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Abstract

To raise the quality of clinical artificial intelligence (AI) prediction modelling studies in the cardiovascular health domain and thereby improve their 
impact and relevancy, the editors for digital health, innovation, and quality standards of the European Heart Journal propose five minimal quality cri
teria for AI-based prediction model development and validation studies: complete reporting, carefully defined intended use of the model, rigorous 
validation, large enough sample size, and openness of code and software.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Graphical Abstract

Quality criteria for AI-based prediction models

Reporting and
reproducibility Clear intended

use

Rigorous
validation

Adequate
sample size

Openness
of data and
software

5
critical quality

criteria

Reportingng and
rreprrododucucibibility Clear intended

use

Rigorous
validation

Adequate
sample sizee

Openness
of datta and
softtff ware

5
critical qualityy

criteria

Five critical quality criteria for artificial intelligence (AI)-based prediction models.
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Introduction
As global cardiovascular disease burden is ever increasing, artificial intel
ligence (AI) holds great promise in reducing this burden through, among 
other ways, assisting in disease prevention by detection of at-risk indi
viduals, offering more timely diagnoses and prognostication in patients, 
and reducing healthcare costs by automation of some of the tasks that 
were previously done by human experts.1 Analytical AI techniques, 
such as neural networks and tree-based learning approaches, can han
dle large amounts of structured and unstructured forms of data (and 
their combination), and due to the many clinical data sources being 
available within cardiovascular medicine, such as physical examination 
results, laboratory results, imaging, electrocardiograms, and wearable 
devices, AI and machine learning techniques seem very suitable for 
use in cardiovascular health.1

In the cardiovascular health literature, analytical AI techniques are 
frequently used for the development of prediction models.2 Despite 
the great potential of AI-based prediction models for application in 
the field of cardiovascular health, only few prediction models have so 
far shown their usefulness in clinical care.3,4 To improve the chances 
of clinical implementation of AI-based prediction models and thus 
make impact on cardiovascular health, we must hold their development 
and validation to high scientific standards. In this paper we, as appointed 
editors for digital health, innovation, and quality standards of the 
European Heart Journal,5 propose five minimal quality criteria that 
should be considered when developing a new AI-based prediction 
model. An extensive overview of critically reading and appraising car
diovascular disease prediction modelling research has been published 
recently in this journal.6

Quality criterion 1: complete 
reporting and reproducibility of 
results
Complete and transparent reporting is a key for reviewers and researchers 
to be able to fully appreciate and critically appraise the validity of model de
velopment methods and to evaluate the model’s predictive performance. 
Furthermore, complete and transparent reporting improves replicability 
(similar results when re-developing and evaluating the model in different 
data sets) and reproducibility (similar results when repeating development 
in the original data), thereby improving credibility of the model. Systematic 
reviews have consistently shown that the reporting of prediction models, in
cluding those that are based on AI, is often poor.7–9 Complete reporting 
should include the detailed description of all steps of the modelling process, 
including all data preparation steps, all model selection, tuning, recalibration, 
testing steps, and all results from internal and external validation procedures. 
To ensure all these elements are reported, relevant reporting guidelines 
should be used by authors, such as CODE-Electronic Healthcare Records 
(EHR) framework for structured electronic healthcare data and 
the Transparent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis (TRIPOD) guideline for prediction model 
development, validation, and updating.10–12 These reporting guidelines often 
come with a checklist that can be added as supplementary material to scien
tific manuscripts (e.g. see https://www.equator-network.org/reporting- 

guidelines/tripod-statement/). An update of the TRIPOD guidelines, 
specifically focused on AI-based prediction models, is expected soon.13,14

Quality criterion 2: clear intended 
clinical use of the AI-based model
The development of any AI-based prediction model should be moti
vated by a clearly defined clinical problem for which the AI prediction 
model could serve as a solution. The opportunities and possible pitfalls 
of a new AI-based model will only become evident if the intended use of 
the model, including where and how it should be positioned in the clin
ical workflow, is made explicit. Artificial intelligence-based prediction 
models can serve several purposes within cardiovascular health. For in
stance, the models can improve the diagnostic and prognostic clinical 
processes, by accurately predicting the presence of cardiovascular dis
ease or predicting the progression of cardiovascular disease in a popula
tion of interest over a specific time frame.15 Some well-known examples 
of prediction models for cardiovascular health are the Framingham risk 
score and the updated SCORE2.16,17 The intended role of the 
AI-based prediction model in the clinical decision-making process, for in
stance in a prescriptive or assistive role, should be precisely defined to 
allow for early and careful consideration of the potential clinical conse
quences of using the model downstream in clinical care. A meeting 
with all relevant stakeholders, including physicians and patients, from 
the intended targeting in which the prediction model will be used in 
the future, can help identifying the potential impact, clinical requirements, 
and the potential for harm when implementing the model.18

Quality criterion 3: rigorous model 
validation
Model validation procedures ensure that the estimates of predictive 
performance of an AI-based prediction model, often summarized in 
terms of calibration and discrimination, are accurate and are estimated 
without over-optimism.19–21 The estimates of performance obtained 
through internal validation techniques, such as cross-validation, reflect 
the expected performance when the model would be applied in (exact
ly) the same population—but in different individuals—than in which it 
was initially developed. The estimates of performance obtained 
through external validation techniques, for instance by applying the 
model in a separate dataset from a different region or hospital, reflect 
the performance in a different population from where the model was de
veloped. These predictive performance estimates from external valid
ation procedures may thus give an indication of the variation of 
performance of an AI-based model over time, place, and/or setting.22 It 
should be noted that one external validation may not be sufficient to pro
vide a complete picture of the heterogeneity of predictive performance, 
and therefore, all claims on model to be ‘validated’ should be viewed with 
some scepticism.23 Good predictive performance also does not prove 
that the model will have a beneficial influence on medical decision-making 
when the model is used in a healthcare setting. For this, decision curve 
analysis, (early) health technology assessments, and impact studies (e.g. 
via randomized clinical trials) can generate valuable information on the 
clinical benefit and risks of an AI-based prediction model.24,25
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Quality criterion 4: sufficient 
sample size for AI model 
development and validation
Large enough sample sizes for both, the robust development and the 
accurate validation of the AI-based prediction model, are crucial. 
Calculators for regression-based prediction models to calculate the 
minimally required sample size may be useful starting points for 
AI-based prediction models.26,27 However, due to the higher complex
ity of AI-based prediction models, the minimal required sample size may 
often be (much) larger, sometimes requiring data on multiple thousands 
of individuals, especially if the predicted outcome is rare (i.e. lower in
cidence or prevalence of the outcome to be predicted than 0.5 in the 
target population) and when the noise is high (i.e. low predictive effects 
of predictors and features). Currently, there are no calculators available 
that can be used to do a priori sample size calculations for the develop
ment of AI models. However, simulation studies and a posteriori ap
proaches, such as a learning curve approach, may be used to justify 
the sample size.22 For model validation studies, the minimally required 
sample size depends on the predictive performance criteria of the mod
el and is not dependent on the modelling strategy. Therefore, sample 
size calculations can be performed a priori for validation studies and 
are the same for regression-based modelling as for AI modelling.28

Quality criterion 5: openness of 
data and software
Making the data and software—including the model code—publicly 
available is an important step in ensuring that readers and users can fully 
critically appraise the prediction model, perform tests (i.e. validations), 
and tailor the model to new settings. This will often increase the pre
dictive performance of the model, the applicability, and clinical useful
ness of the model and, eventually, improve model relevancy over 
time.29 While we recognize the potential value methods from explain
able AI (such as SHapley Additive exPlanations (SHAP) values) to give 
insights in what drives the predictions from an AI model (for some lim
itations, see30,31), it should not be viewed as a good replacement for 

sharing model code. Based on explainable AI output alone, a model can
not be externally validated.30,31 Furthermore, while we recognize the 
important role of commercial parties in the field, which may have valid 
reasons to not fully share the model code (i.e. proprietary AI-based 
prediction models) and data used to develop and/or validate the 
AI-based prediction model, we warn against the tendency of research
ers to not share code or data. Within the limitations given by commer
cial interests and privacy regulations, maximal openness of data and 
software should be strived for.32 For a discussion on data sharing initia
tives, we refer to earlier work in the European Heart Journal.33

Conclusion
This overview briefly touched upon five key quality criteria for authors, 
researchers, and readers of clinical AI prediction modelling studies in 
the field of cardiovascular health. A summary of the most important re
commendations of this short viewpoint is provided in Table 1 and 
Graphical Abstract. Complete reporting, carefully defined intended use 
of the model, rigorous validation, large enough sample sizes, and open
ness of code and software will increase the quality of clinical AI predic
tion studies and thereby the clinical impact and relevancy of their 
results.
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Table 1 Summary of recommendations on artificial intelligence-based prediction models

+ ++ +++

Reporting and 
reproducibility

Following reporting guidelines (e.g. TRIPOD-AI) Describing all steps of modelling and 
data processing

Providing guidance and open datasets to 
replicate/reproduce results

Clear intended use Aim of the model stated clearly Considering the downstream impact 
on clinical decision-making

Meeting with stakeholders about the 
potential barriers in prediction model 
use

Rigorous validation Internal validation of the AI-based prediction 
models

Multiple internal and/or external 
validations of the AI-based 
prediction model

Rigorous evaluation of the variation of 
performance in multiple external and 
internal validations

Adequate sample 
size

A sample size for development that is 
substantially larger than needed for a 
regression-based prediction model

A posteriori sample size calculation 
(e.g. learning curves)

Sample size calculations for both model 
development and validation

Openness of data 
and software

Providing contact details for data and algorithm 
accessibility requests

Open software, including the code 
to apply the model in a new 
setting

Data and software publicly available
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