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Titania is probably the most widely investigated semiconductor photocatalyst

because of various advantages, such as high activity, thermal and chemical

stability, low price, abundance, and negligible toxicity. However, pristine titania

is also characterized by charge carriers’ recombination, and thus lower

quantum yields of photocatalytic reactions than theoretical 100%. Moreover,

its wide bandgap, despite being recommended for excellent redox properties,

means also inactivity under visible part of solar radiation. Accordingly, titania has

been surface modified, doped and coupled with various elements/compounds.

For example, platinum deposited on the surface of titania has shown to improve

both UV activity and the performance under vis. Although the studies on titania

modification with platinum started almost half a century ago, and huge number

of papers have been published up to now, it is unclear which properties are the

most crucial and recommended to obtain highly efficient photocatalyst. In the

literature, the opposite findings could be found on the property-governed

activities that could result from huge differences in the reaction systems, and

also examined photocatalysts. Considering the platinum properties, its content,

the size of nanoparticles and the oxidation state, must be examined. Obviously,

the characteristics of titania also influence the resultant properties of deposited

platinum, and thus the overall photocatalytic performance. Although so many

reports on Pt/TiO2 have been published, it is hardly possible to give

indispensable advice on the recommended properties. However, it might be

concluded that usually fine platinum NPs uniformly deposited on the titania

surface result in high photocatalytic activity, and thus in the low optimal content

of necessary platinum. Moreover, the aggregation of titania particles might also

help in the lowering the necessary platinum amount (even to 0.2 wt%) due to

the interparticle electron transfer mechanism between titania particles in one

aggregate. In respect of platinum state, it is thought that it is highly substrate-

specific case, and thus either positively charged or zero valent platinum is the

most recommended. It might be concluded that despite huge number of

papers published on platinum-modified titania, there is still a lack of

comprehensive study showing the direct correlation between only one

property and the resultant photocatalytic activity.
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Introduction

In 1839, Becquerel reported that a silver chloride (AgCl)

electrode in acidic solution exposed to sunlight could be a source

of electricity, i.e., the photovoltaic effect − also known as the

“Becquerel effect” (Becquerel, 1839). Almost a century later

(1921), the first report on “photocatalysis” was published by

Renz, which presented the pigment fading, i.e., showing that

irradiated oxides could decompose organic dyes and binders of

paints (Renz, 1921). Although, these were the first reports on the

light-activated reactions, the real interest in this topic has started

with the famous paper by Fujishima and Honda on UV-initiated

evolution of oxygen and hydrogen (water splitting) on titania and

platinum electrodes, respectively (Fujishima and Honda, 1972).

Since then, many reports have been published on the activity

enhancement, mechanism clarifications (for various reactions),

property-governed performance, and possible applications,

including several crucial review papers and even books (Fox

and Dulay, 1993; Hoffmann et al., 1995; Abe, 2010; Ohtani, 2010;

Ibhadon and Fitzpatrick, 2013; Pichat, 2013; Marci et al., 2019;

Garcia Lopez et al., 2021; Strunk, 2021).

Considering the basic mechanism of heterogeneous

photocatalysis, the “photocatalyst” (usually oxide

semiconductor) is excited under irradiation with light of

energy equal or larger than its bandgap, i.e., photo-

generated electrons are transferred from the valence band

(VB) to the conduction band (CB), as shown in Figure 1A.

The electrons and positive holes (simultaneously formed in

VB) initiate reactions that cannot proceed spontaneously

without photocatalyst (and without irradiation). Moreover,

same as in the case of catalytic (“dark”) reactions,

photocatalysts (like catalysts) should not be changed during

reactions. Although photocatalytic and catalytic reactions are

similar, considering the necessary stability of (photo)catalysts,

the main difference lies in the fundamental mechanism,

i.e., the “dark reactions” can proceed in the absence of

catalysts (being just accelerated after catalyst addition),

whereas in the case of photocatalysis, usually there is no

reaction in the absence of photocatalyst or light.

Regarding the semiconductor photocatalysts, the width of

bandgap determines the photoabsorption properties (Klein,

1968; Wilson, 1981; Hamberg et al., 1985; Horan and Blau,

1987; Madhusudan Reddy et al., 2003). Of course, various

semiconductors are characterized by different electronic

properties, such as bandgap energy and localization of CB and

VB. More positive VB and more negative CB mean the higher

ability of oxidation and reduction, respectively. Therefore, the

wide bandgap results in the efficient redox properties, e.g.,

simultaneous reduction and oxidation of water. However, the

wide bandgap also means the inactivity under visible part of solar

spectrum. For example, the most famous semiconductor

photocatalyst − titania (titanium(IV) oxide) with wide

bandgap of ca. 3.0–3.2 eV (depending on the polymorphic

form) is well known from high photocatalytic activity under

UV, but also inactivity under visible light (vis). Accordingly,

many studies have been performed to modify the structure of

titania (and other wide-bandgap semiconductors) via doping,

surface modification and coupling with other materials (Khalil

et al., 1998; Wu et al., 1998; Zang et al., 2000; Asahi et al., 2001;

Ohno et al., 2003; Mitoraj et al., 2007; Zaleska, 2008; Dai et al.,

2009; Etacheri et al., 2015; Janczarek et al., 2015; Wang et al.,

2016; Babu et al., 2017; Khan et al., 2017; Salehi-Abar and

Kazempour, 2017; Sun et al., 2017).

Moreover, in the case of semiconductor photocatalysts, the

quantum yields of photocatalytic reactions (even under UV

irradiation) do not reach the theoretical value of 100%

because of the charge carriers’ recombination (surface or bulk

(Herrmann, 1999)). Therefore, numerous studies on the

performance improvements have been carried out, focusing

on the following aspects: (i) controlled synthesis conditions to

improve the properties of photocatalysts (e.g., high crystallinity, a

lack of defects, large specific surface area, pure polymorphic

forms or fixed ratio of different polymorphs), (ii) morphology

architecture, such as the preparation of photocatalysts with

exposed facets, different dimensions, advanced morphologies

(e.g., inverse opals, nanotubes, nanowires), and (iii)

preparation of composite photocatalysts, e.g., by using the

metallic or/and nonmetallic elements, and different

FIGURE 1
The schematic drawings of simplified mechanisms for photocatalytic reactions on titania-based photocatalyst: (A) pristine titania under UV
excitation, (B) Pt-modified titania under UV excitation, (C) Pt-modified titania under vis excitation (considering an electron transfer mechanism);
EA—electron acceptor, ED-electron donor, HA—hole acceptor.
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compounds, to modify the surface or/and the structure of

photocatalysts (Bakar and Ribeiro, 2016; Cai et al., 2016;

Cheng et al., 2016; Lee et al., 2021; Wang T. M. et al., 2022;

Dey et al., 2022; Korosi et al., 2022; Shehab et al., 2022; Shukla

and Angappane, 2022). It should be mentioned that for both

purposes, i.e., an appearance of vis response and activity

enhancement under UV, similar methods have been used for

the modifications of wide-bandgap semiconductors, i.e., doping,

surface modification, coupling, and nanoarchitecture design (Sun

et al., 2019; Huang et al., 2020; Yoshimura et al., 2020; Luo et al.,

2021).

Among various strategies, the surface modification of wide-

bandgap semiconductors with noble metals (NMs), such as gold,

silver, platinum, has probably been the most popular. Kraeutler

and Bard were first who found that platinum could scavenge

photogenerated electrons (Figure 1B), and thus hinder the charge

carriers’ recombination (Kraeutler and Bard, 1978), as illustrated

by Disdier et al., in 1983, and presented here in Figure 2 (Disdier

et al., 1983). Since then, huge number of papers have been

published on UV-activity enhancement by NMs (Pichat et al.,

1981; Pichat et al., 1982; Nishimoto et al., 1985; Jakob et al., 2003;

Subramanian et al., 2003; Kowalska et al., 2008; Azri et al., 2014).

For example, Hu et al. proved that platinum hinders charge

carriers’ recombination by photoluminescence and transient

fluorescence spectroscopy, resulting in longer lifetime of

photogenerated charge carriers (Hu et al., 2019). Similarly,

time-resolved microwave conductivity (TRMC) method was

used to show the scavenging of photogenerated electrons by

platinum (both originated from inorganic salts and Chini

clusters) deposited on the titania surface, which correlates well

with the enhanced photocatalytic activity for oxidative

decomposition of phenol and rhodamine B (Kowalska et al.,

2008), as exemplary presented in Figure 3. Here, improved

performance for Pt-modified titania was shown under both

UV and vis irradiation. The vis response was explained as

originating from the light absorption by Pt-based compounds

(sensitization mechanism), i.e., salts, complexes or/and clusters

(Macyk et al., 2003; Kisch et al., 2004; Kowalska et al., 2008;

Macyk et al., 2010).

In contrast to many reports, Benz et al. have proposed that

platinum could work also as a recombination center under

anaerobic conditions (Benz et al., 2020). The deposited

platinum (0.04–3 wt%) on titania P25 was tested for UV

degradation of acid blue nine and rhodamine B in the

presence or absence of oxygen in the system. Although, the

function of platinum as an electron scavenger has been proven by

TRMCmethod (Figure 4), the decreased activity under anaerobic

conditions could suggest that these electrons migrate back to

titania. In contrast, under aerobic conditions, superoxide radicals

could be efficiently formed on the surface of platinum (electron

transfer from titania via platinum to oxygen), as commonly

reported. However, it should be mentioned that usually

degradation of organic compounds proceeds via oxidative

pathways, and thus experiments are performed under aerobic

conditions (the participation of reactive oxygen species (ROS);

oxygen or air is even continuously bubbled into the reaction

system (Gorska et al., 2008; Kowalska et al., 2008)). Additionally,

for the reduction pathways, e.g., alcohol dehydrogenation and

water splitting, photogenerated electrons are efficiently

scavenged by a proton (H+). Therefore, obviously, the lack of

an electron acceptor (oxygen/proton) should result in charge

carriers’ recombination. Moreover, it should be pointed out that

platinum could also work as a shield, causing less efficient photon

absorption by titania, and thus resulting in lower efficiency, as

discussed latter.

In 2005, another property of NMs has been used for the

activation of wide-bandgap semiconductors towards vis

response, i.e., plasmon resonance, as exemplary shown in

Figure 1C. Tian and Tatsuma proposed the electron transfer

from photoexcited gold NPs (due to plasmon resonance) to CB of

titania, with simultaneous transfer of compensative electrons

from the solution to gold NPs (Tian and Tatsuma, 2005). Since

then, many reports showed vis activity of NM modified wide-

bandgap semiconductors, resulting from plasmonic activation,

known as “plasmonic photocatalysis” (Furube et al., 2007;

Kowalska et al., 2009; Mukherjee et al., 2013; Panayotov et al.,

2013; Sugawa et al., 2015; Verbruggen, 2015; Verma et al., 2018;

Endo-Kimura and Kowalska, 2020; Raja-Mogan et al., 2020; Wei

et al., 2020).

Moreover, another function of NMs should also be pointed

out, i.e., co-catalytic. In the case of some reactions, pristine

photocatalysts might be almost inactive, e.g., alcohol

dehydrogenation and water splitting. Titania and other wide-

bandgap semiconductors are hardly active due to high

FIGURE 2
Energy band diagram under UV: before (A) and after (B)
contact between Pt and TiO2: X and EG are the electron affinity (ca.
4 eV) and energy bandgap (ca. 3 eV), respectively;ΦTiO2 is thework
function of illuminated TiO2, estimated to be close to the
reduced state (ca. 4.6 eV); ΦPt is the work function of Pt (ca.
5.36 eV); ΔEF =ΦPt -Φ’Pt is the increase in the Fermi level of Pt after
contact with illuminated TiO2; drawn based on the report by
Disdier et al., 1983.
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overvoltage for both hydrogen and oxygen evolution (Bandara

et al., 2005; Abe et al., 2008; Kowalska et al., 2015; Takanabe,

2017; Yoshiiri et al., 2022). Accordingly, it has been found that

NM co-catalysts, deposited on the surface of wide-bandgap

semiconductors, are highly efficient for hydrogen evolution

reactions. For example, Pt-deposition on P25 titania

(commercial sample with one of the highest photocatalytic

activities) results in activity enhancement by more than one

order in magnitude (Wang et al., 2018; Wang K. et al., 2022;

Paszkiewicz et al., 2022). Obviously, the properties of these

deposits as well as the interface between NMs and

semiconductor are decisive for the overall performance.

However, the contrary results might be found in the literature.

Additionally, the oxidation state of platinum could also play

important impact on the photocatalytic activity. Accordingly,

this review aims to revised various studies on the most active

NM-modified semiconductors, i.e., platinum-modified titania, to

clarify the key factors of photocatalytic activity, and to

propose what properties are the most recommended for

specific reactions.

Considering platinum-modified titania samples, more than

5000 papers could be found in Web of Science (2022/06/

16 search for: (i) Pt/TiO2, (ii) platinum and titania, and (iii)

platinum and titanium dioxide). Most of the studies discuss

titania samples modified with nanoparticles (NPs) of platinum

for various photocatalytic reactions. However, many reports deal

FIGURE 3
Experimental evidence for electrons’ scavenging by deposited platinumon the titania surface (platinum originated fromplatinum salts and Chini
clusters): (A) TRMC results, and (B) photocatalytic activity data for oxidative decomposition of rhodamine B. Adapted from (Kowalska et al., 2008) with
permission from ACS.

FIGURE 4
(A) DRS spectra for P25 titania loaded with different content of platinum; (B) Half time (τ1/2) of the mobile charge carriers measured by TRMC.
Inset: transient decay of the mobile charge carrier. Adapted from (Benz et al., 2020), CC-BY-NC-ND license.
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with “dark” activity of platinum (not photocatalytic) where

titania is only the support − inert or participating slightly in

the overall mechanism, e.g., Pt/TiO2 has been used as catalyst,

electrocatalyst, sonocatalyst, sensor and for resistive switching

memory (RSM) devices (Makouangou et al., 1994; Fukuoka et al.,

1999; Lee et al., 2009; Song et al., 2011; Takakusagi et al., 2014;

Dhanasekaran et al., 2016; Komanoya et al., 2016; Touchy et al.,

2016; Ammal and Heyden, 2017; Kon et al., 2017; Nakajima et al.,

2021). Additionally, there are some reports suggesting the doping

of titania with platinum (Ambrozova et al., 2018; Zener et al.,

2018; Ihnatiuk et al., 2020), and photocatalytic activity of titania

modified with platinum single atoms (Qin et al., 2022).

Moreover, the surface modification of titania with other forms

of platinum (not NPs), such as compounds, complexes and

clusters, have also been proposed for both UV and vis activity

(Macyk and Kisch, 2001; Kisch et al., 2004; Mitoraj et al., 2007;

Kowalska et al., 2008; Kisch, 2011; Khnayzer et al.,

2012). However, because of huge number of various

papers on Pt/TiO2, and thus impossibility to comprehensively

present them in one review paper, only titania

photocatalysts modified with platinum NPs are discussed in

detail in this review.

Synthesis of platinum-modified
titania photocatalysts

The large number of scientific papers on Pt/TiO2

photocatalysts corresponds obviously to various synthesis

procedures of their preparation. Considering the titania

aspect, both commercial and self-synthesized samples are

used. Here, the most typical methods/samples are titania P25

(from Evonik/Degussa; composed of anatase (78%), rutile (14%)

and non-crystalline phase (8%); with specific surface area of ca.

52 m2 g−1, and one of the highest photocatalytic activities in

various reaction systems (Ohtani et al., 2010; Wang et al.,

2018)) and hydrolysis of titania precursor (titanium alkoxides:

isopropoxide and butoxide), respectively (Hufschmidt et al.,

2002; Zhao et al., 2002; Coleman et al., 2005; Kowalska et al.,

2008; Rosario and Pereira, 2014; Zielinska-Jurek et al., 2015;

Haselmann and Eder, 2017; Yurdakal et al., 2017). Of course,

other synthesis methods were also proposed, such as, gas-phase

reaction (e.g., titanium(IV) chloride with oxygen), hydrothermal

reaction (e.g., from titanate nanowires), and anodization of

titanium (Nam and Han, 2007; Khan et al., 2008; Amano

et al., 2010; Wei et al., 2014; Janczarek et al., 2016; Zielinska-

Jurek et al., 2019; Momeni and Jalili, 2022). Then, either pre-

synthesized Pt colloid/NPs or its precursor (usually

chloroplatinic acid hexahydrate − H2PtCl6 · 6H2O) was used

for the modification of the titania surface by various methods,

including photodeposition (the most popular), impregnation,

microemulsion, chemical and thermal reduction, electrostatic

adsorption, ion exchange, incipient wetness, atomic layer

deposition (ALD), complete decomposition of surface-

anchored platinum complexes (Pt (dcbpy)Cl2; dcbpy = 4,4′-
dicarboxy-2,2′-bipyridine), and sputtering (Herrmann et al.,

1986; Li et al., 2006; Nam and Han, 2007; Li et al., 2013; Bear

et al., 2015; Samad et al., 2015; Shahgaldi and Hamelin, 2015;

Zielinska-Jurek et al., 2015; Zielinska-Jurek et al., 2019; Benz

et al., 2020). In some cases, titania was pre-treated by heating,

sonication or irradiation. Heating was used to: (i) change the

properties, e.g., crystallinity, crystal composition, specific surface

area, (ii) stabilize the titania surface, and (iii) allow better

adsorption of platinum (Li et al., 2006; Bear et al., 2015).

Whereas, ultrasonication and UV irradiation were proposed

for the generation of oxygen vacancies in the bulk and on the

surface, respectively (Haselmann and Eder, 2017). It has also

been shown that the kind of platinum salt might influence the

resultant properties. For example, chloroplatinate ions in the

solution reach the reduction sites via diffusion (photodeposition

method), causing Pt enlargement of islets, whereas platinum

compounds that strongly adsorbs onto titania (e.g., PtI2
−6) cause

that [Pt] in solution phase is minimal (Senevirathna et al., 2006).

In contrast, different method of deposition even for the same

platinum salt (chloroplatinate acid) might result in either

uniform distribution of fine Pt NPs or their aggregation, as

shown for impregnation ([PtCl6]2− adsorbs on the positively

charged titania surface quite uniformly due to the high acidity

of the solution.) and photodeposition, respectively (Kozlova

et al., 2011). Additionally, some reports suggest also the post-

treatment operations (annealing, sonication, H2 reduction) for:

(i) stabilization and/or better connection between platinum and

titania, (ii) increasing specific surface area, (iii) strong metal-

support interaction (SMSI) effect (e.g., electron migration from

titania to platinum), (iv) uniform distribution, and (v) the change

of the oxidation state of platinum, e.g., from zero-valent to

divalent, resulting from the diffusion of platinum from its

NPs into the lattice of titania grains and substitution for Ti4+

(Colmenares et al., 2006; Li et al., 2006; Khan et al., 2008;

Colmenares et al., 2011; Dessal et al., 2019).

Photodeposition of platinum on the titania surface is

probably the most common (examples shown in Table 1) due

to many advantages, such as:

- short time (for platinum ca. 5–10 min of induction time −

complete deposition (Wei et al., 2017a)),

- a good contact between titania and platinum (Since metal

cations are reduced by photogenerated electrons directly on

the titania surface.),

- complete deposition of all platinum cations (from platinum

salt),

- low cost and simple procedure (Only irradiation source is

necessary—daylight could also be applied.),

- the ability to monitor in-situ the photocatalytic activity

during platinum deposition, e.g., by hydrogen evolution

(Senevirathna et al., 2006).

Frontiers in Chemistry frontiersin.org05

Wang and Kowalska 10.3389/fchem.2022.972494

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.972494


Photodeposition method is based on the main feature of

photocatalysis, that is the formation of charge carriers under

irradiation, i.e., the photogenerated electrons reduce platinum

cations. Usually, photodeposition is performed in the absence

of oxygen (to avoid electron scavenging) and in the presence of

a hole scavenger, here, methanol is the most popular (to limit

hole-electron recombination). After the reaction completion,

Pt/TiO2 is washed (usually first with methanol to remove all

adsorbed organic products from the hole scavenger oxidation,

and then with water), dried (Common drying in the presence

of air is used as both components are not easily oxidized, in the

contrast to silver- or copper-modified samples when freeze

drying is recommended (Janczarek et al., 2017)), and ground.

Since in the case of platinum, the photodeposition is very fast

(completed within few minutes), which might result in

platinum aggregation, the modified photodeposition method

has also been proposed. For example, photodeposition

performed in the initial presence of oxygen or air in the

system (aerobic system) might be used, i.e., the samples

containing titania, platinum salt and methanol are sealed

but the pre-bubbling with inert gas (e.g., argon or nitrogen)

is not applied. Accordingly, during irradiation the

photogenerated electrons are simultaneously scavenged

by oxygen and also used to reduce platinum cations,

which causes the formation of smaller and more uniformly

distributed platinum NPs (Wei et al., 2017a; Paszkiewicz et al.,

2022). However, it might also mean the change in the surface

oxidation state of platinum. Indeed, samples prepared in the

initial presence of oxygen contain larger content of positively

charged platinum than those prepared under anaerobic

conditions (Wei et al., 2017a; Paszkiewicz et al., 2022).

The method of synthesis obviously governs the resultant

properties of Pt/TiO2 photocatalysts. For example, smaller and

more uniformly distributed Pt NPs have been deposited on the

titania by: (i) decomposition of surface-anchored platinum

complexes than photodeposition method (Li et al., 2013), (ii)

ion exchange (2 nm) than impregnation (12 nm) method

(Khan et al., 2008), (iii) photodeposition in the initial

presence of oxygen than under anaerobic conditions (Wei

et al., 2017a; Paszkiewicz et al., 2022), (iv) thermal reduction

(2, 5 and 9 nm) than chemical reduction (3, 6 and 17 nm,

respectively, on different titania samples: ST01-fine anatase,

P25 and decahedral anatase particles (DAP)) (Zielinska-Jurek

et al., 2019).

TABLE 1 The examples of Pt/TiO2 photocatalysts’ preparation by photodeposition method.

Platinum Titania Photodeposition
Condition

References

Content
(%)

Size
(nm)

Distribu-
tion

BET
(m2/g)

Size (nm) Type

PPA PPA SPA

0.2 nd nd 71–131 2–10 nd A, AR, (pH depending)
homemade

UV, 7 h Huang et al. (2018)

0–0.3 nd nd nd nd nd A/R, P25 UV, anaerobic, 1 h Senevirathna et al.
(2006)

0.50 4 nd 49 20 nd A/R, P25 UV, 12 h Cubillos-Lobo et al.
(2017)

1 4 nd nd nd 10 A, homemade RGO-TiO2 UV, 3 h Shinde et al. (2018)

0.2–3.0 <2 nd nd nd nd A, homemade UV, 8 h Zheng et al. (2009a)

2.1 2–3 nd 17.9 45 for
homemade

nd A/R P25, A Hombikat
UV100, A homemade

UV, anaerobic, 6 h López et al. (2015)

0.08–1.8 nd nd 54 ND nd A/R, P25 solar simulator Chowdhury et al. (2013)

0.5–2.0 3–12 nd 64 14.8 nd A, homemade UV, 3 h Selvam and
Swaminathan, (2011)

0.50 nd nd ca.70 ND nd A, homemade UV, 2 h Vaiano et al. (2018)

0.5 and 2 3–5, 10 agg ca.50 ND nd A, homemade UV, 15–240 min Murcia et al. (2014)

0.5 and 1 1.5 uniform 300 8 nd A, Hombikat UV100 UV Al-Madanat et al. (2021)

0.1–1.0 0.5–0.7 agg — — — A/R, modified P25 455 nm, 70 min Vasilchenko et al. (2020)

— — 56 5–10 nd A, zeolite-TiO2 (P25) 365 nm, 2 h López-Tenllado et al.
(2022)

0.9 1–5 Nd nd nd nd P25 UV, 0.5–1 h Bamwenda et al. (1997)

A—anatase, agg.—aggregated, nd-not determined, R-rutile, RGO—reduced graphene oxide.
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Similarly, the procedure of platinum deposition obviously

influences the surface oxidation state of platinum. For

example, it has been shown that chemical reduction and

photodeposition methods result in the preparation of

samples with mainly zero-valent and positively charged

platinum NPs, respectively (Kozlova et al., 2011). However,

other reports show that photodeposition causes the formation

of mainly zero-valent platinum (Wei et al., 2018). Therefore, it

is though that the slight change in the photodeposition

conditions (irradiation source, light intensity and the

absence/presence of oxygen) might result in significant

change in the properties, and thus in the resultant

activities. Other studies indicate that more positively

charged platinum is obtained when photodeposition is

performed in the initial presence of oxygen in the system

than that performed under anaerobic conditions (Wei et al.,

2017a; Paszkiewicz et al., 2022). Moreover, post-treatment

operations, such as thermal treatment, might cause the

change of oxidation state of platinum, e.g., from Pt0 to Pt2+,

due to titania doping with diffused platinum from its NPs (Li

et al., 2006).

Property-governed activity of
platinum-modified titania
photocatalysts

Like pristine titania, platinum-modified titania

photocatalysts have been applied for plenty different reactions,

including environmental purification (water/air purification,

wastewater treatment, self-cleaning surfaces), energy

conversion (water splitting, photocurrent generation), and

organic synthesis, as shown in Table 2. For example, Avila

et al. found in 1998 that Pt/TiO2 was efficient for the

destruction of traces of organic pollutants present in gaseous

emissions (Avila et al., 1998). Then, various studies have been

performed under UV irradiation. However, considering the high

cost of artificial sources of irradiation, the recent study has

mainly focused on the activity tests performed under natural

solar light (or solar simulator) and the sole vis irradiation.

Indeed, many reports have already proven that titania

modification with platinum results in vis response (Kowalska

et al., 2008; Zielinska-Jurek et al., 2015; Zielinska-Jurek et al.,

2019). Moreover, considering high costs of platinum, the

TABLE 2 The examples of enhanced photocatalytic activity after platinum deposition on titania.

Pt/TiO2 Tested reaction Main findings References

Content
(%)

Type UV Vis

0.20 A, A/R dye decolorization — low charge recombination rate Huang et al. (2018)

0–0.3 A/R CH3OH dehydrog — increased quantum efficiency from 12.5 to 42.5% Senevirathna et al.
(2006)

0.50 A/R phenol and methyl orange degr phenol and methyl orange
photodegradation

Pt on sulphated TiO2 - vis response Cubillos-Lobo et al.
(2017)

1 A CH3OH dehydrog., propranolol
degr

— 94% under solar Shinde et al. (2018)

0.2–3.0 A H2 generation from HAc — optimized Pt amount Zheng et al. (2009a)

2.1 A H2 generation — methanol > ethanol > ethyleneglycol > glycerol López et al. (2015)

0.08–1.8 A/R H2 generation from
formaldehyde (40–4600 ppm)

H2 generation from
formaldehyde (40–4600 ppm)

Langmuir-type model; platinum (wt%), catalyst
dose, light intensity, and initial concentration

Chowdhury et al.
(2013)

0.5–2.0 A synthesis of 2-methylquinolines — improved activity Selvam and
Swaminathan, (2011)

0.5 A H2 generation from glycerol — improved activity Vaiano et al. (2018)

0.5 and 2 A phenol degr — small Pt NPs - phenolates formation; large Pt
NPs - surface interaction

Murcia et al. (2014)

0.5 and 1.0 A photocatalytic reforming of
naphthalene and methanol

— strong interaction between Pt NPs and TiO2

surface
Al-Madanat et al.
(2021)

0.1–1.9 A/R CH3OH dehydrog — the low Pt content—high activity Vasilchenko et al.
(2020)

A glycerol degr — increased activity Lopez-Tenllado et al.
(2022)

1 A — HCHO degr increased activity Zhu and Wu, (2015)

1% A/R hydrogenation of
phenylacetylene to styrene

high selectivity and conversion Lian et al. (2020)

A—anatase, degr—degradation, dehydrog.—dehydrogenation, R-rutile.
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experiments with low its content (below 1 wt%) have been

prioritized. In most cases, the application of platinum has

significantly improved the photocatalytic activity of titania.

For example, the reaction rate of toluene conversion has

increased by ca. four times after platinum deposition on

titania (Avila et al., 1998). The most significant activity

enhancement is obviously observed for gas evolution reactions

and activity under vis since pristine titania is practically inactive

(as discussed in Introduction).

The most important question is: What parameters and

properties should be considered to design efficient

photocatalysts, based on platinum-modified titania? Of course,

methods of preparation are crucial since they govern the

resultant properties. Considering the properties, it seems that

three are the most important: the platinum content, the platinum

size (and its distribution) and its surface oxidation state. All these

aspects are shortly presented and discussed below.

In the case of platinum content, the contrary reports have

been published, suggesting that smaller or larger amount is better

(Hufschmidt et al., 2002). However, usually the optimal amount

(Table 3) has been suggested, ranging from 0.06 to 2 wt%, e.g., (i)

1.5 wt% for methyl orange degradation under UV/vis (Hu et al.,

2012); (ii) 0.025 wt% for degradation of dichloromethane under

UV (Ma et al., 2011), (iii) 0.5 wt% for UV methanol

dehydrogenation (Ahmed et al., 2014), (iv) 0.2 wt%, 1 wt% or

2 wt% for methanol dehydrogenation, depending on the titania

type (Wang et al., 2018), (v) 0.1 wt% for phenol degradation

under UV and vis irradiation (Zielinska-Jurek et al., 2019), (vi)

0.057 wt%, 0.3 wt% and 2 wt% for methanol dehydrogenation,

depending on the method of Pt deposition (Senevirathna et al.,

2006), (viii) 0.1 wt% for hydrogen generation from acetic acid

under UV (Zheng et al., 2009), (ix) 0.5 wt% for hydrogen

evolution under simulated solar radiation (Hu et al., 2019),

(x) 1 wt% for selective hydrogenation of phenylacetylene to

styrene under UV (Lian et al., 2020), and (xi) 0.2 wt% for UV

synthesis of benzimidazoles (Shiraishi et al., 2010). Interestingly,

it has been found that the reaction conditions (pH value),

irradiation intensity, the type of titania, kind of tested

compounds and their concentration are also decisive,

influencing the optimal content of platinum (Hufschmidt

et al., 2002; Ma et al., 2011). The type of titania relates to the

surface properties, such as specific surface area and crystallinity,

and thus obviously different number of platinum NPs should be

optimal for titania with different properties.

In the case of organic synthesis, it has been proposed that

the amount of deposited platinum is a decisive factor for both

high conversion and selectivity. For example, Lian et al. found

that 1 wt% of Pt deposited on titania was the most efficient for

the photocatalytic conversion of phenylacetylene (PLE) to

styrene (STE) under monochromatic light (385 nm)

irradiation (Lian et al., 2020), reaching 92.4% (conversion)

and 91.3% (selectivity). It has been proposed that

photogenerated electrons (from titania) migrate to Pt NPs,

whereas methanol as both hydrogenation source and electron

donor (holes’ scavenger) dissociates (H+). Then, active

hydrogen species, formed on the surface of platinum,

hydrogenate PLE (H-Pt), and thus formed STE detaches

from the photocatalyst surface, as shown in Figure 5. It has

been proposed that the selectivity towards STE is caused by the

increased electron density of photocatalyst (electron

cumulation on platinum), decreasing the adsorption

strength of intermediate STE.

TABLE 3 Exemplary results for the optimization of platinum content.

Tested Content of Pt Optimal
Pt amount (wt%)

Tested Compound Irradiation References

0.2–1.0 wt% 1.0 Acetic acid UV/vis Zheng et al. (2009a)

0–1.8 wt% 0.25 Formaldehyde simulated solar and vis Chowdhury et al. (2013)

0.005–2 wt% 0.2, 1.0, 2.0 methanol UV/vis Wang et al. (2018)

2–30 mg L−1 0.057, 0.3 and 2.0 methanol UV Senevirathna et al. (2006)

0.5%, 2.0 wt% 0.5 phenol/methyl orange UV Murcia et al. (2014)

FIGURE 5
Proposed photocatalytic reaction mechanism for semi-
hydrogenation of PLE over Pt/TiO2; drawn based on the report by
(Lian et al., 2020).
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It should be pointed out that usually only several different

photocatalysts have been tested, and thus with only two to four

different contents of platinum. Therefore, it is hardly possible to

classify these studies as “optimization”. Fortunately, there are

also comprehensive reports showing the influence of platinum

content in the wide range of concentrations. For example, Zheng

et al. investigated nine different contents of platinum (0.2, 0.4,

0.6, 0.8, 1.0, 1.2, 1.4, 2.0 and 3.0 wt%) deposited on self-

synthesized titania, with 1.0 wt% being the most active for

hydrogen evolution from acetic acid solution (Zheng et al.,

2009). Similarly, nine different concentrations of platinum salt

have been investigated by Senevirathna et al. to find that

4.5 mg L−1 is the most recommended for methanol

dehydrogenation under UV (Senevirathna et al., 2006).

Table 3 presents exemplary results for the optimization of

platinum content on the titania surface.

In respect of this, it is thought that our previous report on

platinum-modified titania, in which 36 samples have been tested,

might be also very meaningful (Wang et al., 2018). In this study,

nine different amounts of platinum (0.05, 0.01, 0.02, 0.05, 0.1, 0.2,

0.5, 1.0 and 2.0 wt%) and four titania samples, originated from

the famous P25 titania, i.e., homogenized P25 (HomoP25),

homogenized P25 thermally treated at 200 °C (HomoP25-200),

anatase isolated from HomoP25 and purified by annealing at

200 °C (ANA) and rutile isolated from HomoP25 and purified by

NaOH washing and annealing at 200 °C (RUT), were tested. It

has been found that optimal content of platinum (tested during

methanol dehydrogenation) depends on the titania feature,

reaching 0.2 wt% for ANA and RUT, 1 wt% for HomoP25-

200 and 2 wt% for HomoP25, as shown in Figure 6A. It

should be pointed out that here, ANA and RUT have been

obtained from HomoP25, and thus these samples are

characterized by similar properties that those in P25. It has

been concluded that much different activities and optimal

properties come from the aggregation of titania, caused by

thermal treatment (used for samples’ purification). It should

be remembered that in the case of methanol dehydrogenation

one platinum deposit on one titania particle (e.g., aggregate) is

sufficient for efficient hydrogen evolution (Ohtani et al., 1997),

whereas an increase in platinum NPs’ number might cause the

“shielding effect”, i.e., the competition between titania and

platinum for photons (also known as “light-shading effect”

(Lian et al., 2020)). Accordingly, it has been concluded that

interparticle electron transfer (IPET; photogenerated electrons

within one aggregate moving to one platinum deposit) is also

possible within the same polymorph (anatase-anatase, rutile-

rutile), and it has been named as Homo-IPET, as illustrated in

Figure 6B.

Interesting study has been presented by Senevirathna et al.

for P25 titania modified with platinum by three methods:

photodeposition from hexaiodoplatinic acid, photodeposition

from chloroplatinic acid and impregnation (chloroplatinic

acid) with thermal treatment (Senevirathna et al., 2006). It has

been shown that optimal content of platinum depends on both

the method of preparation and the platinum salt, reaching

0.057 wt%, 0.3 wt% and 2 wt%, respectively. It has been

proposed that the uniform distribution of fine Pt NPs, allowed

by strong adsorption of PtI2
−6 on the titania surface, results in the

highest photocatalytic activity.

Similar to platinum content, the contrary reports on the best

size of platinum deposits have been reported, i.e., showing that

smaller, larger or optimal size is the most recommended. It

should be pointed out that the opposite results could be

caused by different application, i.e., photocatalytic reactions

under UV or vis irradiation, where better distribution (fine

NPs uniformly deposited on titania) or aggregates of more

efficient light harvesting ability, respectively, are

recommended (Villani et al., 2006; Ting et al., 2015; Wei

et al., 2017a; Wei et al., 2017b; Zielinska-Jurek et al., 2019).

For example, Li et al. have shown that smaller and highly

FIGURE 6
(A) The influence of platinum content on the photocatalytic activity during methanol dehydrogenation; (B) the schematic image showing the
IPET in aggregated single-phase titania particles. Adapted from (Wang et al., 2018) with permission from Elsevier.
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dispersed platinum NPs on titania result in higher activity for

hydrogen evolution both under UV and vis irradiation (vis

activity due to co-adsorbed ruthenium complex) (Li et al.,

2013). Zielinska-Jurek et al. investigated simultaneously the

influence of various factors on the resultant activity, i.e., the

properties of titania (morphology, specific surface area, crystal

size, etc.), the preparation method (commercial and self-

synthesized titania by different methods for both titania

synthesis and platinum deposition: hydrolysis, gas-phase,

micoremulsion, impregnation, thermal and chemical

reduction), platinum properties (size and shape: spherical or

cubic) and the contact between titania and platinum (Zielinska-

Jurek et al., 2019). In contrast to other reports, suggesting that

under vis irradiation the larger and polydisperse NM particles are

important for efficient light harvesting, i.e., broad plasmon peak

(Kowalska et al., 2009; Kowalska et al., 2010; Wei et al., 2017a;

Wei et al., 2017b), higher activity with a decrase in Pt size was

shown, as presented in Figure 7. However, it should be

remembered that titania properties (and even its type) have

also been changed, and thus the least active sample under vis

is characterized by largest Pt NPs deposited on faceted anatase

particles with decahedral shape (DAP). In another study, it has

been proven that this morphology, despite being highly active

under UV (one of the most active titania photocatalysts (Amano

et al., 2009; Tachikawa et al., 2011; Janczarek et al., 2016)), is

detrimental for vis activity of plasmonic photocatalysts, because

of the fast back “hot” electron transfer (Au→TiO2→Au) (Wei

et al., 2019). Therefore, it is thought that for fruitful discussion it

is recommended to change only one factor, e.g., platinum size/

amount or titania type/properties, and thus direct correlation

between only one specific property and activity could be drawn.

Interestingly, it has also been proposed that smaller Pt NPs

(ca. 2 nm) on titania nanotubes obtained by ion exchange

method than those prepared by impregnation (ca. 12 nm)

result in bandgap narrowing, and thus vis

response—stoichiometric generation of hydrogen and oxygen

(water splitting) (Khan et al., 2008).

Next, the oxidation state of platinum should also be

discussed. Of course, the platinum NP means that it is

composed of zero-valent platinum, but at the same the charge

on its surface could vary. Here, similarly to the influence of

platinum content and Pt NPs’ size, the contrary reports could be

found, suggesting that zero-valent or positively charged platinum

is better. For example, Li et al. have shown that the formation of

positively charged platinum (e.g., by the thermally initiated

diffusion of platinum from its NPs inside the titania lattice)

results in higher photocatalytic activity for CO oxidation due to a

decrease in the contacted resistance on the interface, being

FIGURE 7
(A,B) Photocatalytic activity of Pt-TiO2 samples obtained by: (A) wet-impregnation method, (B) microemulsion method; (C) Correlation
between Pt NPs’ size and photocatalytic activity of TIP (self-synthesized titania from titanium isopropoxide), ST01 (commercial samples of fine
anatase) and DAP, (D) Comparison of UV-vis and visible-light photocatalytic activity for Pt-modified titania samples. Adapted from (Zielinska-Jurek
et al., 2019), under Creative Common CC BY license.
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beneficial for the transfer of the photo-generated electron (Li

et al., 2006). Similarly, positively charged platinum NPs (Pt2+ and

Pt4+) deposited on P25 titania exhibit higher antimicrobial

activity against Gram-negative bacteria in rotating magnetic

field (instead of UV irradiation), possibly due to electrostatic

attractions (Paszkiewicz et al., 2022). In contrast, Gram-positive

bacteria are more sensitive to the photocatalyst with larger

content of zero-valent platinum. Furthermore, in the case of

gas-phase UV photocatalytic oxidation of dimethyl

methylphosphonate (Kozlova et al., 2011) and methanol

dehydrogenation (Wei et al., 2017a), samples with the larger

content of zero-valent platinum show to be more efficient.

However, in the case of oxidative decomposition of acetic

acid, the samples with larger content of positively charged

platinum show higher photocatalytic activity under UV (Wei

et al., 2017a; Paszkiewicz et al., 2022). Similarly, in the case of

organic synthesis, the selectivity towards organic products, e.g.,

during conversion of phenylacetylene to styrene, is

preferable when oxidized form of platinum is applied (Lian

et al., 2020).

Very interesting study was performed by Lee and Choi on

different Pt/TiO2 photocatalysts for photocatalytic degradation

of chlorinated organic compounds (trichloroethylene (TCE),

perchloroethylene (PCE), dichloroacetate (DC)) under UV

irradiation (Lee and Choi, 2005). They found that among

various properties, the oxidation state of platinum was the

most decisive, and thus samples with larger content of zero-

valent platinum were the most active for all tested compounds.

Positively charged platinum (PtOx) strongly inhibited the

oxidation of TCE and PCE, but it was still more reactive than

pristine titania for PCD. It was proposed, based on the

photoelectrochemical studies (lower photocurrents for an

electrode with positively charged platinum), that PtOx species

worked as a recombination center. The mediated charge

recombination on PtOx through the redox cycle of TCE was

proposed, as shown in Figure 8. Accordingly, it has been

concluded that the effect of platinum in photocatalysis is

highly substrate specific, and both the properties of platinum

and the interactions between platinum and substrate influence

the overall activity.

Conclusion

Many attempts have been performed to find the property-

governed activity for Pt/TiO2 photocatalysts. In those studies,

different factors have been considered, such as platinum content,

platinum properties (size, aggregation/uniform distribution,

oxidation state), titania properties (size, crystallinity, specific

surface area, polymorphic form, defect density, morphology,

surface characteristics) and the contact between platinum and

titania. Unfortunately, usually only few factors have been varied

at the same time. The most common studies have been

performed for only several different samples, e.g., (i) pristine

titania and titania modified with two/three different contents of

platinum, (ii) two-four different titania samples modified with

the same content of platinum, (iii) pristine titania and titania

modified with platinum by two/three different methods.

Additionally, though the properties of Pt/TiO2 samples have

been well characterized in many cases by various advanced

methods, usually these properties have neither been controlled

nor designed. Moreover, the photocatalytic activities have been

tested for quite different reactions and in different systems

(photoreactors, light intensity, spectrum range). It should be

pointed out that even studies showing quantum yields are

difficult for comparison when performed in different

laboratories since only apparent quantum yields are usually

estimated (emitted but not absorbed photons). Accordingly,

even after so many years and huge number of published

reports in the field, it is still hardly possible to draw the

general conclusions on the property-governed activity of

platinum-modified titania.

However, it might be proposed that in many cases, fine

platinum NPs uniformly distributed on the titania support

results in high photocatalytic activity. Moreover, the

FIGURE 8
The schematic drawing showing the proposed photoinduced
electron transfer paths on platinum-modified titania (Ptox-
oxidized form of platinum; Pt0—zero-valent platinum) in the
presence of TCE; The numbers indicate major electronic
pathways: (1) band gap excitation; (2) electron trapping in the Pt0

phase; (3) electron trapping in the Ptox phase; (4) trapped electron
transfer to O2; (5) Ptox-mediated recombination; (6) trapped
electron transfer to TCE; (7) TCE-mediated recombination; (8)
reductively initiated degradation of TCE. Adapted with permission
from (Lee and Choi, 2005) with permission from ACS.
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preparation of this kind of photocatalyst might cause that

optimal content of platinum is really low (below 1 wt%), and

thus the photocatalyst even containing platinum could be

reasonably cheap. Additionally, the aggregation of titania

particles might also be recommended to decrease the

necessary amount of platinum (e.g., 0.2 wt%), since IPET

between same titania NPs (in one aggregate) allows an

efficient electron transfer to platinum deposits. In the case of

oxidation state of platinum, it is though that very important is the

reagent, and thus its easy adsorption on the photocatalyst surface.

Therefore, either positively charged or zero-valent platinum

could be beneficial for the specific reaction.

Finally, it might be concluded that platinum is probably the

most efficient modifier of titania, resulting in significant

enhancement of quantum yields of photocatalytic reactions.

Additionally, platinum-modified titania has also shown

activity under visible range of solar spectrum, and thus being

highly efficient under natural solar radiation. However, the price

of platinum and its possible negative influence on the

environment (e.g., in the case of the leakage from the

photocatalyst surface) are the main shortcomings of its

application. Accordingly, a decrease in its content and strong

adsorption to titania must be achieved for possible commercial

application. Additionally, there is a lack of comprehensive

studies, in which only one property could be controlled and

analyzed in detail for various photocatalytic reactions.

Accordingly, our research is focused on this aspect now, and

it is thought that the final conclusions on the property-governed

activity of platinum-modified titania could be drawn in the

nearest future.
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