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Wet-Bulb Globe temperature, 
Universal thermal Climate Index, 
and Other Heat Metrics for US 
Counties, 2000–2020
Keith R. Spangler  1 ✉, Shixin Liang1,2 & Gregory a. Wellenius  1

Epidemiologic research on extreme heat consistently finds significant impacts on human morbidity 
and mortality. However, most of these analyses do not use spatially explicit measures of heat (typically 
assessing exposures at major cities using the nearest weather station), and they frequently consider 
only ambient temperature or heat index. The field is moving toward more expansive analyses that 
use spatially resolved gridded meteorological datasets and alternative assessments of heat, such as 
wet-bulb globe temperature (WBGt) and universal thermal climate index (UtCI), both of which require 
technical geoscientific skills that may be inaccessible to many public health researchers. To facilitate 
research in this domain, we created a database of population-weighted, spatially explicit daily heat 
metrics – including WBGT, UTCI, heat index, dewpoint temperature, net effective temperature, 
and humidex – for counties in the conterminous United States derived from the ERA5-Land gridded 
data set and using previously validated equations and algorithms. We also provide an R package to 
calculate these metrics, including gold-standard algorithms for estimating WBGt and UtCI, to facilitate 
replication.

Background & Summary
Exposure to moderate and extreme heat is associated with increased risk of illness and death1. Although most 
epidemiologic studies contributing to this conclusion use dry-bulb temperature (i.e., ambient air tempera-
ture measured in the shade) as the exposure metric of interest2–6, others have assessed alternative metrics that 
incorporate humidity – such as the heat index, a combined temperature and humidity metric used by the U.S. 
National Weather Service7, or the humidex, which is used by the Meteorological Service of Canada – to better 
estimate the physiologic impact of heat on the human thermoregulatory system8–10. Increasingly, public health 
research on heat is considering metrics that combine additional meteorological conditions, including solar radi-
ation and wind speed, to further contextualize the actual heat stress experienced by populations11–13.

Of particular interest is the wet-bulb globe temperature (WBGT), a thermal index originally developed in the 
1950s to establish epidemiologically relevant thermal thresholds to prevent heat-related illnesses at US military 
training camps14. The WBGT is a weighted average of the ambient, wet-bulb, and globe temperatures, which 
collectively incorporate thermal, solar, and convective heat transfers from ambient temperature, humidity, solar 
radiation, and wind speed15. In contrast to simpler, more commonly used metrics, such as ambient temperature 
or heat index, WBGT is measured in conditions of direct solar radiation and is partially mitigated by wind 
speed, making it an appealing measure for estimating thermal conditions experienced by outdoor workers and 
athletes. In recognition of this utility, it has been approved by the International Organization for Standardization 
(ISO), the American Conference of Governmental Industrial Hygienists, and other national and international 
organizations for use as a thermal stress screening tool16.

However, it should be noted that WBGT has limitations, including its potential underestimation of thermal 
stress in conditions where sweating is restricted, susceptibility to measurement errors, and variability based 
on clothing and activity14. Others have also noted that the scale of the measurement is prone to misinterpreta-
tion, given that extreme values of WBGT are much lower than what would be considered extreme by ambient 
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temperature standards16. Newer metrics have been developed that may reduce some of these limitations; of 
interest here is the Universal Thermal Climate Index (UTCI), a heat metric derived from human energy balance 
models with the goal of being universally applicable, physiologically relevant, and appropriate for use in a range 
of bioclimatic applications17. Although the UTCI is correlated with WBGT and may similarly reflect thermal 
perception18, some have advocated for replacing WBGT with UTCI in operational use cases, particularly in 
athletics19,20.

While WBGT and UTCI have clear utility in bioclimatic contexts, there are challenges for population health 
researchers hoping to use them in their analyses. For example, measuring WBGT requires specialized equip-
ment that is not widely deployed operationally, and UTCI similarly requires data that are frequently unavaila-
ble in meteorological data sets. Although it would be advantageous for public health researchers to have easy 
access to population-scale estimates of WBGT, UTCI, and other heat metrics, no such database presently exists. 
Furthermore, no single measure of heat will be universally superior in all contexts10,19, suggesting the need for a 
single dataset containing multiple metrics for intercomparison.

Concurrently, heat-health researchers are increasingly aware of the value in using gridded meteorological 
data sets, both for their potential to provide population-applicable estimates of weather experienced across large 
areas and to avail rural areas without weather stations to epidemiologic analyses21. Recent studies have demon-
strated the utility of a range of gridded data sets for such applications22–25. Although these data sets are a valuable 
source of information, they contain massive amounts of data that require time, computational resources, and 
expertise to process that are not available to many public health researchers.

Given these barriers to enhanced epidemiologic research, the broader goal of this data set is to provide: (1) a 
data set of pre-processed gridded data, population-weighted to the daily county level; and (2) code for calculat-
ing various heat metrics, including wet-bulb globe temperature and the Universal Thermal Climate Index using 
gold-standard approaches. The potential reuse value of these data extends not only to epidemiologic analyses, 
but to any research that requires daily, county-level estimates of temperature or other heat metrics.

Methods
Overview. Our dataset provides daily minimum, maximum, and mean values of ambient temperature, dew-
point temperature, net effective temperature, heat index, humidex, wet-bulb globe temperature, and the Universal 
Thermal Climate Index, all population-weighted at the county level. We used a high-resolution reanalysis dataset 
to calculate these hourly heat metrics across the entire contiguous United States (CONUS) from January 2000 to 
December 2020. We developed an accompanying R package (heatmetrics) that can be used to replicate the calcu-
lations on other data sets (Fig. 1).

Reanalysis data. We derived a series of heat metrics using data from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 Land product (ERA5-Land)26,27. The ERA5-Land 
variables we obtained included: (1) two-meter air temperature, (2) two-meter dew point temperature, (3) sur-
face pressure, (4) ten-meter zonal and meridional wind velocity vectors, (5) surface solar radiation downward, 
(6) surface thermal radiation downward, (7) surface net solar radiation, and (8) surface net thermal radiation. 
The ERA5-Land data are available hourly at a spatial resolution of 0.1 degrees (approximately 9 km) globally 
over land. We also obtained total sky direct solar radiation at surface from ERA528,29, the reanalysis from which 
ERA5-Land is derived. We interpolated this from the 0.25-degree ERA5 grid to the 0.1-degree ERA5-Land grid 
using nearest-neighbor interpolation, following the approach of Yan et al.30.

Converting to local standard time. Data from ERA5-Land are provided hourly in Coordinated Universal 
Time (UTC), also known as Greenwich Mean Time (GMT). Since many users need minimum and maximum 
values relative to the local day, we created raster stacks of the calculated hourly data that aligned with the local 
time zone. To do this, we created rasters of ERA5-Land grids containing centroids of latitude and longitude and 
then used the lutz R package31 to identify the time zone of each grid cell, which was represented as a numeric off-
set from UTC time. We created separate rasters for standard time and daylight saving time (for example, Eastern 
Standard Time has a UTC offset of −5 hours while Eastern Daylight Time has an offset of −4 hours). While 
most locations had consistent time zones throughout the study period, we manually accounted for time zone 
changes that occurred in the state of Indiana in 2006 and 2007 by creating shapefiles of affected counties and 
adjusting the ERA5-Land grid offsets accordingly. The final result was eight rasters representing grid-level UTC 
offsets: four each for local standard time (LST) and local daylight time (LDT) for years 2000–2005, 2006, 2007, 
and 2008–2020. We used these time zone rasters as masks to subset the calculated heat metrics corresponding to 
the local day. The result was stacks of 24 hourly observations for each day that reflected data from 00 local time 
to 23 local time. We note that although hourly time steps are the highest temporal resolution available in reanal-
ysis data, “true” daily minimum and maximum temperatures can occur between hours. Others have found that, 
in some instances, this can lead to small differences in estimated relative risks of exposure to ambient heat, but 
that such differences have considerably smaller magnitudes than the differences in relative risks found between 
different heat metrics32.

Calculating heat metrics. We calculated hourly heat metrics across all of CONUS between January 2000 
and December 2020 on the stacks of ERA5-Land data converted to local time. We then calculated, at the pixel 
level, the minimum, maximum, and mean values for each variable on every local day. The final results were ras-
ters of CONUS for daily observations of each of the heat metrics described in this section. The database may be 
updated in the future as ERA5-Land data are updated.
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Wet-bulb globe temperature. Lemke and Kjellstrom33 summarized and compared approaches to estimating 
wet-bulb globe temperature, and they found that the algorithm by Liljegren et al.15 performed most accurately 
across a range of conditions. We therefore employed this algorithm in our calculations here. In contrast to most 
estimates of WBGT – which use relatively simple equations – the Liljegren approach applies fundamental laws of 
physics, thermodynamics, and mass balance to separately model natural wet bulb (TW) and globe temperatures 
(TG), which together comprise 90% of the WBGT (the remaining 10% is the ambient temperature [TA]; Eq. 1).

= . ⋅ + . ⋅ + . ⋅WBGT T T T0 70 0 20 0 1 (1)W G A

The Liljegren algorithm was originally written in the C programming language but was translated to 
Javascript and made available in a web interface by the Occupational Safety and Health Administration 
(OSHA)34. We translated this Javascript into an R package and processed it on raster stacks of the ERA5-Land 
data.

The WBGT algorithm requires as inputs the following variables (Table 1): year, month, day, hour, minute, 
UTC offset, averaging time of meteorological observations, latitude, longitude, temperature, relative humidity, 
incident solar radiation, wind speed, surface pressure, height of wind speed measurement, vertical temperature 
difference between observed temperature and wind-speed-height temperature, and urban or rural land cover. 
Although most of these variables are provided directly by ERA5-Land, a few needed to be derived first. Relative 
humidity was calculated using air temperature and dew-point temperature, and the wind speed was calculated 
using the zonal and meridional wind velocity vectors (Table 1). To identify ERA5-Land grid cells as urban or 
rural, we used the 2011 National Land Cover Database35 and assigned grid cells as “urban” (1) if at least 33% of 
the 30-meter by 30-meter land cover pixels within each ERA5-Land grid cell were classified as “developed, low 
intensity,” “developed, medium intensity,” or “developed, high intensity.” All other grid cells were classified as 
“rural” (0). Note that the contribution of urban/rural to the WBGT calculation is marginal and only affects the 
conversion of wind speed from higher altitudes to two-meter equivalents.

In addition to the pre-processing described above, we made a few small modifications to the Liljegren algo-
rithm, as described here and as comments throughout the R source code. First, in the calculation of the natural 
wet-bulb temperature, the original algorithm used a static enhancement factor of 1.004 when calculating the sat-
uration vapor pressure; however, this factor assumes a barometric pressure of at least 800 hPa. To accommodate 
lower pressures for high-elevation locations, we applied an enhancement factor that is a function of barometric 
pressure (second quantity of Eq. 2), following Equation 8 in Buck (1981, p. 1532)36.

Raw ERA5-Land Data (Hourly UTC)

Stack Rasters and 
Calculate Derived Variables,

 e.g., Heat Index:

Calculate Daily Min/Max/Mean

Calculate Population-Weighted 
County Means

Daily, County-Level Metrics 
Stored in Accessible Database

R Package to Calculate Each 
of the Heat Metrics

Output Tables Include 
County ID, Date, and Metric

Convert to Hourly Data in 
Local Standard Time

Fig. 1 Schematic overview of the creation of the heatmetrics database.
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Where Tair is the ambient temperature in Kelvin and Pair is the barometric pressure in hPa.
Second, we fixed a small error in the stability classes, which are used to estimate the 2-meter wind speeds 

when the input wind speeds are measured at a different height (as is the case in ERA5-Land, which reports 
10-meter wind speeds). In the original algorithm, nighttime conditions with wind speeds between 2 and 2.5 m/s 
were given stability classes of “E” and “F” for positive and negative lapse rates, respectively; we changed this 
to the correct values of “D” and “E,” consistent with guidance from EPA documentation (see Table 6–7 in 
reference)37.

Third, we updated the algorithm for calculating the heat of vaporization to follow the approach of Meyra  
et al.38, which was found to be more accurate than the traditional Watson equation. Although we believe this to 
be a more-accurate method, we find that it typically changes the estimate of the wet-bulb temperature by less 
than 0.1 degrees Celsius.

Finally, we changed the minimum wind speed from 0.13 m/s to 0.5 m/s for a more-conservative estimate of 
WBGT that prevents unreasonably high estimates that result from very low wind speeds. Lemke and Kjellstrom 
(2012)33 recommend a more-conservative minimum wind speed of 1 m/s for assessing WBGT effects on out-
door workers, noting that typical bodily movement results in an apparent wind speed on the skin of at least 
1 m/s. Our value of 0.5 m/s is a balance between these values and helps capture the WBGT for stationary indi-
viduals, as our index is not exclusively for outdoor workers. Note that this wind speed adjustment was done as 
a pre-processing step and that the minimum wind speed is only directly set to 0.5 m/s in the WBGT function of 
the heatmetrics R package when supplying wind speeds at a height other than two meters.

We conducted a sensitivity analysis to determine the impact that these changes to the Liljegren algorithm had 
on the final county-level mean values. We found that daily maximum WBGT estimates for August 2020 across 
all available CONUS counties using WBGT algorithms with and without the aforementioned alterations were 
extremely similar, with r2 = 99.99%, a mean absolute difference of 0.08 °C, and a maximum absolute difference 
of 0.25 °C.

Universal Thermal Climate Index (UTCI). We calculated UTCI following the approach of Di Napoli et al.39, as 
implemented in the ECMWF python library, thermofeel40. This method uses the sixth-order polynomial regres-
sion approximation given by Bröde et al. (2011), which is a highly accurate approximation of UTCI with a 
root-mean square error of 1.1 degrees Celsius41. The equation takes as inputs the ambient temperature, 10-meter 
wind speed, vapor pressure, and mean radiant temperature (Tmrt). We calculated mean radiant temperature 

Variable Calculation Units/Notes

Year Provided by ERA5-Land Numeric (YYYY)

Month Provided by ERA5-Land Numeric (MM), 1–12

Day Provided by ERA5-Land Numeric (DD), 1–31

Hour Provided by ERA5-Land Numeric (HH), 0–23 in local time

Minute Set to 0 for all observations Top-of-hour observations

UTC Offset Set to 0 for all observations because we calculated on the 
original UTC data Number of hours difference from UTC, if applicable

Averaging Time Set to 0 for all observations Observations are provided as either instantaneous or 
already averaged over the hour

Latitude ERA5-Land grid centroids Decimal-degrees North (°N)

Longitude ERA5-Land grid centroids Decimal-degrees East (°E)

Ambient Temperature Provided by ERA5-Land Degrees Celsius (°C)

Relative Humidity

= . ⋅ . ⋅
. +( )e exp610 94 TD

TD

17 625
243 04

TD = dew point temperature (°C); see Lawrence (2005)49
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TA = ambient air temperature (°C); see Lawrence (2005)49
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e = vapor pressure (Pascals [Pa]) and es = saturation 
vapor pressure (Pascals [Pa])

Surface Solar 
Radiation Downward Provided by ERA5-Land Watts per square-meter (W/m2)

Wind Speed ws u v2 2= +
u = zonal wind velocity (m/s) and v = meridional wind 
velocity (m/s)

Surface Pressure Provided by ERA5-Land Pascals (Pa)

Wind-Speed Height Set to 10 meters for all observations N/A

Temperature Lapse Set to −0.052 °C for all observations Assumes vertical lapse rate of −6.5 °C / km

Urban
Assigned 1 (urban) to pixels classified as urban or built 
up in the National Land Cover Database 2011 dataset 
and 0 (rural) otherwise

N/A

Table 1. Inputs to wet-bulb globe temperature (WBGT) algorithm.
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following the approach of Di Napoli et al.42, which approximates Tmrt using hourly measurements of total down-
ward surface solar radiation (direct and diffuse), surface net solar radiation, downward surface thermal radia-
tion, surface net thermal radiation, downward direct surface solar radiation, and cosine of the solar zenith angle 
(cza). As was done in Di Napoli et al.42, we calculated the average daytime cza in order to minimize errors that 
arise during sunrise and sunset hours, described comprehensively by Hogan and Hirahara43. We used this same 
integrated cza approach in the calculation of WBGT and note that, although it is the most-accurate approach, 
others have found that it actually has a very small impact (<0.01 °C on average) on the overall estimation of 
UTCI40. Although the Bröde et al. (2011) algorithm is suitable for wind speeds up to 30.3 m/s, we followed Di 
Napoli et al. (2021) in capping wind speeds at 17 m/s and marking as missing (“NA”) observations above this 
threshold, based on findings of extremely low UTCI values at these tropical-storm-force wind speeds44. Finally, 
consistent with recommendations in Bröde et al.41, we constrained the vapor pressure input to be consistent 
with a relative humidity of ≥5%, the lower bound for which their algorithm is validated: in cases where relative 
humidity was less than 5%, we set the vapor pressure equal to the saturation vapor pressure multiplied by 0.05. 
This had only a minimal impact on the final county UTCI values: 99.93% of county-day maximum UTCI values 
were completely unaffected. Among the county-days that did have the adjustment, the mean absolute difference 
in maximum UTCI was 0.06 °C and the maximum absolute difference was 0.58 °C.

Other heat metrics. Most of the other heat metrics in this data set use relatively straightforward equations 
(Table 2). The one exception is heat index: we calculated this variable using the weathermetrics R package7, 
which implements the approach to calculating heat index that is used by the National Weather Service. Note 
that, for consistency with how we calculated WBGT, we set the minimum wind speed to 0.5 m/s for all variable 
calculations that use wind speed.

Calculating population-weighted county means. Daily heat metric values are reported as 
population-weighted county mean values. We used high-resolution (approximately 250 m × 250 m) population 
data from the Joint Research Centre (JRC) of the European Commission45 to calculate spatial weights for each 
ERA5-Land grid cell within each county based on the proportion of the county population residing in that grid 
cell. For example, if the sum of the high-resolution population points within a particular grid cell in County A 
were equal to 10% of the total county population, then that grid cell would get weighted 10% toward the overall 
county mean. Temperatures in the more densely populated parts of counties were thus weighted more heavily 
than the less-populous parts, resulting in metrics that are likely more relevant to population-based studies. To 
account for potential population shifts over the period analyzed, we used two sets of population estimates based 
on availability in the JRC data: we used 2000 population distributions for county means from 2000–2009 and 
2015 populations for 2010–2020.

To account for missing data, we added flag variables to indicate whether the county estimates for a particular 
day were based on non-missing grid cells representing less than 50% of the population. This is applicable because 
ERA5-Land is available only over land areas in which the grid cell is comprised of no more than 50% ocean; this 
ensures that the meteorological data are representative of land areas, but it also means that some small island 
and coastal areas are excluded. An additional source of missing data is from particular hourly values being 
marked as NA (for example, hourly UTCI values when wind speeds exceed 17 m/s). A grid cell was marked as 
NA for a particular variable-day if fewer than 21 hourly observations were available. We calculated the percent of 
county populations that were represented by non-missing ERA5-Land data for every variable on every day and 
added flags as follows: “0” means the estimate is based on data representing ≥50% of the population, “1” covers 
10–49% of the population, “2” covers <10%, and “3” means the data are completely missing (variable-days 
in this case are marked as NA). These flags affect only an extremely small portion of the data set: >99.7% of 

Variable Calculation Variables/Units Ref.

Ambient Temperature Provided directly by ERA5-Land °C N/A

Dew-Point Temperature Provided directly by ERA5-Land °C N/A

Net Effective Temperature ( )T37 0 29 1TA
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w

A
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RH – rel. hum. (%)
TA – air temp. (°C)
w – wind speed (m/s)
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Humidex
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TD – dew-point T (°C) 49

+ ⋅ −T e[ 10]A
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TA – air temp. (°C)
e – vapor pressure (hPa)

51

Heat Index Weathermetrics R package following algorithm of National Weather Service, 
using ambient temperature and dew point temperature as inputs °C 7

Wet-Bulb Globe 
Temperature (WBGT)

Liljegren et al. approach as described in the Methods section here and in the 
reference. °C 15

Universal Thermal Climate 
Index (UTCI)

Mean radiant temperature (Tmrt) estimated using Di Napoli et al. (2020) 
approach °C 42

Bröde et al. (2011) approach as implemented by Di Napoli et al. (2021) and 
Brimicombe et al. (2022). See Methods for details. °C 39–41

Table 2. Summary of the methods used to calculate the heat metrics in the data set.
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county-days have no flag, and only two counties in all of CONUS are missing entirely from the data set (Monroe 
County, Florida [containing the Key West archipelago] and Nantucket County, Massachusetts [containing the 
island of Nantucket]).

Variable Name (Short) Variable Name (Long) Description / Format Units

StCoFIPS State-county Federal Information 
Processing Standard (FIPS) Identifier

Unique county identifier: concatenation of two-digit state identifier 
and three-digit county identifier N/A

Date Date Local day in the format YYYYMMDD N/A

Tmin_C Daily Minimum Ambient 
Temperature

Lowest 2-meter ambient temperature observed from hourly data 
from 00 LST to 23 LST °C

Tmax_C Daily Maximum Ambient 
Temperature

Highest 2-meter ambient temperature observed from hourly data 
from 00 LST to 23 LST °C

Tmean_C Daily Mean Ambient Temperature 2-meter ambient temperature averaged over hourly observations 
from 00 LST to 23 LST °C

TDmin_C Daily Minimum Dew Point 
Temperature

Lowest dew point temperature observed from hourly data from  
00 LST to 23 LST °C

TDmax_C Daily Maximum Dew Point 
Temperature

Highest dew point temperature observed from hourly data from  
00 LST to 23 LST °C

TDmean_C Daily Mean Dew Point Temperature Dew point temperature averaged over hourly observations from  
00 LST to 23 LST °C

NETmin_C Daily Minimum Net Effective 
Temperature

Lowest net effective temperature observed from hourly data from 
00 LST to 23 LST °C

NETmax_C Daily Maximum Net Effective 
Temperature

Highest net effective temperature observed from hourly data from 
00 LST to 23 LST °C

NETmean_C Daily Mean Net Effective 
Temperature

Net effective temperature averaged over hourly observations from 
00 LST to 23 LST °C

HImin_C Daily Minimum Heat Index Lowest heat index observed from hourly data from 00 LST to  
23 LST °C

HImax_C Daily Maximum Heat Index Highest heat index observed from hourly data from 00 LST to  
23 LST °C

HImean_C Daily Mean Heat Index Heat index averaged over hourly observations from 00 LST to  
23 LST °C

HXmin_C Daily Minimum Humidex Lowest humidex observed from hourly data from 00 LST to 23 LST °C

HXmax_C Daily Maximum Humidex Highest humidex observed from hourly data from 00 LST to 23 LST °C

HXmean_C Daily Mean Humidex Humidex averaged over hourly observations from 00 LST to 23 LST °C

WBGTmin_C Daily Minimum Wet-Bulb Globe 
Temperature

Lowest wet-bulb globe temperature (WBGT) observed from hourly 
data from 00 LST to 23 LST °C

WBGTmax_C Daily Maximum Wet-Bulb Globe 
Temperature

Highest wet-bulb globe temperature (WBGT) observed from 
hourly data from 00 LST to 23 LST °C

WBGTmean_C Daily Mean Wet-Bulb Globe 
Temperature

Wet-bulb globe temperature (WBGT) averaged over hourly 
observations from 00 LST to 23 LST °C

UTCImin_C Daily Minimum Universal Thermal 
Climate Index

Lowest Universal Thermal Climate Index (UTCI) observed from 
hourly data from 00 LST to 23 LST °C

UTCImax_C Daily Maximum Universal Thermal 
Climate Index

Highest Universal Thermal Climate Index (UTCI) observed from 
hourly data from 00 LST to 23 LST °C

UTCImean_C Daily Mean Universal Thermal 
Climate Index

Universal Thermal Climate Index (UTCI) averaged over hourly 
data from 00 LST to 23 LST °C

Flag_T Ambient temperature flag
Indicator of the percent of county population represented by the 
county-day ambient temperature estimate. 0: ≥50%, 1: 10–49%,  
2: <10%, 3: 0% (NA)

N/A

Flag_TD Dew point temperature flag
Indicator of the percent of county population represented by the 
county-day dew point temperature estimate. 0: ≥50%, 1: 10–49%,  
2: <10%, 3: 0% (NA)

N/A

Flag_NET Net effective temperature flag
Indicator of the percent of county population represented by the 
county-day net effective temperature estimate. 0: ≥50%, 1: 10–49%, 
2: <10%, 3: 0% (NA)

N/A

Flag_HI Heat index flag
Indicator of the percent of county population represented by the 
county-day heat index estimate. 0: ≥50%, 1: 10–49%, 2: <10%, 3: 
0% (NA)

N/A

Flag_HX Humidex flag
Indicator of the percent of county population represented by the 
county-day humidex estimate. 0: ≥50%, 1: 10–49%, 2: <10%,  
3: 0% (NA)

N/A

Flag_WBGT Wet-bulb globe temperature flag
Indicator of the percent of county population represented by the 
county-day WBGT estimate. 0: ≥50%, 1: 10–49%, 2: <10%,  
3: 0% (NA)

N/A

Flag_UTCI Universal Thermal Climate Index flag
Indicator of the percent of county population represented by the 
county-day UTCI estimate. 0: ≥50%, 1: 10–49%, 2: <10%,  
3: 0% (NA)

N/A

Table 3. Description of variables available in the heatmetrics database.
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Data Records
The heatmetrics data are accessible via figshare46. The variables currently available for download are described in 
Table 3. At present, the data set includes population-weighted estimates at the county level, which can be queried 
using the state-county Federal Information Processing Standard (FIPS) identifier. We also provide a separate 
data set of unweighted county mean values, which were created by taking a simple average of all grid cells in a 
county, which are also available via figshare47. Variable names are the same between the two data sets, so users 
should take care to download the applicable file for their needs and rename variables as appropriate if using both 
data sets simultaneously.

technical Validation
The heatmetrics data set employs existing algorithms and an established reanalysis product that have all been 
peer-reviewed and frequently cited in the literature. Please see accompanying references and citations therein 
for the input data set used, ERA5-Land, for model development and validation27. The WBGT algorithm used 
here is based on the Liljegren approach, which was found to be accurate to within 1 °C in the developers’ test-
ing15, and independently verified as being the most accurate across different estimation methods33. Similarly, we 
followed the approach of Di Napoli et al.39, as implemented by Brimicombe et al.40 for operational distribution 
through the European Centre for Medium-Range Weather Forecasts (ECMWF); this algorithm employs the 
UTCI approximation reported by Bröde et al. (2011), which was found to have a root-mean square error of 
approximately 1.1 °C.

Disclaimers. This data set contains modified Copernicus Climate Change Service information (2022), as 
described and cited in the manuscript. Neither the European Commission nor ECMWF is responsible for any use 
that may be made of the Copernicus information or data it contains. The data set and software are provided by the 
manuscript authors “as is” with no warranty of any kind.

Code availability
We developed the heatmetrics R package to facilitate replication of these methods to other meteorological data 
sets. The package is available to download via figshare48.

Received: 3 August 2021; Accepted: 18 May 2022;
Published: xx xx xxxx
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