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Advances in single cell transcriptomics have allowed us to study the identity of single cells.
This has led to the discovery of new cell types and high resolution tissue maps of them.
Technologies that measure multiple modalities of such data add more detail, but they also
complicate data integration.We offer an integrated analysis of the spatial location and gene
expression profiles of cells to determine their identity. We propose scHybridNMF (single-
cell Hybrid Nonnegative Matrix Factorization), which performs cell type identification by
combining sparse nonnegative matrix factorization (sparse NMF) with k-means clustering
to cluster high-dimensional gene expression and low-dimensional location data. We show
that, under multiple scenarios, including the cases where there is a small number of genes
profiled and the location data is noisy, scHybridNMF outperforms sparse NMF, k-means,
and an existingmethod that uses a hiddenMarkov random field to encode cell location and
gene expression data for cell type identification.
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integration

1 INTRODUCTION

Advances in single cell RNA-Sequencing (scRNA-Seq) technology provided an unprecedented
opportunity for researchers to study the identity and mechanisms of single cells (Morris, 2019).
While scRNA-Seq data is a major type of data used to study single cells, it cannot fully determine
the identity of a cell (McKinley et al., 2020). As such, it is important to consider other modalities
such as chromatin accessibility (Cusanovich et al., 2015), protein abundance (Peterson et al.,
2017), or spatial locations (Ståhl et al., 2016; Wang et al., 2018) of single cells. In particular,
spatial location data can provide important information on the cells’ micro-environment and
cell-cell interactions (Mayr et al., 2019). In certain tissues like the brain, cells at nearby locations
tend to have the same type—daughter cells tend to keep the same type and location as their
mother.

Technologies that jointly profile the location and gene expression of cells are often forced to
measure a small set of genes (Zhu et al., 2018). Since clustering cells using smaller gene expression
profiles can be inaccurate, incorporating the cell location data can improve its accuracy. However,
reconciling single cell gene expression and location data for cell type identification is challenging
because different data types can have differing scales, distributions, and types of noise (Efremova and
Teichmann, 2020).

Computational methods that integrate multimodal data are crucial for learning a
comprehensive picture of inter- and intra-cell processes (Efremova and Teichmann, 2020;
Stuart and Satija, 2019). Promising nonnegative matrix factorization (NMF) models have been
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developed for cell type identification for multiple types or
modalities of data (Shao and Höfer, 2017; Duren et al., 2018;
Kotliar et al., 2019; Welch et al., 2019; Jin et al., 2020). However,
none of these methods incorporate cell locations. On the other
hand, Zhu et al. (2018) developed a HMRF (Hidden Markov
Random Field) model and showed that the spatial location of
cells can contribute to cell type identification.

We introduce a matrix low-rank approximation scheme,
scHybridNMF (single-cell Hybrid NMF), to perform cell
clustering by jointly processing cell location and gene
expression data. We use a matrix low-rank approximation
scheme because of the ease of preserving data characteristics
through constraints and optimization terms. We combine sparse
NMF with k-means clustering to cluster high-dimensional gene
expression data and low-dimensional location data in an
integrative way. We compare the performances of
scHybridNMF against sparse NMF, k-means clustering, and
HMRF on simulated and two real datasets, STARmap (Wang
et al., 2018) and seqFISH+ (Eng et al., 2019), which both profile
the mouse brain cortex.

2 MATERIALS AND METHODS

Matrix low-rank approximations approximate matrices as
products of lower-rank matrices. Many biological clustering
frameworks are designed as matrix low-rank approximation
schemes because they can easily incorporate prior biological
knowledge and data constraints. We formulated scHybridNMF
as a combination of multiple low-rank approximations. This
formulation guided the gene expression-based cell clustering
with cell location information. We chose sparse NMF and
k-means clustering because they could be formulated as matrix
low-rank approximations, and incorporating these methods was
intuitive.

2.1 Review of Sparse Nonnegative Matrix
Factorization and K-Means Clustering
K-means clustering is an unsupervised learning algorithm that
clusters data points by comparing pairwise distances. This metric
naturally pairs with location-based data because it determines the
similarity between points by how physically close they are. Eq. 1
shows the matrix formulation for a Euclidean distance-based
k-means objective for clustering L ∈ R2×n, which represents
location data.

min
HL∈{0,1}k×n
HT

L1k�1n

L −WLHL‖ ‖2F, (1)

where 1k and 1n are k- and n-length vectors of ones. The columns
of WL ∈ R2×k contain k cluster centroids, and the columns of
HL ∈ Rk×n contain each point’s cluster membership. If a point i
belongs to a cluster j, HL (j, i) � 1 and HL (l, i) � 0 for l ≠ j. The
constraints preserve the hard-clustering requirement of k-means,
as each data point can only belong to one cluster. This is
equivalent to having one 1 per column of HL. Additionally,

k-means does not require any pre-processing, such as building
a location-based neighborhood graph, on location data. Pre-
processing location data may remove many of their underlying
characteristics.

NMF is a dimension reduction algorithm that is well-suited for
high-dimensional data. Given a nonnegative input matrix
A ∈ Rm×n+ , NMF computes two nonnegative factors, HA and
WA of a specified reduced dimension size k, where k is
generally much smaller than m and n. The columns of
WA ∈ Rm×k+ contain k cluster representatives, and the columns
of HA ∈ R k×n

+ contain cluster membership information.
Sparse NMF constrains the sparsity in each column of HA

(Kim and Park, 2007). It converts the soft clustering of NMF into
more of a hard clustering—a data point will have fewer nonzero
entries in the cluster membership matrix and be represented by
fewer cluster representatives. Sparse NMFmay be interpreted as a
hard clustering method if we assign each data point to the cluster
of the maximal element in its column of HA. For example, if the
largest element in the first column ofHA is in the second entry, we
can interpret the first data point as belonging to the second
cluster.

Eq. 2 contains the formulation for sparse NMF. The first term
is the objective term for standard NMF, which minimizes the
difference between A and WAHA. The low-rank factors from
NMF are not inherently unique, so we normalize the columns of
the computed WA and scale the rows of HA accordingly. The
second term limits the size of the elements in WA, and the final
term promotes the sparsity in each column of HA.

min
{WA,HA}≥ 0

A −WAHA‖ ‖2F + β‖WA‖2F + c∑n
i�1

‖HA(: , i)‖21. (2)

2.2 Multimodal Objective
LetA ∈ Rm×n

+ denote the normalized gene expression matrix and
L ∈ R2×n denote the two-dimensional cell location coordinates,
where m is the number of genes and n is the number of cells. To
get the normalized gene expression matrix, we first scaled the
rows of the raw count matrix, ~A, by its library size, then set
A � log2( ~A + 1). We computed WA and HA from sparse NMF
on the gene expression data and WL and HL from k-means
clustering on the location data. We used the same k in both
methods, which allowed for a direct comparison between the
two data types. We assumed that k is already known for each
dataset. Eq. 3 is the objective function for the multimodal
clustering:

min
{WA,HA}≥ 0

g(WA,HA) � min
{WA,HA}≥ 0

A −WAHA‖ ‖2F
+ α HA −HA+ĤL

���� ����2F. (3)

In Eq. 3, ◦ represents the element-wise product between two
matrices, and the second term forms the consensus between the
clustering results from sparse NMF and k-means clustering. ĤL

was obtained by converting HL into a matrix of confidence scores
that considered how close each cell was to the edge of its location-
based cluster. We found the index of two closest cluster centroids
to each cell i, then assigned values to entries in ĤL (Eq. 4). All
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other entries of ĤL remained zero. As such, we comparedHAwith
ĤL, and not with HL directly.

ĤL(j, i) �
WL(: , j) − L(: , i)���� ����2∑2

j′�1 WL(: , j′) − L(: , i)���� ����2, if j is one of the top 2 cluster indices for cell i.

0, j for all other clusters.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(4)

Instead of forcing HA and ĤL to be similar overall, the second
term in Eq. 3 forced HA and ĤL to be similar in terms of their
cluster memberships. In other words, the second term of Eq. 3
aimed to match the location of the largest element in each column
of HA and the location of the two nonzero elements in the
corresponding column of ĤL.

The main focus of this work was to use cell location
information to aid the gene expression-based clustering of
cells. Because we specifically adapted gene clusters to
incorporate location cluster information, our design sought to
align the cluster membership matrices while still considering the
accuracy of the gene expression clustering. We did not include a
sparsity term for HA, the final cluster membership matrix,
because imposing the sparsity terms may eliminate nuance in
the integration of both clustering schemes, and thus result in a
loss of information that could better serve to cluster the cells.

2.3 Proposed Algorithm
scHybridNMF optimized Eq. 3 to combine the clusters of sparse
NMF on A and k-means on L. To get the initial HA for the
consolidated algorithm, we ran sparse NMF on A. We then
computed k-means clustering on L. We computed initial
centroids by taking the means of each cell’s locations within
the gene expression-based clusters.

scHybridNMF used block coordinate descent for computing
HA and WA. These two terms were computed via an alternating
nonnegative least squares (ANLS) formulation.

HA −HA+ĤL

���� ����2F � HA+1k×n −HA+ĤL

���� ����2F � HA+C‖ ‖2F, (5)

where C � 1k×n − ĤL and 1k×n is a k × n matrix of ones. We
represented the element-wise product in a block-ANLS
formulation by computing it column-by-column. Column i of
HA is updated as follows:

HA(: , i)← arg min
HA(: ,i)≥ 0

WA��
α

√
pdiag(C(: , i))( )HA(: , i) − A(: , i)

0k
( )

��������
��������
2

F

,

(6)

where i ∈ {1, . . . , k}, 1k is a k-length vector of ones, and 0k is a k-
length vector of zeros. Each column in HA was element-wise
multiplied to each column in C in Eq. 5, which can be represented
as a left-multiplication of the column of HA by a matrix whose
diagonal entries are the corresponding column of C.

For WA, we used the following update rule:

WA ← arg min
WA ≥ 0

A −WAHA‖ ‖2F. (7)

The overall scheme is described in Algorithm 1. There exist
many stopping criteria that can be used.We used two: a maximum

number of iterations and a normalized KKT condition residual
check, as used in SymNMF (Kuang et al., 2015).

Algorithm 1. scHybridNMF: an algorithm to minimize Eq. 3

2.4 Parameters
In line 1 of Algorithm 1, we computed sparse NMF on the data
matrixA through Eq. 2. This formulation involved β and c, which
controlled the size of the entries of WA and the sparsity of HA,
respectively. To ensure that the last two terms were proportionate
to the first term in the formulation, we formulated β and c to have
a denominator of ‖A‖2F, which is the maximum value the first
term can take. We also formulated the parameters based on the
dimensions of WA and HA. We set the numerator of β to be m,
which is the number of rows ofWA, and we set the numerator of c
to be n, which is the number of columns of HA. The final
formulations were β � m

‖A‖2F and c � n
‖A‖2F.

The parameter α in the hybrid clustering scheme was
designed to control the degree to which the consensus
clustering was influenced by the location-based clusters. The
maximum number of iterations to run the main BCD was set
to be 500 so it is not triggered as much as the other stopping
criterion. The tolerance level, tol, of the normalized KKT residual
check had a default value of 0.01. The relationship between α and
tol is interesting. A smaller α, which prioritizes gene expression-
based clusters, required a larger tol, as scHybridNMF’s clusters did
not converge otherwise. Likewise, a larger α, which prioritizes cell
location-based clusters, required a smaller tol to ensure that
scHybridNMF did not return the same clusters as k-means.
For α and tol, we recommend using values between 0 and 1.

2.5 Convergence of Algorithm
We used a block coordinate descent (BCD) framework to
optimize Eq. 3. BCD solves subgroups of problems for a set of
variables of interest, which iteratively minimizes the total
objective function. We used the minimization version of the
two-block BCD method, which assigned H(j)

A and W(j)
A values

that minimized Eq. 3 one-at-a-time.
An important theorem regarding BCD states that if a continuously

differentiable function over a set of closed convex sets is minimized by
BCD, every limit point obtained from uniquely minimizing the
subproblems in BCD is a stationary point (Bertsekas et al., 1997).
This theorem has the additional property that the uniqueness of the
minimum is not necessary for a two-block BCD nonlinear
minimization scheme (Grippo and Sciandrone, 2000). This was
used to show the convergence of a two-block formulation for
solving regular NMF via ANLS (Kim et al., 2014).
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Given the constrained nonlinear minimization objective in Eq.
3, we rewrote the block coordinate descent as two ANLS
formulations, which follow from Eq. 6 and Eq. 7:

HA(: , i)(j) ← arg min
HA(: ,i) ≥ 0

W(j−1)
A��

α
√

pdiag(C(: , i))( )HA(: , i) − A(: , i)
0k

( )
��������

��������
2

F

,

(8)

W(j)
A ← arg min

WA ≥ 0
H(j)

A( )TWT
A − AT

������
������2F. (9)

Eqs. 8 and 9 were executed iteratively to solve for HA andWA.
We considered Eq. 8 to be one block calculation for the entireHA

matrix because the calculation of a column of H(j)
A does not

involve any other column. Eqs. 8 and 9 constituted a valid
minimization scheme equivalent to minimizing Eq. 3. As such,

FIGURE 1 | (A) An example of noise in location data. The data had σ � 0.3 and 20% noise. In each plot, there are six point colors that correspond to true cluster
labels. Left: strong spatial patterns; right: weak spatial patterns. Note that certain cell types are not contiguous in the right plot. (B–E) Performance vs sigma plots for
location data with strong spatial patterns. Each plot shares the same legend as plot (C). (B) No sampling, 20% noise. (C) No sampling, 30% noise. (D) 50% sampling,
20% noise. (E) 50% sampling, 30% noise.
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the theorem by Bertsekas is applicable to this two-block BCD
scheme for solving scHybridNMF (Bertsekas et al., 1997; Kim
et al., 2014):

THEOREM 1 Every limit point {W(j)
A ,H(j)

A } calculated
iteratively via Eqs. 8–9 is a stationary point of Eq. 3.

3 RESULTS

We tested the performance of scHybridNMF against simulated
and real data. For real data, we experimented on the STARmap
and seqFISH+ datasets, both of which catalogue the mouse brain
cortex (Eng et al., 2019). For STARmap, we compared against
sparse NMF and k-means clustering to show an improvement of
our hybrid scheme over each method. For the simulated data and
seqFISH+, we also compared against HMRF (Zhu et al., 2018), a
method that also performs consensus cell clustering on gene
expression and cell location data. HMRF models cell locations as
nodes on a graph, where cells are connected if they are neighbors
in location. It clusters cells by searching for coherent gene
expression patterns within neighboring cells.

We implemented the code in MATLAB 2019b. For sparse
NMF, we used MATLAB code presented by Kim and Park (Kim
and Park, 2008). All experiments were executed on a computer
with 2.4 GHz 8-Core Intel Core i9 and 32 GB 2400 MHz
DDR4 RAM.

3.1 Simulated Data
We used SymSim to simulate single cell gene expression data,
where each cell has one of six cell types (Zhang et al., 2019). Each
dataset has 1,600 cells and 600 genes. We developed two types of
cell location datasets, where one has strong and the other has
weak spatial patterns. For each case, we generated location data
with 20 and 30% noise by randomly choosing 20 and 30% of the
cells and assigning them to locations outside of their original cell
type cluster. Adding noise to the locations made the data more
realistic. Figure 1A shows an example of location data with
20% noise.

SymSim has a parameter σ that adjusts the within-cluster
heterogeneity of gene expression. When σ increased, the gene
expression-based clusters were less separable, and gene expression-
based clustering algorithms were less reliable. We used σ � (0.3, 0.4,
0.5, 0.6). For each sigma, 10 gene expression-cell location datasetswere
generated. For each location matrix, we generated 10 noisy location
datasets per noise level.

Many current technologies, especially image-based
technologies that pairwise measure the gene expression and
spatial locations of single cells, cannot also sequence many
genes (Zhu et al., 2018; McKinley et al., 2020). To mimic the
limitations of current technology, we additionally created gene-
sampled data by randomly sampling 50%, or 300, of the genes
from each of the original gene expression datasets.

We compared the quality of clusters determined by gene
expression clustering, cell location clustering, and hybrid
clustering. The methods we used for gene expression
clustering were sparse NMF and PCA plus k-means clustering,
which provided a baseline for the performance of sparse NMF.

For example, a poor performance from PCA plus k-means
clustering justified similarly poor performance of sparse NMF.
For location-based clustering, we used k-means clustering. To
cluster both data types, we used scHybridNMF and HMRF.
HMRF uses a parameter, called beta, which accounts for
smoothness. We determined the performance of HMRF as the
average performance across 5 values, (0, 20, 40, 60, 80), for beta.

We calculated the adjusted Rand index (ARI) between the
calculated and ground truth clusters for each clustering method
across each experiment. ARI quantifies how similar two
clustering schemes are. If a clustering is very similar to the
ground truth clustering, the ARI should be close to 1. We
used the sparse NMF and k-means clustering that were used
in the steps of Algorithm 1 to calculate their respective ARI
values.

3.1.1 Location Data With Strong Spatial Patterns
The location data with strong spatial patterns had significant
spatial gaps between clusters (Figure 1A, left plot), and k-means
clustering did well separating clusters. For these cases, location
clustering played a major role in the multimodal clustering
scheme. For σ � (0.3, 0.4, 0.5, 0.6), we used α � (50, 55, 60,
60) and tol � (0.02, 0.02, 0.02, 0.04). We used the same parameters
for data with and without gene sampling. We plotted the average
ARIs as a function of σ in Figures 1B–E. Figures 1B,C show the
ARIs for data with no gene sampling, and Figures 1D,E show the
ARIs for data with 50% gene sampling.

The plots showed a clear improvement of scHybridNMF over
every other method. scHybridNMF followed the same performance
trend as gene expression-based clustering across each σ. In contrast,
HMRF’s performance over every σ value was constant. This was
highly similar to the performance of location-based clustering, which
was often outperformed by gene expression clustering.

3.1.2 Location Data With Weak Spatial Patterns
In this location data, the boundaries between clusters were hard
to determine (Figure 1A, right plot). As such, k-means clustering
experiencedmore difficulty, and gene expression information was
more useful in the multimodal clustering scheme. For σ � (0.3,
0.4, 0.5, 0.6), we used α � (0.015, 0.02, 0.025, 0.04) and tol � (0.2,
0.2, 0.2, 0.2). We used the same parameters for data with and
without gene sampling. We plotted the average ARIs as a function
of σ in Figures 2A–D. Figure 2A,B show the ARIs for data with
no gene sampling, and Figures 2C,D show the ARIs for data with
50% gene sampling.

scHybridNMF and HMRF had the same performance trends
as they did in Figures 1B–E. However, neither the gene
expression nor the cell location data accurately represented the
underlying data well—the ARIs and qualities of the gene
expression- and location-based clusterings for larger σ were
very low. Because scHybridNMF drew information from these
clusters, it was difficult to gain significantly better information
than what was found individually.

scHybridNMF still maintained higher levels of performance in
most cases. When σ increased, the clusters were less separable
with gene expression data, and the performance of sparse NMF
decreased. This caused the decrease of the performance of
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scHybridNMF. Although it did not perform very well with small
σ, the performance of HMRF was not affected much by the
increase of σ, and it started to decrease only when σ > 0.5. This
was likely due to the fact that the neighborhood graph approach
used in HMRF is good at learning from location data. However, as
evidenced by the performance patterns of HMRF across different
σ values, HMRF is not able to make full use of high-quality gene
expression data.

3.1.3 Timings
We presented two separate dot plots of algorithm completion
time vs ARI for each data matrix pair with no gene sampling
(Figures 2E,F). An ideal algorithm would have most points in
the top-left of the plot; these points correspond to high ARIs
with smaller completion times. To show overall trends, we
consolidated the noise levels for each plot. For HMRF, we
timed from creating the graphical representation to the end

FIGURE 2 | (A–D) Performance vs sigma plots for location data with weak spatial patterns. Each plot shares the same legend as plot (B). (A) No sampling, 20%
noise. (B) No sampling, 30% noise. (C) 50% sampling, 20% noise. (D) 50% sampling, 30% noise. (E,F) Time vs performance dot plots of scHybridNMF and HMRF on
gene expression data with no gene sampling and location data with strong and weak spatial patterns. (E) Strong spatial patterns. (F) Weak spatial patterns.
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for each parameter choice, then averaged the times. For
scHybridNMF, we timed from computing sparse NMF to
the end. Both algorithm timings matched the values used to
compute the ARI values in Figures 1B–E and Figures 2A–D.
Figure 2E shows the time and performance data of each point
represented in Figures 1B,C, and Figure 2F shows the time
and performance data of each point represented in
Figures 2A,B.

These experiments showed that scHybridNMF performed
well with varying levels of gene sampling and location noise.
The fact that scHybridNMF consistently outperformed sparse
NMF and k-means indicates that it is likely to be successful on
real data.

3.2 STARmap Dataset
Wang et al developed STARmap, which profiled both “thin” and
“thick” cross-sections in the mouse brain cortex (Wang et al.,

2018). We used the “thin” dataset, which profiled from layer 1 of
the cortex to some of the hippocampus. This dataset has 1,549
cells and 1,020 genes. The cell types noted by Wang et al. (2018)
had distinct patterns in their gene expression, cell location, or a
combination of both. For example, excitatory neurons may have
subtypes specific to certain cortex layers (Tasic et al., 2016). These
can be identified by their presence in one or two layers of the
cortex, but they are harder to differentiate using only gene
expression.

We compared scHybridNMF against sparse NMF and
k-means clustering to show that it recovered underlying
information that could not be recovered using only one
modality of data. We used k � 18, which is the same k used
by Wang et al. (2018). The final clusters we profiled for k-means
and sparse NMF were the clusters used as input to scHybridNMF.
For scHybridNMF, we set α � 0.015 and tol � 0.1. This was
because the location data was not very separable.

FIGURE 3 | scHybridNMF, sparse NMF and k-means clustering on STARmap data. The layers are labelled byWang et al. (2018). (A,C,E) Visualizing cells in spacial
location with cell cluster labels from respectively scHybridNMF, sparse NMF and k-means. (B,D,F) cells shown in t-SNE plots of gene expression colored with cluster
labels from respectively scHybridNMF, sparse NMF and k-means.
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To better compare our clustering results against the
underlying cell types, we assigned cell type labels to clusters.
We used Scran, a program that detects differentially-expressed
(DE) genes given clusters, to find the top 20 such genes per cluster
(Lun et al., 2016). We then assigned cell type labels by measuring
the overlap of DE genes and marker genes for known cell types in
the STARmap data (Wang et al., 2018). The final cluster labels are
shown in Supplementary Table S1.

We visualized the clustering results in Figure 3. We first split
the different possible cluster colors by the different cell types
found, with a particular effort given towards making the
excitatory neuron subtype colors distinct. We then
consolidated clusters that shared the same cluster label, then
assigned them different shades of the color that defined the
shared cell type label.

We found that none of the clusters found by k-means clustering
matched any known cell types (Figure 3E,F). Using a location-based
clustering method only finds clusters based on the location density
pattern and the intrinsic characteristics of the clustering method.
Therefore, with this STARmap dataset, k-means clustering found
similarly-sized and shaped structures that separated the locations
evenly. scHybridNMF, on the other hand, found clusters with the
striped structures of the layers of the cortex while also recovering cell
types that were less spatially conserved (Figure 3A,B).

We performed comprehensive comparison between the results of
sparse NMF and scHybridNMF. As a preliminary measure, we
computed the ARI between the clusters determined by Wang et al.
(2018), noted as ground truth clusters, and the clusters from
scHybridNMF and sparse NMF. (Wang et al., 2018). provided
labels for 1,389 cells, and we further removed from consideration
the cells that Wang et al. (2018) excluded from clustering. This left a
total of 1,207 cells for ARI calculation.We found that theARI between
the ground truth and sparse NMF’s clusters to be 0.255, and the ARI
between the ground truth and scHybridNMF’s clusters to be 0.21.
Sparse NMF’s marginally higher ARI and better-clustered tSNE
visualization of gene expression data (Figure 3D) can be explained
by the fact that the cluster annotations by Wang et al. (2018) were
determined through just the gene expression matrix. However, the
spatial distribution of the clusters determined by scHybridNMF better
fit the shape of the layer-specific regions in the ground truth labels
than the clusters determined by sparse NMF (Figures 3A–D). As
such, we further examined both the spatial and gene expression
components of the cell type annotations.

Most of the clusters recovered by sparseNMFwere similar to those
found by scHybridNMF, but scHybridNMFwas able to recovermajor
cell types that sparse NMFwas not able to (Figures 3A–D). These cell
types were separable by gene expression, but were more clearly
separated by locations. scHybridNMF was able to recover distinct
L2/3, L4, and L6a excitatory neurons, while sparse NMF was not.

3.2.1 scHybridNMF Separates Different Types of
Excitatory Neurons
Excitatory neurons have layer-based subtypes (Tasic et al., 2016).
These subtypes differ in their locations and gene expression profiles,
and each have their ownmarker genes (Tasic et al., 2016;Wang et al.,
2018). Here, we show that scHybridNMF better isolated three
subtypes of excitatory neurons, L2/3, L4 and L6a, than sparse NMF.

In Figure 4A,B, we highlighted the clusters relevant to L2/3, L4
and L6a excitatory neurons while keeping other clusters in grey. We
observed two separate clusters with scHybridNMF in the upper
layers of the brain cortex that corresponded to L2/3 and L4 excitatory
neurons (blue and pink clusters in Figure 4A, Supplementary Table
S1). In contrast, sparse NMF was not able to detect two clear clusters
for L2/3 and L4 excitatory neurons. In fact, there were no cluster
found by sparseNMF that could bemapped to L4 excitatory neurons
(Supplementary Table S1). Additionally, the clusters that were
annotated as L6a excitatory neurons in each method had very
different location distributions (Figure 4A,B). Compared to
sparse NMF, the cell types annotated by the scHybridNMF
clustering were more in line with the layer structure.

We then investigated whether the expression of marker genes
supported the clustering by scHybridNMF.We examined Lamp5,
Nrsn1, and Rprm, which are noted by (Wang et al., 2018) to be
marker genes for L2/3, L4, and L6a excitatory neurons. First, we
showed that the expression level of these genes exhibited the
spatial pattern of the corresponding layer (Supplementary
Figure S1). Then, we compared the differential expression of
these genes across scHybridNMF and sparse NMF clusters,
shown in box plots in Figures 4C–E.

We used normalized, log-transformed gene expressions to
create box plots of the genes across each cluster. Clusters 15
and 6 of scHybridNMF, which were annotated as L2/3 and L4
excitatory neurons, distinctly exhibited higher expressions of
Lamp5 and Nrsn1. This differentiation supported the location-
based separation of the two excitatory neuron subtypes. On the
other hand, for sparse NMF, clusters 2 and 15 had a highly
differential level of expression of Lamp5 in Figure 4C. However,
the clusters that exhibited high levels of Nrsn1 were also clusters 2
and 15, which were labeled as L2/3 excitatory neurons during the
annotation procedure (Figure 4D). The third sparse NMF cluster
annotated as L2/3 excitatory neurons, cluster 10, did not exhibit
differential expression of these genes (Figure 4C,D).

We additionally observed that scHybridNMF was better able to
recover L6a excitatory neurons than sparse NMF. L6a excitatory
neurons highly expressed Rprm, were located in the deeper parts of
the cortex, and were arranged in a layer-like structure
(Supplementary Figure S1). Cluster 5 from both scHybridNMF
and sparse NMF corresponded to L6a excitatory neurons
(Supplementary Table S1). Cluster 5 of scHybridNMF showed a
more distinct expression of Rprm compared to cluster 5 of sparse
NMF (Figure 4E). Its spatial pattern, in Figure 4A, also more closely
matched the spatial pattern of the cells that highly exhibited Rprm.

It is worth noting that the cell type annotations obtained in
Supplementary Table S1were based onmultiple marker genes per
cell type. For example, we additionally found that Nrep and Zmat4,
noted by (Wang et al., 2018) to be marker genes for L4 excitatory
neurons, exhibited the same differential expression for cluster 6 of
scHybridNMF. Overall, we showed that scHybridNMF found
excitatory neuron subtypes better than sparseNMF in terms of
both cell locations and marker gene expression levels.

3.3 seqFISH+ Dataset
Eng et al. (2019) profiled the mouse brain cortex and sub-
ventricular zone (SVZ) across 7 fields of view (FOV) using the
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seqFISH+ technique. Five of the FOV were taken from the visual
cortex, and 2 from the SVZ. We analyzed 523 cells in the 5 visual
cortex FOVs, which encompassed cells from L1 to L6. The gene

expression levels of 10,000 genes and locations were profiled for
each cell. We computed the means and standard deviations of
each gene’s expression levels across each cell, and we kept the

FIGURE 4 | (A–B)Dotplotsof clusters thatbestmatchL2/3, L4, andL6aexcitatory neurons.All other clusters are ingrey. (A)Cluster 5 (L6a,orange), 6 (L4,green), and15 (L2/3,blue)
fromscHybridNMF. (B)Clusters 5 (L6a, orange), 15 (L2/3, black), and2 (L2/3, black) fromsparseNMF. (C–E)Boxplots of the expressionsof Lamp5,Nrsn1, andRprmacross eachcluster.
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FIGURE 5 | The clustering results of scHybridNMF and HMRF on seqFISH+ data. (A,C) Cells visualized in spatial locations with clustering labels from respectively
scHybridNMF and HMRF. (B,D)Cells visualized in t-SNE plots of gene expression with clustering labels from respectively scHybridNMF and HMRF. The cluster labels are
shown in the middle. The layers are labelled by Dries et al. (2021). (E,F) Box plots of the expressions of Nrsn1 and Plcxd2 in cells in exc L4 clusters vs all other cells.
p-values were calculated with a two-sample t-test that tested if the population mean of exc L4 clusters were larger than that of the rest of the cells.
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genes with means greater than 0.7 and correlations of variation
greater than 1.2. This left 1,047 genes. We then added all of the
marker genes from Tasic et al. (2016) that were not already in the
set of 1,047 genes, which resulted in a total of 1,198 genes.

We set the number of clusters, k, to be 19. The labels for the
original seqFISH+ dataset were derived from the 49
transcriptomic cell types identified by Tasic et al. (2016). By
grouping together cell types in the minor 49, we found 20 cell
types. We then explored different numbers of clusters around 20,
and found that k � 19 gave the most intriguing results. For
scHybridNMF, we set α � 45 and used a tolerance of 0.05. For the
HMRF algorithm, we used a beta value of 10, which was the beta
value that gave clusters that were the most consistent with the
underlying anatomical structure of the visual cortex.

We used Scran to find the top 20 DE genes per cluster (Lun
et al., 2016). We then cross-referenced these with marker genes
found by Tasic et al. (2016) and Eng et al. (2019) to map the
clusters to tentative cell types. However, certain cell types from
Eng et al. (2019) did not match the actual cell locations within the
brain cortex. For example, cells annotated as layer 2 excitatory
neurons seemed to reside in deeper cortex layers. As such, we
considered the location-specific cell type information provided by
Tasic et al. (2016) with a higher degree of confidence, and did not
compute the ARI with the labels provided by Eng et al. (2019).

The final cluster labels are shown in Supplementary Table S2.
We visualized the cluster results of scHybridNMF and HMRF on
the cell location and gene expression spaces (Figures 5A–D). We
again split the different possible cluster colors by the different
labels, with a particular effort given towards making the
excitatory neuron subtype colors distinct. We then
consolidated clusters that shared the same cluster label, then
assigned them different shades of the color that defined the
shared cell type label.

As a preliminary reference, we calculated the Silhouette values
of the clusterings found by scHybridNMF and HMRF for gene
expression values. However, both methods had very similar
performances across every cluster found, even clusters that
were left unmapped. As such, we conducted a gene ontology
(GO) term analysis for the DE genes found by Scran.

3.3.1 scHybridNMF Detects L4 Excitatory Neurons
Layer-specific excitatory neurons form contiguous, column-like
structures, and they also have unique gene expression profiles
(Tasic et al., 2016). The Giotto authors labelled distinct physical
layers, numbered 1, 2/3, 4, 5, and 6, in the seqFISH+ dataset
(Dries et al., 2021). We found that there were excitatory neuron
subtypes that generally corresponded to each of layers 2/3 to 6. In
particular, we found that scHybridNMF was able to recover a
cluster (cluster 12 in Supplementary Table S2) that better
corresponded to L4 excitatory neurons than HMRF’s cluster
(cluster 16 in Supplementary Table S2).

To further investigate this, we looked into the expressions of
marker genes, especially Nrsn1 and Plcxd2. Nrsn1 was noted by
Eng et al. (2019) to be amarker gene for excitatory neurons, and is
visibly highly expressed in layer 4 of the cortex. Plcxd2 is shown
by (Wang et al., 2018) to be a marker gene for neuronal cells,
especially L4 and L5 excitatory neurons, but we show that in the

seqFISH+ dataset, this is uniquely highly expressed in layer 4. All
other marker genes are shown in Supplementary Figures S2,S3.

First, we saw that the cells that highly expressed these genes
were grouped together in a layer-like shape (Supplementary
Figures S2A,B), confirming the marker genes’ spatial patterns.
We then visualized the different marker gene expressions with
box plots, comparing the expressions within L4 excitatory neuron
clusters of scHybridNMF and HMRF against the rest of the cells
(Figures 5E,F). We found that, with a threshold of p < 0.01,
cluster 12 of scHybridNMF exhibited a significantly higher
expression of Nrsn1 and Plcxd2 than the rest of the cells
(Figures 5E,F). In contrast, HMRF failed to reject the null
hypothesis, with p-values of 0.21 and 0.02.

3.3.2 Layer 6b Excitatory Neurons
The deepest layers of the mouse brain cortex are L5 and L6, where
L6 can further be split into L6a and L6b. L6b exhibits both a
distinct location and gene expression profile from L6a, which
tends to be closer to L5. Using scHybridNMF, we found that the
seqFISH+ dataset showed clear location- and gene expression-
based evidence for a distinct L6b excitatory neuron cell type. Tasic
et al. (2016) give marker genes for L6a and 6b excitatory neurons,
which are Rprm and Ctgf, respectively. In the seqFISH+ dataset,
these exhibited strong spatial coherency, where we observed a
clear boundary between cells that highly express Rprm vs Ctgf
(Supplementary Figure S4), which clearly divided the two types
of L6 excitatory neurons.

scHybridNMFwas able to recover L6b excitatory neurons better
than HMRF. To measure the differential gene expression across
each cluster found by HMRF and scHybridNMF, we measured the
expression of Ctgf and Cplx3, marker genes cited by Tasic et al.
(2016), in Figures 6A,B. Because both genes were markers for L6b
excitatory neurons, high-quality clusters are expected to exhibit a
strongly distinct level of expression for these genes. We used the
normalized, log-transformed gene expressions to create box plots
of the expression statistics across each cluster. The side-by-side
analysis of the two algorithms showed that the L6b cluster found by
scHybridNMF exhibits a more distinct pattern of gene expression
than the L6b cluster found by HMRF.

The region of cells highly expressing Ctgf in Supplementary
Figure S4 was small and sliver-like, and it bordered the rightmost
side of layer 6. We found that the spatial location of the L6b
cluster from scHybridNMF seemed to align more closely to this
shape than the cluster from HMRF (Supplementary Figure S5).
The cluster from HMRF included cells that were part of L6a.

3.3.3 scHybridNMF Refines Marker Gene Lists
Reducing False Positives of Layer 5 Excitatory Neuron
Markers
The marker gene lists noted by Tasic et al. (2016) and by Dries
et al. (2021) provided a basis for cell type annotations and
interpretations of results in subsequent research. However, the
markers obtained in Tasic et al. (2016) were based on scRNA-seq
data only, and some of the location-specificmarker genes may not
actually demonstrate the expected location pattern. Indeed, from
the DE analysis based on the clusters obtained by scHybridNMF,
we found there were certain marker genes noted by Tasic et al.
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(2016) that did not exist in the DE results. We focused on the
marker genes for L5 excitatory neurons and further investigated
the spatial pattern of these genes.

Tasic et al. (2016) catalogued 3 separate excitatory neuron types
corresponding to L5. They were L5, L5a, and L5b excitatory neurons,
where L5a and L5b distinguish the shallower and deeper regions of L5,
respectively. The L5 excitatory neuron type referenced the entirety of
layer 5. Of the 10,000 genesmeasured in seqFISH+, we found 17 were
labeled as marker genes for only L5, L5a, or L5b excitatory neurons in
Tasic et al. (2016). However, none of these genes exhibited any
particular spatial pattern associated with L5. Examples of the
spatial patterns are given in Figures 6C,D and Supplementary
Figure S6.

Potential New Marker Gene for L6a Excitatory Neurons
Cluster 1 of scHybridNMF was annotated as L6a excitatory
neurons both by gene expression and cell locations

(Supplementary Table S2). Rprm is a marker gene from
Tasic et al. (2016), and it exhibited a strong, spatially-
conserved pattern in the seqFISH+ data (Figure 6F. We
found another gene, Islr2, as a potential marker gene for
L6a excitatory neurons. This is because it was differentially-
expressed in cluster 1 [through Scran (Lun et al., 2016)],
exhibited strong spatial cohesiveness, and was involved in
neuron function and development (Abudureyimu et al.,
2018) (Figure 6E). It was also found to be spatially
concentrated in L5/6 by Giotto (Dries et al., 2021).

4 CONCLUSION AND DISCUSSION

Wepresented a hybrid clustering approach that can better identify cell
types by incorporating sparse NMF and k-means clustering, which
work well on high-dimensional gene expression and low-dimensional

FIGURE 6 | (A,B)Box plots of the expressions of Ctgf and Cplx3 across each cell, grouped by cluster. (C,D)Dot plots of the expressions of Cpne2 and Ptgfr across
each cell. These genes are marker genes of L5a and L5b excitatory neurons (Tasic et al., 2016). (C) Cpne2 (L5a marker). (D) Ptgfr (L5b marker). (E,F) Dot plots of the
expressions of Islr2 and Rprm across each cell. We propose Islr2, a DE gene recovered through Scran on scHybridNMF clusters, as a marker gene for L6 excitatory
neurons. We show the expression of Rprm as a baseline. (E) Islr2 (scHybridNMF). (F) Rprm (L6a, Tasic, et al).
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location data. We demonstrated the robustness of scHybridNMF
through experiments on both simulated and real data.

We showed that the hybrid framework was particularly useful
when the performance of sparse NMF was affected by a low
number of genes profiled or high within-cluster heterogeneity.
scHybridNMF also outperformed k-means clustering under
realistic scenarios. Through combining two classical methods
for clustering, sparse NMF and k-means, scHybridNMF made
better use of both data than either of the standalone methods as
well as an existing method HMRF.

We also observed that scHybridNMF found biologically-
meaningful clusters within real data. We analyzed the
biological relevance of the clusters using cluster-specific DE
genes that were found using cell cluster membership
information. However, similar metagene analysis can be done
using WA, the cluster representative matrix. This matrix, which
contains the final gene expression representatives of each
cluster, was built using cell location and gene expression
information. As such, WA is constructed in such a way that
incorporates both sources of information, and analyzing the
differential expression of genes across different cluster
representatives is intuitive. Each row of WA corresponds to
each gene, and the more variation of values there is in a row, the
more likely the corresponding gene is biologically meaningful
for cell type identification.

scHybridNMF is inherently flexible, owing to its matrix low-
rank approximation formulation. As such, it can be extended via
additional matrix terms and constraints to include more types of
data or to perform biclustering. For example, we can include
potential gene-gene interaction data to perform co-clustering of
both cells and genes. The inferred gene clusters can be further
used to study regulatory mechanisms in the cells and reconstruct
gene regulatory networks.
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