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Abstract

Background: Protein structure comparison is a key problem in bioinformatics. There exist
several methods for doing protein comparison, being the solution of the Maximum Contact Map
Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be
solved using exact algorithms, researchers require approximate algorithms that obtain good quality
solutions using less computational resources than the formers.

Results: We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We
analyze this strategy in two aspects: |) from an optimization point of view the strategy is tested on
two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with
respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive
way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments
on three datasets and show that is feasible to detect structural similarities at SCOP's family and
CATH's architecture levels using normalized overlap values. Some limitations and the role of
normalization are outlined for doing classification at SCOP's fold level.

Conclusion: We designed, implemented and tested.a new tool for solving MAX-CMO, based on
a well-known metaheuristic technique. The good balance between solution's quality and
computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the
first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with
encouraging results.

Software is available for download at http://modo.ugr.es/jrgonzalez/msvns4maxcmo.

Background

The comparison of the 3D structures of protein molecules
is a challenging problem. The search for effective solution
techniques is required because such tools aid scientists in
the development of procedures for drug design, in the
identification of new types of protein architecture, in the
organization of the known universe of protein structures
and could assist in the discovery of unexpected evolution-
ary and functional inter-relations among them.

Moreover, good protein structures comparison techniques
could be also used in the evaluation of ab-initio, threading
or homology modeling structure predictions. It is claimed
that the comparison of proteins' structures, and subse-
quent classification (according to similarity) is a funda-
mental aspect of today's research in important fields of
modern Structural Genomics and Proteomics [1-3].
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Several types of strategies and methodologies are applied
for protein structure comparison and it is out of the scope
of this work to perform an exhaustive review. As a show-
case, we may cite the use of dynamic programming [4],
comparisons of distance matrices [5], graph theory [6],
geometrical hashing [7], principle component correlation
analysis [8], local and global alignment [9], consensus
shapes [10], consensus structures [11], Kolmogorov com-
plexity [12], Fuzzy Contact Map Overlap [13], and com-
paring proteins as paths in 3D [14]. The interested reader
in the field of structural bioinformatics may refer to
[3,15,16] for updated information.

The Maximum Contact Map Overlap problem (MAX-
CMO) is a mathematical model that allows to compare
the similarity of two protein structures. This model repre-
sents each protein as a contact map where spatially close
elements of interest are indicated in a matrix. Then, the
objective is to construct an alignment that maximizes cer-
tain cost. An alignment indicates a correspondence
between the elements (amino acid residues or atoms) of
both proteins.

In these last years, exact algorithms for solving MAX-CMO
have been developed. Among them, we should cite the
initial work of [17] and then extended in [18-20]. More
recently, [21,22] presented another strategy for optimally
solving MAX-CMO. However, we may find several reasons
to justify the application of approximate algorithms for
MAX-CMO:

e the problem of maximizing the overlap between two
contact maps is NP-hard [17,23], existing particular prob-
lem instances, i.e. particular pairs of contact maps, where
the exact algorithms may fail to return a solution in rea-
sonable time.

e exact algorithms are expensive and hard to code. For
example, they may involve (as in [20]) the usage of a local
search strategy or even a genetic algorithm for obtaining
lower bounds (with their corresponding parameter set-
ting), or a linear programming solver for obtaining upper
bounds. Moreover, if a running time limit is established,
they may finish without any solution at all.

¢ the availability of exact methods is limited. To the best
of our knowledge, just the algorithm presented in [21] is
available trough Internet [24], although there is a limita-
tion on the size of submitted problems (no more than
100 residues) and the CPU time given for solving it (a
maximum of 10 minutes).

* MAX-CMO aims to maximize a purely geometrical rela-
tion between graphs so a set of suboptimal solutions may

http://www.biomedcentral.com/1471-2105/9/161

also provide insights in terms of the biological meaning of
the alignment.

¢ due to potential errors in the 3D coordinates determina-
tion, we may argue against the usefulness of having exact
solutions for protein pairs coming from (maybe) errone-
ous contact maps. As stated in [25], the experimental
errors in the determination of the atomic Cartesian coor-
dinates by X-Ray Crystallography or NMR may range from
0.01 to 1.27A which is close to the value of some covalent
bonds.

In this work, we pursue two objectives: firstly, we propose
a Variable Neighborhood Search (VNS) strategy for solv-
ing MAX-CMO and we show that this strategy allows to
obtain near optimal results using reduced computational
resources and time.

Secondly, the role of MAX-CMO for doing clustering and
classification has only been done at the SCOP's family
level (in the so called "Skolnick's dataset) and we propose
to assess if the (normalized) overlap values returned by
our strategy offers a proper ranking of structural similarity
at other different structural levels.

Results

The validation of the proposed method is done through
two different computational experiments: we compare the
VNS approach against the exact algorithm from Xie and
Sahinidis [21] in pure optimization terms; then we verify
if our VNS is able to obtain a proper ranking among a set
of proteins at different levels of structural similarity.

0.1 Is VNS beneficial from an optimization point of view?
In the first computational experiment we compare our
VNS implementation against the results from [21]. As test
bed for comparison, we use two datasets described in [26]
(see Table 1 for details): a) Skolnick, with 40 proteins and
161 optimally solved pairs, and b) Lancia, with 269 pro-
teins and 2702 optimally solved pairs.

We use the contact map data files provided in [24] for a
fair comparison and reproducibility purposes. The maps
are based on C, and the optimal overlap values were
kindly provided by the authors of Ref. [21].

We limited the experiment is limited to those cases (pro-
tein pairs) where the exact algorithm was able to find the
optimum within the time of ten days [21].

Experiments on [21], were conducted on three worksta-
tions with a 3.0 Ghz CPU and 1.0 Gb of RAM each while
our experiments were run on just one workstation with a
2.2 Ghz CPU (AMD Athlon 64 3500+) and 1Gb of RAM.
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Table |I: Datasets' information. "Pairs" stands for the number of pairwise comparisons performed. The values for "Contacts"

corresponds to contact maps at 7A.

Residues Contacts
Dataset Proteins Pairs Min. Avg. Max. Min. Avg. Max.
Lancia 269 2702 44 57,07 68 33 95,91 137
Skolnick 40 161 97 158,23 255 265 470,93 8I15
Fischer 68 4624 56 211,16 581 147 636,66 1952
Nh3D 806 58838 33 150,33 759 74 432,83 2438

Xie and Sahinidis have recently improved the results from
[21] in terms of computing resources needed [22].

We define three versions of our Multistart VNS (MSVNS),
corresponding to different parameter settings for one of
the neighborhood structures (see details in the Methods
section):

* MSVNS1: One neighborhood of type neighborhoodMove
and 3 neighborhoods of type neighborhoodAdd, having
window sizes of 5%, 10% and 15% respectively.

® MSVNS2: One neighborhood of type neighborhoodMove
and 3 neighborhoods of type neighborhoodAdd having
window sizes of 10%, 20% and 30% respectively.

® MSVNS3: One neighborhood of type neighborhoodMove
and 3 neighborhoods of type neighborhoodAdd having
window sizes of 10%, 30% and 50% respectively.

The strategy has a parameter that controls the number of
internal "restarts": i.e. when no improvement can be done
from the incumbent solution, the search is restarted from
a new randomly generated one. This value is fixed in 150.
At the end of the execution, we measure the error(%) with

respect to the optimum value. The results are shown in
Tables 2 and 3.

The main thing to notice from both Tables is that as the
windows sizes increases, the average error decreases. The
best alternative is MSVNS3 with windows sizes of
10-30-50 leading to an average error below 3.6% for Lan-
cia's dataset with 2702 pairs, and below 1.7% for the Skol-
nick's one. As the median values are much lower than the
average, Tables also show the number of pairs that were
optimally solved and those where the optimum was not
reached. For Lancia's dataset, up to 60% of the pairs can
be optimally solved, while in Skolnick, the percentage of
optimum was around 40%. Again, the percentages of
non-solved pairs diminishes as the windows' sizes
increases.

It is also interesting to analyze the subset of pairs that were
not optimally solved. Figure 1 shows the distribution of
such pairs on the Lancia's dataset over five different ranges
of percentage of error, for each of the three VNS versions.
Figure 2 shows the same graph for Skolnick's dataset.

It can be seen that the quality of the results increases as the
VNS version goes from MSVNS1 to MSVNS3 where both,
the number of non-optimally solved solutions and the

Table 2: Results over 2702 pairs from Lancia's dataset. The error is measured with respect to the optimum value.

Error (%)

Version N Avg. SD Median
Total MSVNSI 2702 (100%) 5,8765 7,12280 1,9049
MSVNS2 2702 (100%) 3,9959 5,60979 0,0000
MSVNS3 2702 (100%) 3,5671 521332 0,0000
Optimally Solved MSVNSI 1259 (46,60%) 0,0000 0,00000 0,0000
MSVNS2 1522 (56,33%) 0,0000 0,00000 0,0000
MSVNS3 1577 (58,37%) 0,0000 0,00000 0,0000
Non-Optimally Solved MSVNSI 1443 (53,40%) 11,0037 6,21068 LI
MSVNS2 1180 (43,67%) 9,1499 4,98958 9,0909
MSVNS3 1125 (41,63%) 8,5674 4,73640 8,3333
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Table 3: Results over 161 pair from Skolnick's dataset. The error is measured with respect to the optimum value.

Error(%)
Version N Avg SD Median
Total MSVNSI 161 (100%) 7,3950 744111 5,5556
MSVNS2 161 (100%) 1,8235 2,50117 0,7375
MSVNS3 161 (100%) 1,6744 2,39488 0,4399
Optimally Solved MSVNSI 42 (26,09%) 0,0000 0,00000 0,0000
MSVNS2 62 (38,51%) 0,0000 0,00000 0,0000
MSVNS3 68 (42,24%) 0,0000 0,00000 0,0000
Non-Optimally Solved MSVNSI 119 (73,91%) 10,005 6,98169 9,5092
MSVNS2 99 (61,49%) 2,9655 2,60624 2,2124
MSVNS3 93 (57,76%) 2,8987 2,52732 2,3910

corresponding error are the smallest. The error is below
11% for more than half of the pairs in all cases for Lancia's
dateset. When using MSVNS3 the errors get as low as hav-
ing 87% of the non-optimal pairs solved with less than
17% of error. For Skolnick, MSVNS3 obtains an error
lower than 5% for the 87% of non optimally solved pairs.

Regards to computational effort needed to achieve these
results, Table 4 reflects the total wall clock time for every
variant of MSVNS. The bigger the window sizes, the longer
the times. This is because as these sizes increase, the
number of potential pairings becomes larger, leading to
an expected increase of execution time. However, we con-
sider the tradeoff between solutions quality and computa-
tional effort as highly reasonable.
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[l 27,001 - 23,000
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Figure |

Distribution of gaps (error) from exacts values (in %) in the
set of non optimally solved solutions for Lancia's dataset.

These results confirm that the proposed strategy is a useful
tool for solving near optimality MAX-CMO for almost all
the evaluated protein pairs.

0.2 Is VNS able to rank properly protein similarity ?
Although the analysis from an optimization point of view
is relevant, it is also interesting to check the quality of VNS
as a protein structure classifier. In other words, we want to
assess if it is really necessary to solve MAX-CMO exactly to
perform structure classification.

Moreover, overlap values are not adequate per se for clas-
sification purposes because such values depend on the
size of the proteins being compared. Indeed a normaliza-
tion scheme should be applied and we illustrate that this
may play a crucial role in protein classification.
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Distribution of gaps (error) from exacts values (in %) in the
set of non optimally solved solutions for Skolnick's dataset.
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Table 4: Wall clock time required for each variant of VNS to
solve all the pairs from each dataset. The number of pairs was
2702 for Lancia's dataset and 161 for Skolnick's one.

Time

Version Lancia Skolnick

MSVNSI 4 hs. 12 m. 3hs. Il m.
MSVNS2 4 hs. 43 m. 4 hs. 48 m.
MSVNS3 5hs.7m. 5 hs. 44 m.

There is no general agreement on how to do normaliza-
tion, but at least, three alternatives are available.
1. norm1(P;, P;) = overlap(P;, P;)/min(contacts P;, contacts P;)

2. norm2(P;, P;) = 2 * overlap(P;, P;)/(contacts P; + contacts
P)
j

3.

3P, P 0 if the contacts difference is greater than 75%
norm3(Pi, Py) = norml(P;, P;) otherwise

First and second alternatives were proposed in [3] and
[21] respectively. Here, we propose the third alternative to
avoid the comparison of two structures whit completely
different sizes.

We perform three computational experiments to analyze
our proposal. Firstly, we made an all against all compari-
son in Skolnick's dataset to check wether a clustering can
discriminate among 5 SCOP families. Secondly, we test
the performance of the strategy to detect similarity at
SCOP's fold level, using Fischer's dataset [27]. For this
experiments, comparison with DaliLite is also performed.
Finally, we made a set of queries over the NH3D database
[28] to evaluate the capability of a nearest neighbor clas-
sification to detect similarity at CATH's architecture level.
Comparisons are then made against DaliLite and MatA-
lign.

0.2.1 Experiments with Skolnick's dataset

For this experiment we use again Skolnick's dataset from
[21,22], which includes a "cluster" label for every protein
corresponding to different families in SCOP database
[29]. We perform an all against all comparison among the
proteins using the best (MSVNS3) and worst (MSVNS1)
versions of our strategy (from an optimization sense).
Then we constructed a similarity matrix for each MSVNS
configuration using the overlap values normalized with
Norm1, Norm2, Norm3. Finally, we apply single and aver-
age linkage hierarchical clustering as implemented in R
software package [30] with the final objective of evaluat-
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ing if the original grouping can be recovered from the
overlap values or not.

Both, MSVNS1 and MSVNS3, are able to perfectly recover
the original grouping independently of the normalization
and clustering algorithms. Figure 3 shows particular
examples, where single and average linkage clustering are
applied over the similarity matrix normalized with
Norm1. For visualization purposes, the class number is
displayed at the right of the protein name.

The study performed in this dataset shows that our strat-
egy can replicate the results obtained using exact methods
but with less computational effort and a simple strategy.
Moreover, this experiment confirms that correct classifica-
tion may be performed using non-exact Max-CMO values.
Both elements are important results per se.

0.2.2 Experiments on Fischer's dataset
We perform a second experiment using Fischer's dataset
(described in Table II from [27]) composed by 68 proteins
and comprising several classes and folds. Table 1 provides
information about protein sizes.

An all-against-all comparison was performed using
MSVNS2 and DaliLite [31] with default parameters. In
this case, the objective is to analyze the ability of the
methods to recognize structural similarities at (SCOP)
fold level.

Figure 4 shows the global ROC curves for fold level, while
Table 5 shows the corresponding area under curve (AUC),
calculated with SPSS 14.03®. Notably DaliLite achieved
the highest AUC's values. However, when we discriminate
AUC's values in terms of the fold, as shown in Fig. 5, two
notorious elements should be highlighted. First, we found
that for some folds DaliLite is not the best, and second,
each normalization is able to detect certain types of folds,
while failing in others. For example, the IG fold is best
detected with Norm1, while this measure gives the lowest
AUC value for TIM-barrel fold.

Moreover, when we discriminate the results in terms of
the class of the first protein in the pair, we obtain again
some interesting results that are shown in Fig. 6. Table 6
shows the corresponding area under curve (AUC).
DaliLite obtained the highest AUC value in just two (a/b,
b) out of 5 classes. In the other cases, the highest value is
obtained by some of the normalizations based on the
overlap returned by MSVNS. For a total of 68 x 68 = 4624
pairwise comparison, DaliLite detected no similarity for
2800 pairs (60.5%). If we consider those pairs with z-
score < 1, then the value grew to 3844 (83.1%).
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Figure 3
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MSVNS3, Single Linkage

MSVNS3, Average Linkage

Hierarchical Clustering based on the normalized overlap values (using Norm|) among proteins in Skolnick's dataset. The upper
dendrograms (a, b) correspond to single linkage clustering and the lower ones (c, d) to average linkage clustering. Dendro-
grams on the left (a, c) are for MSVNSI results while dendrograms on the right (c, d) correspond to MSVNS3 results.
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Figure 4

ROC curves for every measure on Fischer's dataset at fold
level.

0.2.3 Experiments on Nh3D database

The last test is done using the Nh3D v3.0 dataset [28] of
structurally dissimilar proteins. This dataset has been
compiled by selecting well resolved representatives from
the Topology level of CATH database. These have been
been pruned to remove domains that may contain
homologous elements, internal duplications and regions
with high B-Factor.

Our aim is to check if MSVNS2 can properly classify struc-
tures at CATH's architecture level. The database has 806
topology representatives belonging to 40 architectures.
Table 1 provides information about protein sizes.

For each architecture (comprising at least 10 topologies)
we select the smallest, biggest and average structure in
terms of residues and number of contacts, plus another
one randomly selected. After removing duplicates, we
obtained a set of 73 structures that constitutes the query
set [see Additional File 1]. Each query is then compared

http://www.biomedcentral.com/1471-2105/9/161

against every structure in the database. Comparisons are
also performed with DaliLite [31] and a recently proposed
method based as well on distance matrices, MatAlign,
claimed to be better than DaliLite and CE [32] in certain
cases [33]. For the former, we use the z-score as similarity
measure, while the raw score is used for the later. For
MSVNS2, we made the analysis using the three normaliza-
tion schemes proposed above. The number of internal
restarts for MSVNS2 was fixed to 10 to constraint the exe-
cution time up the computation.

Figure 7 displays the ROC curve for every method while
Table 7 reports the corresponding "area under curve"
(AUC) values. Again, we note that normalization is a key
factor and different conclusions may be obtained. When
normalization is Norm1, the AUC value is higher than that
of DaliLite. Other alternatives obtain lower values. MatA-
lign obtains the lowest result. It is important to recall that
Norm1, Norm2, Norm3 are based on the overlap value
returned by our strategy.

If we trace different curves in terms of the architecture of
the query, we may find several interesting behaviors.
Some examples of ROC curves are displayed in Figure 8
where clear differences arise among methods as a function
of the query's architecture.

Figure 9 displays the corresponding AUC values for every
architecture, excluding those where all methods achieved
AUC = 1. If we assume AUC values as a measure of simi-
larity detection "hardness" then, it is clear that this con-
cept is different for every scoring scheme. From this
Figure, we note that no single algorithm outperforms the
others for every possible query's architecture.

It should be noted that, from a total of 73 x 806 = 58838
pairwise comparisons, DaliLite detected no similarity for
43833 pairs (74.5%), leading to several false negatives. As
an example, for two out of seven queries belonging to
architecture 4.10, DaliLite failed to return these queries as
the most similar structures in the database. When the

Table 5: Area Under the Curve (AUC) for each measure over Fischer's dataset at fold level. An all against all comparison is performed

among the 68 proteins in the dataset.

Asymptotic 95% Conf. Interval

Variable Area Std. Error( Asymptotic Sig.®t) Lower Bound Upper Bound
norml| 0,795 0,016 0.000 0,765 0,826
norm?2 0,805 0,016 0.000 0,774 0,836
norm3 0,797 0,016 0.000 0,765 0,830
DaliLiteZScore 0,933 0,011 0.000 0,912 0,954
(@ Under the nonparametric assumption
®) Null hypothesis: true area = 0.5
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AUC values for every measure on Fischer's dataset for every type of fold.

process is repeated with MSVNS, the query itself is given
the highest value of similarity in the seven cases.

Discussion and Conclusion

In this work we tested a straight and simple implementa-
tion of VNS for the MAX-CMO problem which obtains
encouraging results.

;From an optimization point of view, MSVNS obtained
overlap values that were very close to the optimal ones,
using a simpler strategy and less computational effort
than exact algorithms.

We can mention at least, three ways to obtain further
improvements to our method: a) by trying more special-
ized neighborhood structures, b) by better tuning the
parameters' values chosen c) by starting the search from
heuristically generated solutions. We also plan to add a
preprocessing step to avoid making comparisons between
structures that are very different, as DaliLite does. Moreo-

ver, due to its speed and simplicity, VNS may be also con-
sidered for obtaining lower bounds in the context of exact
algorithms. An important element in several bioinformat-
ics problems is the relation between the optimum value of
the objective function and the biological relevance of the
corresponding solution. In protein structure comparison
we should remember that we are dealing with a mathe-
matical model that captures some aspects of the biological
problem, being possible to measure protein structure sim-
ilarity in several ways. For example, up to 37 measures are
reviewed in [34]. Moreover, besides obtaining the highest
overlap values, it is also critical to develop strategies able
to obtain a proper similarity ranking of proteins.

Our experiments showed that in terms of SCOP's family
and CATH's architecture levels, the (normalized) overlap
values seemed to be good enough to capture the similar-
ity. At the level of SCOP's fold, several points should be
consider. Although DalilLite outperformed MSVNS2, it
does not imply that our method did badly. More research
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AUC values for every measure on Fischer's dataset for every
class.

should be done, specially in the area of normalization,
because, as we mentioned the use of different normaliza-
tion schemes may lead to stronger or weaker strengths to
detect particular kinds of folds. We should also recall that
all of the experiments were done using contact maps with
a fixed threshold and it may be the case that for detecting
similarity at fold level, a different value would be needed.
Wether the performance of DalilLite for detecting similar-
ity at fold level can be achieved or not with a strategy
based on the contact maps model remains open.

Just to conclude, we should mention that the method was
accepted to be incorporated on the ProCKSI-Server [35].
ProCKSI is a decision support system for Protein (Struc-
ture) Comparison, Knowledge, Similarity and Informa-
tion that computes structure similarities using

http://www.biomedcentral.com/1471-2105/9/161

information theory measures. ProCKSI links to a variety of
other sources and uses additional methods to rectify and
augment its similarity findings. Our MSVNS was chosen
as the method to solve MAX-CMO due to its speed and
accuracy.

Methods

0.3 The Maximum Contact Map Overlap Problem

The Maximum Contact Map Overlap problem (MAX-
CMO) is a mathematical model that allows to compare
the similarity of two protein structures. Under this model,
each protein is represented as a contact map (a binary
matrix) where two residues are said to be in contact if their
Euclidean distance in 3D is below a certain threshold R.
Figure 10 shows two alternative representations for a con-
tact map.

A solution for two contact maps is an alignment of resi-
dues (i.e a correspondence between residues in the first
contact map to residues on the second one). Aligned or
paired residues are considered to be equivalent. The pair-
ings are not allowed to cross: if there exists a pairing i <> j
that aligns residues i € P;, j € P,, then it is not allowed that
any other pairing of the form a <> b, a > i, b <j exists at the
same time.

In MAX-CMO, the value of an alignment between two
proteins is given by the number of cycles of length four.
This number is called the overlap of the contact maps and
the goal is to maximize this value, i.e. the larger this value,
the more similar the two proteins.

An example appears in Fig. 11 where two contact maps are
shown. Residues 2, 3, 5 and 7 in the upper protein (P,) are
paired with residues 1, 2, 3 and 6 in the lower one (P,).
The alignment is represented by dotted lines while the
protein' contacts are shown with solid ones.

This particular alignment produces two cycles of length
four. First cycle is composed by the arcs (2 € P}, 5 € P;),
(5€eP,3€P,), (3P, 1eP,))and (1 P,y 2eP,). The

Table 6: Area Under the Curve (AUC) for each measure over Fischer's dataset at class level. An all against all comparison is

performed among the 68 proteins in the dataset.

Asymptotic 95% Conf. Interval

Variable Area Std. Error( Asymptotic Sig.®t) Lower Bound Upper Bound
norm| 0,601 0,010 0.000 0,582 0,621
norm?2 0,678 0,009 0.000 0,661 0,696
norm3 0,637 0,009 0.000 0,619 0,656
DaliLiteZScore 0,772 0,009 0.000 0,755 0,789
(@ Under the nonparametric assumption
®) Null hypothesis: true area = 0.5
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Figure 7
ROC curves for every measure on NH3D dataset at CATH's
architecture level.

second cycle has the following four arcs: (3 € Py, 7 € P,),
(7eP,6€P),(6€P)y,2eP,)and (2 € P, 3 €P).

0.4 MultiStart VNS metaheuristic

Variable Neighborhood Search (VNS) metaheuristic was
presented in [36,37]. It is essentially a local search method
which includes dynamic changes in the neighborhood of
the solutions.

VNS for MAX-CMO aims to find good solutions by adding
and removing pairings using different strategies. The
scheme of our proposal is shown in Algorithm 1.
Algorithm 1 Our MultiStart VNS algorithm

procedure MSV N§()

1: for (start = O; start < = numStarts; start++ ) do

http://www.biomedcentral.com/1471-2105/9/161

2: Initialization: Select the set of neighborhood struc-
tures N, fork=1, ..., k., that will be used in the search;
Find an initial solution x; Choose a stopping condition;

3: repeat
4: Setk « 1;
5: repeat

6: (a) Shaking: Generate a point x' at random
from the k" neighborhood of x(x' € N, (x));

7: (b) Local search: Apply some local search
method with x' as initial solution; Denote with x" the so
obtained local optimum;

8: (c) Move or not: If the local optimum x" is bet-
ter than the incumbent x, move there (x < x"), and con-
tinue the search with N, (k < 1); otherwise, setk <k + 1;

9: until k =k,

10: simplify (x);

11: until stop condition is met
12: end for

A basic VNS algorithm usually follows the pattern shown
in lines 2-11 (excluding line 10). Our algorithm extends
the basic VNS by incorporating an extra loop (line 1) for
restart and a simplification scheme (simplify function at
line 10).

This simplify function avoids the saturation of solutions
and gives more chances to the different neighborhoods
used to successfully explore the solution space. It is based
on the deletion of useless alignments that do not partici-
pate on any cycle of length four. For example in Figure 12
the pairings 2 <> 1 and 6 <> 7 belong to a cycle (shown in

Table 7: Area Under the Curve (AUC) for each measure over NH3D database. The experiment consisted on 73 queries over 806

domains. The analysis is performed at CATH's family level.

Asymptotic 95% Conf. Interval

Variable Area Std. Error(@ Asymptotic Sig.() Lower Bound Upper Bound
norm| 0.608 0.005 0.000 0.599 0.618
norm2 0.582 0.005 0.000 0.572 0.591
norm3 0.591 0.005 0.000 0.581 0.601
DaliLiteZScore 0.596 0.005 0.000 0.586 0.607
ScoreMatAlign 0.538 0.005 0.000 0.528 0.548

(@ Under the nonparametric assumption
®) Null hypothesis: true area = 0.5
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Examples of ROC curves to show how dependent the strategies are on the architecture type of the query.

blue), while the pair 3 <> 6 will be deleted by the simplify
function. Two neighboorhood structures are used for the
"Shaking" part of the VNS algorithm: a neighborhood that
randomly moves a pairing (neighborhoodMove); and a
neighborhood that adds a random pairing to the align-
ment (neighborhoodAdd).

The function neighborhoodMove moves a pairing as fol-
lows:

1. it randomly chooses a pair pairCM1 <> pairCM2, where
pairCM1 is the residue on contact map 1 and pairCM?2 is
the residue on contact map 2.

2. Then it finds the nearest paired residues that pairCM1
has both to the left (pairCMILeft) and to the right
(pairCM1Right) and the residues in contact map 2 that
they are paired to (pairCM2Left and pairCM2Right respec-
tively).

3. Once these two intervals are determined, the original
pairCM1 <> pairCM?2 pair is replaced by a pairCM1' <
pairCM2' pair where pairCM1' e |[pairCMI1Left + 1,
pairCM1Right - 1] and pairCM2' € [pairCM2Left + 1,
pairCM2Right - 1].
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Figure 9

AUC values for every measure and type of query's architec-
ture on NH3D dataset. It is clear that none of the methods
stays on top of the other ones for all the architecture's types.

The application of this function keeps the feasibility of the
solution. An example is shown in Fig. 13 where the pair 3
<> 5 can be moved to a pair from any residue from 3 to 5
in the first contact map, and any residue from 4 to 6 in the
second contact map. Finally, the 4 <> 4 pair is chosen and
the original 3 <> 5 pair is removed.

The function neighborhoodAdd adds a random pairing to
the solution, proceeding as follows:

1. It chooses a random, not paired residue (pairCM1)
from contact map 1.

i ta

Representation 1

Figure 10

http://www.biomedcentral.com/1471-2105/9/161

2. The algorithm finds pairCM2Left and pairCM2Right in
the same way as neighborhoodMove does.

3. Instead of just pairing pairCM1 with a residue between
pairCM2Left and pairCM2Right, the range of possible pair-
ings is expanded by the size of a window. The new pairing
will be pairCM1 - pairCM2' where pairCM2' €
[pairCM2Left — window/2, pairCM2Right + window/2]. Win-
dow sizes are expressed as a percentage of the biggest con-
tact map size (i.e a 10% window for two contact maps of
sizes 80 and 100, results in a window of size 10 (a ten per-
cent of 100, the biggest size)).

4. Since the pairing added can potentially result on an
unfeasible solution, we delete all conflicting preexisting
pairings. By this way, this neighborhood adds a pairing
and may also delete portions of the solution, raising the
chances of reconstructing them in a better way. We note
that as the window parameter gets high, there are more
chances of clearing parts of the solution (thus making
room for new pairs).

Figure 14 shows an example where the random residue
chosen to be paired is the fourth from contact map 1. The
feasibility restrictions only allow its pairing with residue
number 6 from contact map 2, giving the result shown in
a). This pairing increments in 1 the overlap value by creat-
ing a cycle with the pairs 2 <> 3 and 4 <> 6. The effect of
using the window concept can be seen in b) where it is
possible to obtain the pair 4 <> 3. Then, feasibility will be
restored by removing pairs 2 <> 3 and 3 < 5.

These two neighborhood structures are used to define the
neighborhoods of the main VNS's loop. In this work, we
propose the following configuration:

Representation 2

Two contact map representations: as binary matrix (left) and as a graph (right).
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Figure 11

An example of an alignment between two schematic pro-
teins. The overlap value is 2 because two cycles of length
four arise. First cycle is composed by thearcs (2 € P, 5 €
P),(5€P,3€P),(3€Py, | ePy)and(l €P,,2eP)). The
second cycle has the following four arcs: (3 € P, 7 € P)), (7
€P,6eP),(6ecP,2cP)and (2P, 3 €P).

e k = 1: neighborhoodMove.
® k = 2: neighborhoodAdd with a small window size.

® k = 3: neighborhoodAdd with a medium window size.

/7 7 // /
/// /
/7, /
—>
HONONONORONO
S

Figure 13
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Figure 12
Example of the simplify procedure — Red pairing, from 6 € P,
to 3 € P, will be removed.

o k = 4: neighborhoodAdd with the big window size.

So, to keep the basic VNS properties and ideas, the neigh-
borhoods based on neighborhoodAdd are always chosen
with increasing window sizes as k increases. For example,
the strategy MSVNS3 considers small = 10%, medium =
20% and big = 30%. In this case the search starts neighbor-
hoodMove. When VNS cannot improve the overlap value,
then the value of k is incremented, and the search contin-
ues with neighborhoodAdd and window = 10%. If the failure
to improve continued, the process is repeated with neigh-

Example of neighborhoodMove procedure. A pairing to move is chosen and a feasibility region is identified (a). An alternative
pairing is selected from such region and the original pairing is replaced (b).
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Figure 14

http://www.biomedcentral.com/1471-2105/9/161

Example of neighborhoodAdd procedure. Residue 4 € P, is chosen to be aligned. The pairing may be feasible, as shown in (a)
or an unfeasible one (b). In this case, feasibility would be restored by deleting the pairings (3 € P;,2 € P,) and (5 € P|, 3 € P,).

borhoodAdd using window = 20%. If necessary, VNS will try
with neighborhoodAdd using window = 30% and when this
last neighborhood can not improve the solution, it pro-
duces a restart. The local search part of the algorithm uses
a different neighborhood structure. It loops from the first
to the last residue of contact map 1 and tries to pair it with
every feasible residue of contact map 2, making an align-
ment with the first one that improves the current solution
(in a greedy-like fashion).

Finally the stopping criterion for each run of the VNS
method is either one hundred iterations or twenty itera-
tions without improvements (whatever comes first).

0.5 Time Comparisons

To properly compare the execution time of a set of algo-
rithms, all of them should be ideally compiled and run in
the same computational environment. To overcome the
lack of source code availability for exact algorithms, we
resort to published results. For the case of DaliLite, we did
the time comparison after running the algorithm in our
local machine.

0.5.1 Times for Exact Methods

In the approach presented in [22], authors have to setup
time limits ranging from 4 seconds to 10-30 minutes or
even more. Their strategy required one day an a half to
optimally solve 1233 pairs from Lancia's dataset. They
needed three days to reach 1997 instances and nine, to
reach the 2702 instances on a single workstation. Recall-
ing Tables 2 and 4, our worst version MSVNS1 needs
approx. 4 hours to solve 2702 pairs, achieving the opti-

mum for 1259 pairs. Unfortunately, execution times for
Skolnick's dataset are not provided.

For the approach presented in [20], the code is not avail-
able, so we approximate the times for Lancia's dataset
looking at the paper:

We ran our methods on a set of 269 proteins with 64 to 72
residues and 80 to 140 contacts each, using a contact
threshold of 5 A. For the B & C approach we set a maxi-
mum time limit of 1 hour or 15 nodes in the search tree per
instance the heuristics were applied at every node, and were
limited to at most five minutes per node...

Then, they go on with:

The same 597 pairs were then compared using the LR
approach. For each instance we allowed a maximum run-
ning time of 1 minute For all instances, the upper bound
computed by LR was at least as good as that computed by B
& C, however, most of the times bonds were equal. Note
that we are not finding the best lagrangian multipliers and
hence, in principle, our upper bound may be worse than
U1. By using the LR we then compared, ..., all 36046 pairs.
To speed up the computation, we only explored the root
node of the search three and we did not apply the greedy
heuristic. Note that running the B&C on all these
instances, with a time limit of 1 hour/problem would have
taken about four years

Based on these paragraphs we may conclude that a practi-

cal use of B& C is not possible and heuristics, like LR, are
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Table 8: Execution Times for MSVNS and DaliLite. Times
correspond to 8 pairwise comparisons among the 5 biggest
proteins in NH3D database. Runs were done in the same
desktop computer.

Method Time(sec.)
MSVNSI 357
MSVNS2 508
MSVNS3 613
DaliLite 758

needed. As such it is possible that a different heuristic
finds higher overlap values. The approximate comparison
time per pair may be 4.8 seconds (48 hs. (a weekend)
divided by 36046 pairs), however the performance of the
"greedy heuristic" is not provided.

Although our times are slightly longer than 4.8 sec., we
should note that our contact maps had a threshold of 74,
thus having more contacts per map than those in Lancia's
paper and it is not clear how LR execution times would be
affected by such increase in the number of contacts.

Moreover, we have a parameter which is linearly related
with the speed of the search, namely the number of inter-
nal repeats. Time improvement can be easily achieve by
setting the number of internal repeats to a low value. Of
course, in terms of optimization, the results may degrade,
though in terms of classification, it does not produce a sig-
nificant impact.

0.5.2 Times for DaliLite

To analyze the execution times of DaliLite and MSVNS, we
perform a simple experiment. We retrieve the biggest five
proteins  (1.10.645, 1.20.210, 3.20.70, 3.60.120,
3.90.1300) in terms of contacts availabe in NH3D data-
base; then we perform an all-against-all comparison
scheme to filter out those pairs where DaliLite can not
detect enough similarity to proceed.

We execute once DaliLite, MSVNS1, MSVNS2 and
MSVNS3 on the same machine under the same conditions
for every of the remaining eight pairs. Results are reported
in Table 8 and they clearly show that our strategy is faster
than DaliLite.
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Additional material

Additional File 1

Query set. This file contains the structures that constitute the query set for
the experiment on the Nh3D dataset. For each architecture (comprising
at least 10 topologies) we selected the smallest, biggest and average struc-
ture in terms of residues and number of contacts, plus another one ran-
domly selected. After removing duplicates, this set of 73 structures was
obtained.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-161-S1.xls]

Acknowledgements

This work is supported by Projects HeuriCosc TIN2005-08404-C04-01,
HeuriCode TIN2005-08404-C04-03, both from the Spanish Ministry of
Education and Science.

JRG acknowledges financial support from Project TIC2002-04242-C03-02.

Authors thank N. Krasnogor and ProCKSi project (BB/C511764/1) for
their support.

References

. Holm L, Sander C: Mapping the Protein Universe. Science 1996,
273:595-602.

2. Koehl P: Protein Structure Similarities. Current Opinion in Struc-
tural Biology 2001, 11:348-353.

3. Llancia G, Istrail S: Protein Structure Comparison: Algorithms
and Applications. In Protein Structure Analysis and Design, of Lecture
Notes in Bioinformatics Volume 2666. Edited by: Guerra C, Istrail S.
Springer-Verlag; 2006:1-33.

4. Taylor W: Protein Structure Comparison using iterated dou-
ble dynamic programming. Protein Science 1999, 8:654-665.

5. Holm L, Sander C: Protein Structure Comparison by Align-
ment of Distance Matrices. Journal of Molecular Biology
1993:123-138.

6.  Strickland DM, Barnes E, Sokol JS: Optimal Protein Structure
Alignment Using Maximum Cliques. Operations Research 2005,
53(3):389-402.

7.  Leibowitz N, Fligerman Z, Nussinov R, Wolfson H: Multiple Struc-
tural Alignment and Core Detection by Geometric Hashing.
In Procs of 7th Intern. Conference on Intelligent Systems for Molecular Biol-
ogy ISMB 99 AAAI Press; 1999:169-177.

8. Xiaobo Zhou JC, Wong S: Protein structure similarity from
principle component correlation analysis. BMC Bioinformatics
2006, 7(40):.

9. Zemla A: LGA: a method for finding 3D similarities in protein
structures. Nucl Acids Res 2003, 3 1(13):3370-3374.

10. Chew L, Kedem K: Finding Consensus Shape for a Protein
Family. In Proceedings of the |8th ACM Symp. on Computational Geom-
etry. Barcelona, Spain ACM Press, New York; 2002:64-73.

I'l.  Leluk], Konieczny L, Roterman I: Search for Structural Similarity
in Proteins. Bioinformatics 2003, 19:117-124.

12.  Krasnogor N, Pelta D: Measuring the Similarity of Protein
Structures by Means of the Universal Similarity Metric. Bio-
informatics 2004, 20(7):1015-1021.

13.  Pelta D, Krasnogor N, Bousono-Calzon C, Verdegay JL, Hirst J, Burke
E: A fuzzy sets based generalization of contact maps for the
overlap of protein structures. Journal of Fuzzy Sets and Systems
2005, 152:103-123.

14.  Zhi D, Krishna SS, Cao H, Pevzner P, Godzik A: Representing and
comparing protein structures as paths in three-dimensional
space. BMC Bioinformatics 2006, 7:460.

5. Bourne P, Weissig H: Structural Bioinformatics Wiley-Liss, Inc; 2003.

Page 15 of 16

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2105-9-161-S1.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8662544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11406386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10091668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10091668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8377180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8377180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16436213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16436213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17052359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17052359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17052359

BMC Bioinformatics 2008, 9:161 http://www.biomedcentral.com/1471-2105/9/161

16. Eidhammer I, Jonassen |, Taylor WR: Protein Bioinformatics: An Algorith-
mic Approach to Sequence and Structure Analysis Wiley; 2003.

17. Goldman D, Istrail S, Papadimitriou C: Algorithmic Aspects of
Protein Structure Similarity. Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science 1999:512-522.

18. Caprara A, Lancia G: Structural Alignment of Large-Size Pro-
teins via Lagrangian Relaxation. In Proceedings of the sixth annual
international conference on Computational Biology ACM; 2002:100-108.

19.  Krasnogor N: Self-Generating Metaheuristics in Bioinformat-
ics: The Proteins Structure Comparison Case. Genetic Pro-
gramming and Evolvable Machines 2004, 5(2):.

20. Caprara A, Carr R, Istrail S, Lancia G, Walenz B: 1001 Optimal
PDB Structure Alignments: Integer Programming Methods
for Finding the Maximum Contact Map Overlap. Journal of
Computational Biology 2004, 11:27-52.

21. Xie W, Sahinidis NV: A Branch-and-reduce algorithm for the
contact map overlap problem. Proceedings of RECOMB of Lecture
Notes in Bioinformatics, Springer 2006, 3909:516-529.

22. Xie W, Sahinidis NV: A Reduction-based exact algorithm for
the contact map overlap problem. Journal of Computational Biol-
ogy 2007, 14(5):.

23. Krasnogor N: Studies on the Theory and Design Space of
Memetic Algorithms. Ph.D. Thesis, Faculty of Computing, Mathemat-
ics and Engineering, University of the West of England, Bristol, United King-

dom 2002.
24. CMOS Online Server for Protein Structure Alignment via
Contact Map Overlap Maximization [htep://

archimedes.cheme.cmu.edu/group/biosoftware.html]

25. Laskowski RA: Structural quality assurance. In Structural Bioinfor-
matics Edited by: Bourne P, Weissig H. Wiley-Liss, Inc; 2003.

26. Lancia G, Carr R, Walenz B, Istrail S: 101 optimal PDB structure
alignments: a branch-and-cut algorithm for the maximum
contact map overlap problem. In RECOMB '01: Proceedings of the
fifth annual international conference on Computational biology ACM
Press, New York; 2001:193-202.

27. Fischer D, Elofsson A, Rice D, Eisenberg D: Assessing the per-
formance of fold recognition methods by means of a com-
prehensive benchmark. Pacific  Symp on  Biocomputing
1996:300-318.

28. Thiruv B, Quon G, Saldanha S, Steipe B: Nh3D: A reference data-
set of non-homologous protein structures. BMC Structural Biol-
ogy 2005, 5(12):.

29. Murzin A, Brenner S, Hubbard T, Chothia C: SCOP: a structural
classification of proteins database for the investigation of
sequences and structures. Journal of Molecular Biology 1995,
247:536-540.

30. R Development Core Team: R: A Language and Environment for Statis-
tical Computing 2006 [http://www.R-project.org]. R Foundation for
Statistical Computing, Vienna, Austria

31. Liisa H, Park J: DaliLite workbench for protein structure com-
parison. Bioinformatics 2000, 16(6):566-567.

32. Shindyalov |, Bourne P: Protein structure alignment by incre-
mental combinatorial extension (CE) of the optimal path.
Protein Engineering 1998, 11(9):739-747.

33. AungZ, Tan KL: MatAlign: Precise Protein Structure Compar-
ison by Matrix Alignment. Journal of Bioinformatics and Computa-
tional Biology 2006, 4(6):1197-1216.

34. May A: Towards More Meaningful Hierarchical Classification
of Aminoacids Scoring Matrices. Proteins: Structure, Function and
Genetics 1999, 37:20-29.

35. Barthel D, Hirst D, Blazewicz J, Burke E, Krasnogor N: ProCKSI: a Publish with Bio Med Central and every

decision support system for Protein (Structure) Compari- : :
son, Knowledge, Similarity and Information. BMC Bioinformat- scientist can read your work free of Charge

ics 2007, 8(416):. . . . . "BioMed Central will be the most significant development for
36. Hansen P, Mladenovic N: Development; in Varlab!e_Nelghbour- disseminating the results of biomedical research in our lifetime."

hood Search. In Essays and Surveys in Metaheuristics Edited by: )

Ribeiro C, Hansen P. Kluwer Academic Publishers; 2002:415-439. Sir Paul Nurse, Cancer Research UK
37. Hansen P, Mladenovic N: Variable neighbourhood search. In Your research papers will be:

Handbook of Metaheuristics Edited by: Glover, Kochenberger. Kluwer
Academic Publisher; 2003:145-184. « available free of charge to the entire biomedical community

« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 16 of 16

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15072687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15072687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15072687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683265
http://archimedes.cheme.cmu.edu/group/biosoftware.html
http://archimedes.cheme.cmu.edu/group/biosoftware.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16011803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16011803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10980157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10980157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9796821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9796821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17963510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17963510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17963510
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	0.1 Is VNS beneficial from an optimization point of view?
	0.2 Is VNS able to rank properly protein similarity ?
	0.2.1 Experiments with Skolnick's dataset
	0.2.2 Experiments on Fischer's dataset
	0.2.3 Experiments on Nh3D database


	Discussion and Conclusion
	Methods
	0.3 The Maximum Contact Map Overlap Problem
	0.4 MultiStart VNS metaheuristic
	0.5 Time Comparisons
	0.5.1 Times for Exact Methods
	0.5.2 Times for DaliLite


	Authors' contributions
	Additional material
	Acknowledgements
	References

