantly 

associated with a change in immune cells in PDAC.

The limitation of this study is that the study only compared the percentage of different 

immune cells corresponding to various gene alterations. It is unclear how and why the 

immune cells are regulated by those genes.

Conclusions

It remains to be further investigated how these neuronal development genes and other axon 

guidance genes coordinate to modulate the TME. Different neuronal development genes 

may regulate the trafficking of various immune cells. Similar to axon guidance, these genes 

may guide the trafficking of immune cells. Tumor cells have acquired the ectopic expression 

of neuronal development genes and axon guidance genes; therefore, they have acquired the 

function of axon guidance genes ectopically. Similar to axon guidance molecules (which can 

function as nerve repellants or attractants depending on the subtype), genetic alterations in 

neuronal development genes in tumor cells allow the tumor cells to repel specific immune 

cells while attracting other immune cells. Such a hypothesis would need further testing with 

functional assays to measure the repellent and attractant function against tumors.
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Highlight box

Key findings

• The role of neuronal development genes in the tumor immune 

microenvironment (TME) of pancreatic cancer.

What is known and what is new?

• Neuronal development genes are associated with perineural invasion and poor 

prognosis of pancreatic ductal adenocarcinoma (PDAC).

• Alterations of neuronal development genes are associated with changes in the 

densities of major immune cells in TME of PDAC.

What is the implication, and what should change now?

• It remains to be further investigated how neuronal development genes 

modulate the TME of PDAC.
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Figure 1. 
Comparison of the percentages of CD8+ T cells on all cells in the tumor area of 89 PDACs 

between different types of gene alteration: ‘Unchanged’ (no genetic alteration), ‘Gain’ (gain 

and amplification), and ‘Loss’ (including loss of heterogeneity and deletion). Data are 

shown as mean ± SEM. P values determined by unpaired t-test. *, P<0.05; **, P<0.01. SEM, 

standard error of the mean; PDAC, pancreatic ductal adenocarcinoma.
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Figure 2. 
Comparison of the percentages of B cell (A) and NK cell (B) on all cells in the tumor area of 

89 PDACs between different types of gene alteration: ‘Unchanged’ (no genetic alteration), 

‘Gain’ (gain and amplification), and ‘Loss’ (including loss of heterogeneity and deletion). 

Data are shown as mean ± SEM. P values determined by unpaired t-test. *, P<0.05; **, 

P<0.01. SEM, standard error of the mean; NK, natural killer; PDAC, pancreatic ductal 

adenocarcinoma.
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Figure 3. 
Comparison of the percentages of CD4+ T cell (A), Th1 (B), Th2 (C), Th17 (D), and Treg 

(E) on all cells in the tumor area of 89 PDACs between different types of gene alteration: 

‘Unchanged’ (no genetic alteration), ‘Gain’ (gain and amplification), and ‘Loss’ (including 

loss of heterogeneity and deletion). Data are shown as mean ± SEM. P values determined 

by unpaired t-test. *, P<0.05; **, P<0.01; ****, P<0.0001. SEM, standard error of the mean; 

Th, T helper; Treg, regulatory T; PDAC, pancreatic ductal adenocarcinoma.
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Figure 4. 
Comparison of the percentage of PD-1+CD4+ T cell (A), PD-1+CD8+ T cell (B), and 

EOMES+CD8+ T cell (C) on all cells in the tumor area of 89 PDACs between different types 

of gene alteration: ‘Unchanged’ (no genetic alteration), ‘Gain’ (gain and amplification), and 

‘Loss’ (including loss of heterogeneity and deletion). Data are shown as mean ± SEM. P 

values determined by unpaired t-test. *, P<0.05; **, P<0.01; ****, P<0.0001. SEM, standard 

error of the mean; PDAC, pancreatic ductal adenocarcinoma.
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Figure 5. 
Comparison of the percentage of M1-like TAM (A), M2-like TAM (B), and TAN (C) 

on all cells in the tumor area of 89 PDACs between different types of gene alteration: 

‘Unchanged’ (no genetic alteration), ‘Gain’ (gain and amplification), and ‘Loss’ (including 

loss of heterogeneity and deletion). Data are shown as mean ± SEM. P values determined by 

unpaired t-test. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. SEM, standard error 

of the mean; TAM, tumor-associated macrophages; TAN, tumor-associated neutrophils; 

PDAC, pancreatic ductal adenocarcinoma.
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Figure 6. 
Comparison of the percentage of mature DC (A) and immature DC (B) on all cells in the 

tumor area of 89 PDACs between different types of gene alteration: ‘Unchanged’ (no genetic 

alteration), ‘Gain’ (gain and amplification), and ‘Loss’ (including loss of heterogeneity and 

deletion). Data are shown as mean ± SEM. P values determined by unpaired t-test. *, 

P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. DC, dendritic cell; SEM, standard error 

of the mean; PDAC, pancreatic ductal adenocarcinoma.
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