
BioMed CentralBMC Cell Biology

ss
Open AcceResearch
Random subwindows and extremely randomized trees for image 
classification in cell biology
Raphaël Marée*1,2, Pierre Geurts2 and Louis Wehenkel2

Address: 1GIGA Bioinformatics Platform, University of Liege, B34 Avenue de l'Hopital 1, Liege, 4000, Belgium and 2Bioinformatics and Modeling, 
Department of Electrical Engineering and Computer Science & GIGA Research, University of Liege, B28 Grande Traverse 10, Liege, 4000, Belgium

Email: Raphaël Marée* - Raphael.Maree@ulg.ac.be; Pierre Geurts - P.Geurts@ulg.ac.be; Louis Wehenkel - L.Wehenkel@ulg.ac.be

* Corresponding author    

Abstract
Background: With the improvements in biosensors and high-throughput image acquisition
technologies, life science laboratories are able to perform an increasing number of experiments
that involve the generation of a large amount of images at different imaging modalities/scales. It
stresses the need for computer vision methods that automate image classification tasks.

Results: We illustrate the potential of our image classification method in cell biology by evaluating
it on four datasets of images related to protein distributions or subcellular localizations, and red-
blood cell shapes. Accuracy results are quite good without any specific pre-processing neither
domain knowledge incorporation. The method is implemented in Java and available upon request
for evaluation and research purpose.

Conclusion: Our method is directly applicable to any image classification problems. We foresee
the use of this automatic approach as a baseline method and first try on various biological image
classification problems.

Background
With the improvements in biosensors and high-through-
put image acquisition technologies, life science laborato-
ries are able to perform an increasing number of
experiments that involve the generation of a large amount
of images at different imaging modalities/scales: from
atomic resolution for macromolecules (such as in protein
crystallization), to subcellular locations (such as in loca-
tion proteomics), up to human body organs or regions
(such as in radiography).

In cell biology, the analysis of results of imaging experi-
ments may provide biologists with new insights for a bet-
ter understanding of all cellular components and
behaviors [1]. However, visual classification (also called
visual examination, phenotyping, recognition, categoriza-
tion, labelling, sorting) of images into several classes with
some shared characteristics (also called phenotypes,
groups, types, categories, labels, etc.) is tedious. Indeed,
manual classification of such an amount of images is
time-consuming, repetitive, and is not always reliable,
due to experimental conditions, variable image quality,
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and human subjectivity or tiredness that lead to consider-
able interobserver variations and misclassifications. In
other words, manual examination could be a source of
bias and would cause a bottleneck for high-throughput
experiments, thus systems that automate image classifica-
tion tasks would greatly help biologists. Ideally these sys-
tems should proceed faster than human in most cases,
with the same accuracy (or even better when patterns are
indistinguishable by human experts), and widely reduce
the number of images that require human inspection (for
example only in the case where the automatic system does
not have a great confidence about its prediction).

In the computer vision community, image classification is
a very active field. Given a set of training images labelled
into a finite number of classes by an expert, the goal of an
automatic image classification method is to build a model
that will be able to predict accurately the class of new,
unseen images. Such techniques have been applied to var-
ious problems where the goal is to identify a specific
object (e.g. the face of a given individual, a particular
building, someone's car), and current researches aim at
developing generic methods for the categorization, detec-
tion and segmentation of classes of objects or scenes with
shared characteristics in terms of their shapes, colors, and/
or textures (cars, airplanes, horses, indoor/outdoor
scenes, etc.) [2].

In the context of biomedical studies and cell biology, such
automatic methods could for example help to study the
phenotypic effects of drugs in human (red-blood) cells [3]
where a class could denote the shape of a cell (stomato-
cyte, discocyte, or echinocyte). In various cytopathology
studies, one may want to automatically recognize various
cellular types to quantify their distributions in a certain
state (e.g. cellular sorting in serous cytology [4]). Another
promising example is the automatic identification of sub-
cellular location patterns (e.g.: cytoplasm, mitochondria,
nucleoli, etc.), using fluorescent tagging and fluorescence
microscopy, as an essential first step to understand the
function of various proteins [5,6]. Other recent examples
of biological studies that can be formulated as image clas-
sification problems include the recognition of the differ-
ent phases of the cell division cycle (interphase, prophase,
metaphase, anaphase, etc.) by measuring nucleus shape
and intensity changes in time-lapse microscopy image
data [7,8], the microscopic analysis of urine particles (eg.
squamous epithelial cells, white blood cells, red blood
cells, etc.) [9], the study of protein distributions following
a retinal detachment from confocal microscopy images
[10], the annotation of fruitfly gene expression patterns
over the entire course of embryogenesis obtained by in situ
mRNA hybridization [11], etc.

Related work
Global feature extraction
Till recently, image classification systems usually rely on a
pre-processing step, specific to the particular problem and
application domain, which aims at computing a certain
number of numerical features from the initially huge
number of pixels in images. Such features could for
instance correspond to statistics of pixel intensities
(mean, standard deviation, skewness, kurtosis, correlation
between adjacent pixels, etc.), or compute various meas-
ures from preliminary segmented objects or "blobs" (ratio
of area to perimeter, measure of straightness and curva-
ture of boundaries, distance between objects, etc.), etc.
This reduced set is then used as new input variables (also
called features, signatures, descriptors) for traditional
learning algorithms (for example a nearest neighbor or
neural network classifier), possibly tuned for the specific
application. The learning algorithm then tries to build
from the data a model that associates features with prede-
fined classes. The limitation of this approach is clear: a
given set of features is suitable only for certain specific
applications, but unsuitable for others, and the choice of
which set of features to use for a given application is not
obvious. Thus, when considering a new application or,
more dramatically, when new image classes are of interest,
it is often necessary to manually adapt the pre-processing
step by taking into account the specific characteristics of
the new task. Recently, several works tried to overcome
this limitation and consider combining several different
types of features that describe different aspects of an
image, and applying feature selection techniques. In
[5,7,12] several hundreds image features are extracted cor-
responding to texture descriptions, pixel intensity distri-
butions, edges, responses to various filters, etc. However,
these approaches that use global features may not work
properly with cluttered and partially occluded images and
they may not be robust to various image transformations
(such as translation, orientation, scale, and viewpoint
changes), that may appear in many applications. Mean-
while, it has been shown recently that generic methods
developed by the object recognition community perform
very well on medical images even though they were not
tuned for such tasks [13].

Local appearance models
Many recent object recognition methods rely on a "local
features" scheme [14-16]. First, interest points or image
regions are detected (eg., by using a detector of peaks in
local image variation) whose neighbourhood has high
informational content and which are thought to be
robustly detectable in images under varying conditions
[17].

Then, the appearance of the interest points or regions is
encoded by a feature vector of numerical values computed
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in their neighbourhood [18]. Such descriptors are often
designed to be discriminative, concise and insensitive to
various transformations that global feature methods are
generally not able to cope with. These descriptors are
sometimes compressed by dimensionality reduction tech-
niques (such as Principal Component Analysis) because
local regions contain too much data for the traditional
learning methods that are not able to deal with very high
numbers of variables. These local feature vectors are then
stored in a database for use during the recognition step.

To predict the class of a new image, each feature vector
computed from the image is classified using a nearest-
neighbor algorithm against the feature vectors in the data-
base. The majority class among the classes assigned to
local feature vectors is then assigned to the image.

Our work
In [19], we have proposed a generic approach for image
classification that largely follows the aforementioned
scheme but distinguishes from other methods by several
notable points. First, the method uses a large set of ran-
domly extracted image subwindows (or patches) and
describes those by high-dimensional feature vectors com-
posed by raw pixel values. Then, the method uses ensemble
of extremely randomized decision trees [20] to build a sub-
window classification model. To predict the class of a new
image, the method aggregates subwindow class predic-
tions given by the decision trees and it uses majority vot-
ing to assign a class to the image. Details about the
method and its rationale are given in the Methods section.

Our approach was evaluated on various image classifica-
tion datasets involving the classification of digits, faces,
objects, buildings, photographs, etc. Moreover, in [21],
we successfully applied it on a 10000 X-Ray image data-
base with classification results very close to the best ones
[13].

In this paper, we evaluate the potential of our image clas-
sification method in cell biology by evaluating its per-
formances on four datasets of images related to protein
distributions or subcellular locations and (red-blood)
cells. The application of our method is straightforward
(without incorporation of domain knowledge) and we
compare its results with human classification (when avail-
able) and automated methods designed specifically for a
given task. We discuss properties of the method such as
attractive computational efficiency and possible interpre-
tation.

Results
The performance of our method is given for four image
classification tasks: two of them correspond to sub-cellu-
lar protein localizations, the third one to red-blood cell

shapes, and the last one to protein distributions in retina
cells and layers. Details about these datasets are given in
the Methods Section.

Basically we measure the accuracy of the models to cor-
rectly predict the class of unseen images. In all experi-
ments, we build T = 10 trees using the default filtering

parameter value (k =  = 16 for greyscale images, k =

 = 28 for color images) except for the RBC task

where we observed that its maximum value (k = 256)
achieved better accuracy. The number of extracted sub-
windows is given for each problem. Details about our
method and its parameters are given in the Methods Sec-
tion.

LifeDB
Random guessing on this dataset would provide an error
rate of 66.7%. Straightforward application of our method
(with Nls = Ntest = 3000 subwindows extracted from each
image) yields a leave-one-out prediction error equal to
6.45%. Examples of random subwindows extracted from
these images are given in Figure 1.

Since for this experiment there are no results available
from the literature, we applied a nearest neighbor classi-
fier with euclidian distance and an Extra-Tree classifier on
resized versions (200 × 100) of the global images (with-
out subwindows extraction) to provide some baseline for
comparison. With these methods, we obtained error rates

of 33.33% and 11.82% (T = 500, k =  = 141)

respectively, which shows that the nearest neighbor classi-
fier is here not able to deal with the high-dimensional fea-
ture vectors and the small number of images. On the other
hand, the significant improvement of our method with
respect to the Extra-Tree classifier confirms the interest of
the subwindows sampling and voting scheme of our
method.

HeLa cells
Random guessing on this dataset would give about 90%
error rate, while the human classification error rate on this
task is of 17%, as reported in [22]. We obtain with our
method an error rate of 16.63% ± 2.75 (when using Nls =
Ntest = 2000).

We can compare these results with those of [23] (the first
publication of this team based on this dataset) which
range between 25% downto 15.6% depending on the
number of features used and the parameters of the learn-
ing algorithm (a neural network classifier). Subsequently
(see [12]), K. Huang and R.F. Murphy have improved

256

768

20000
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these results downto 8.5% by using an unweighted major-
ity-voting ensemble model of all possible combinations
of eight classifiers, with several parameters optimized on
this specific dataset.

In terms of types of classification errors, let us notice that
like the method presented in [22], our approach is more
effective in distinguishing the two patterns of Golgi pro-
teins (Giantin and gpp130) than human observers. On
the other hand, errors of our approach are mostly due to
misclassifications for the Endosome and Mitochondria
classes. These results are further illustrated in Figure 2
which shows the confusion matrix of our method for one
of the ten protocol executions (middle), as well as the pre-
diction confidence for one Golgi Gpp image (bottom).

Red blood cells (RBC)
In the literature, error rates on this dataset range from
31% to 13.5% [24], while the error rate of human experts
is estimated to be above 20% [25]. On the other hand,
with the protocol we used and due to the unbalanced
number of images in each of the three classes, a method
always guessing the most frequent class would achieve an
35.7% error rate. With our method, we obtained the best
results by constraining the random subwindow sizes
between 80% and 100% of the image size instead of the
full range of sizes, with a mean error rate over all subsets
of 20.92% ± 1.53 with 100 subwindows extracted from
each image.

Notice that the method that obtains the best results on
this dataset [24] also uses a local appearance approach,
but with a distance measure between patches that incor-
porates invariances with respect to transformations that
are known a priori: cell border line thickness, six affine
transformations, and additive image brightness.

Retinal detachment
In [10], authors proposed a method that computes differ-
ent sets of MPEG-7 features within fixed-size square tiles,
applies Independant Component Analysis to the feature
vectors, and uses a Support Vector Machine classifier.
Their results range from 65.6% downto 16.2% classifica-
tion error rate on a dataset of 433 retinal images labelled
into 9 classes. We obtain a 10% leave-one-out error rate
using 5000 subwindows extracted from each image with
subwindow random sizes inferior to 10% of the image
size. Our 5 misclassification errors are confusions
between "normal" and "1 day" conditions, and between
"3 day" and "7 day" conditions. Our accuracy results are
not directly comparable to those in [10] because the
number of images and classes are not equivalent. How-
ever, they illustrate the ability of our method to capture
the characteristics of these 4 classes using only a dozen
images per class, hence its potential for this type of imag-
ing experiments. A more in depth validation of our
method on this type of problem would require a larger set
of images representing additional experimental condi-
tions (e.g. when different treatments are used).

Also, in order to be useful in practice, the image classifica-
tion method should provide biologically meaningful
information that can be interpreted by physicians, like for
example the one used in [10]. As a first illustration of the
possibility to gather such meaningful information with
our method, Figure 3 shows the most discriminative sub-
windows of a particular image from each class, i.e. those
subwindows that receive exactly T votes for that class (and
no vote for any of the other three classes). Figure 4 shows
for one image all the correctly classified subwindows and
the most discriminative ones, with the corresponding
confidence maps. The confidence maps are given in grey
level images and show for each pixel the number of votes

Examples of random subwindows extracted from images of the LifeDB dataset from classes nucleus (top), cytoplasm (middle), mitochondria (bottom)Figure 1
Examples of random subwindows extracted from images of the LifeDB dataset from classes nucleus (top), cytoplasm (middle), 
mitochondria (bottom).
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PiXiT screenshots when applied on HeLa cellsFigure 2
PiXiT screenshots when applied on HeLa cells. Parameter settings for the generation of learning set of subwindows (top); clas-
sification results of test images within one fold in terms of error rate, confusion matrix, confusion histograms (middle); predic-
tion confidences for one image from class Golgi Gpp (bottom).
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assigned to (correctly classified, or most discriminative)
subwindows which contain the pixel. One can observe
that the most discriminative regions of the image are iden-
tified by the confidence maps as those which indeed seem
specific to the particular class. We believe that in specific
studies, this kind of qualitative information could be
quite useful for interpretation by domain experts.

Discussion
We think our method is attractive for cell biology studies
in view of its properties that we summarize hereafter.

First, without integrating any domain knowledge neither
complex pre-processing techniques, our experiments
show that our generic method obtains quite good results
on average on four problems with images of different
quality and representing various patterns. As one could
have expected, these results are however not as good as the
best results published in the literature obtained either
with tailored methods for one specific dataset and/or after
important research efforts (sometimes years of research).

Interestingly, our method is competitive with respect to
classification by human experts on the HeLa cells and RBC
tasks. In biological studies where the number of images to
classify is so large, and where the perfect classification of
molecules or cells is not required (but rather an estima-
tion of distributions of types of cells, for example), the
method would thus be quite useful. Indeed it is directly
applicable to any image classification problem, it is rea-
sonably fast, it can run on regular computers, and it would
be easily possible to take advantage of parallel architec-
tures, if available.

In the case of particular applications that require better
prediction results than the ones obtained with the default
settings of our method, its enhancement or tailoring is
conceivable. Integration of domain knowledge would be
possible. For example, in the case of protein subcellular
localizations, the combination of the image classification
and the classification of the amino acid sequence of the
protein with a similar approach [26] might improve
results. Domain knowledge could also be incorporated
implicitly through the description of the subwindows
with domain specific features, and also the exploitation of
more generic image classification features (e.g. Haralick
texture descriptors, Sobel edge features, etc.) may be use-
ful. Generation of synthetic versions of the subwindows
[27-30] might be another way to improve robustness (for
e.g. to illumination changes or noise) by providing the
learning method a richer training set to generalize from.

Beyond misclassification error rates, the method could
highlight discriminative subwindows in images, hence it
could be used as an exploratory tool for further biological

interpretation. Preliminary results were given on the reti-
nal dataset. For a specific study, this function should be
applied on larger sets of images and corroborated by
domain experts to assess its pratical usefulness.

Conclusion
We illustrated the potential of our generic image classifi-
cation method on different kinds of problems in cell biol-
ogy. Thanks to its computational efficiency and
competitive accuracy results on average with respect to
human classification and tailored methods, we foresee the
use of this automatic approach as a baseline method and
a first try on various biological image classification prob-
lems where a manual approach could be a source of bias
and would cause a bottleneck for high-throughput exper-
iments. Moreover, preliminary results show that minor
parameter tuning could possibly improve the default
results on specific problems. Extension of this approach to
image sequence classification and segmentation also
deserves to be studied.

Methods
We first describe the four image classification tasks and
protocols used to evaluate our method. Our image classi-
fication method is explained afterwards.

Image datasets
LifeDB
The subcellular localization of proteins is an essential step
for the understanding of their function. The use of com-
puter vision techniques for the recognition of patterns of
subcellular fluorescence [31] is promising if combined
with high throughput imaging systems [1,5,6]. In order to
illustrate the potential of our method in that domain, we
collected images from the website of an ongoing project
about the localization of novel GFP-tagged human cDNA
products to subcellular compartments of the eukaryotic
cell [32,33].

We selected 93 pairs of images corresponding to N- and C-
terminal green fluorescent protein fusions of cDNAs [34]
where the localization is visually identical whatever the
fusion order is. The dataset thus contains pairs of greyscale
images (2000 × 1000 pixels) of localized proteins into
three intracellular compartments: nucleus (31), cyto-
plasm (31), and mitochondria (31), as illustrated in Fig-
ure 5.

As we collected the dataset by ourselves, we had to define
a protocol to assess the classification performance. We
used a leave-one-out error estimation as the dataset is
rather small. That is, one model is built using all the
images except one and the model is used to predict the
class of the remaining image. The process is repeated for
all the images, and the total number of prediction errors
Page 6 of 12
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Discriminative subwindows on retinal detachment imagesFigure 3
Discriminative subwindows on retinal detachment images. Left: one original image from each class (from top to bottom: nor-
mal, 1 day after detachment, 3 days, 7 days). Right: Discriminative subwindows among the 5000 randomly extracted subwin-
dows per test image.
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is counted. The total misclassification error rate is pro-
vided by percentage.

HeLa cells
Another experiment has been run for the localization of
proteins on fluorescence microscope images in HeLa cells
acquired by the Murphy Lab [35,36]. Images are labelled
in ten different classes: ActinFilaments, Endosome, ER,
Golgi gia, Golgi gpp, Lysosome, Microtubules, Mitochon-
dria, Nucleolus, and Nucleus. This database contains 862
images of size 512 × 382 in greyscale, as illustrated by Fig-
ure 6. The number of images in one class varies from 73
(mitochondria) to 98 (actin filaments). We randomly
picked 776 images for the training set (90% of 862) and
tested the model on the remaining 86 images (10%). The
procedure is repeated ten times, and the average error rate
is provided.

Red blood cells (RBC)
Transitions in the shape of red blood cells (e.g. from the
normal "discocyte" RBC toward echinocyte RBC) as the
result of a drug is of particular interest in medical tests for
drug discovery. However, visual inspection of shape
changes of individual cells (per-cell classification) is a
tedious manual labor. Thus a dataset [37] has been built
to consider application of computer vision techniques in
that field. The database contains 5062 RBC images that
were labeled by an expert as either discocyte (916), stoma-
tocyte (3259), or echinocyte (887). Each cell is repre-
sented by a 128 × 128 pixels sized grayscale image, as
illustrated by Figure 7. The images were taken in a capil-
lary where the RBC showed their native shapes without
applied forces during sedimentation [38]. In addition to
cell shape and intensity changes, images from a given class
could appear with various transformations such as bright-
ness variations, rotations in all possible angles and differ-
ent cell border line thickness. This dataset was used
previously by researchers at RWTH Aachen [3,25]. The
dataset is split into 10 subsets (keeping the unbalanced
class distribution), each subset is used for testing while the
remaining 9 ones are used for training. The overall error
rate is the mean over all subset error rates.

Retinal detachment
Examining patterns of distributions of proteins in cells to
identify the differences and/or similarities between differ-
ent stages of a biological process or disease is of particular
interest for biologists. The retinal images from the UCSB
Retinal Cell Laboratory and the Center for Bio-Image
Informatics were collected to understand the structural
and cellular changes of a retina following detachment.
These color images represent the distributions of specific
proteins in retinal cells and layers using antibody label-
ling followed by confocal microscope imaging. They were
acquired in different experimental conditions that corre-
spond to different stages of the retinal detachment process
or that represent retinas exposed to different treatments
[10]. We used the 50 publicly available color images [39]
that represent 4 conditions illustrated by Figure 8: normal,
1 day after detachment, 3 days after detachment, and 7
days after detachment. Image sizes range from 630 × 420
to 1386 × 924 pixels. We used a leave-one-out protocol to
evaluate classification accuracy.

Random subwindows and extremely randomized decision 
trees
Given a set of training images labeled into a finite number
of classes, the goal of an automatic image classification
method is to build a model (training phase) that will be
able to predict accurately the class of new, unseen images.
The main characteristics of our method [19] are summa-
rized as follows.

Subwindows and confidence maps on retinal detachment imagesFigure 4
Subwindows and confidence maps on retinal detachment 
images. One original image from the class 7 day after detach-
ment (top), 2656 correctly classified subwindows (among the 
5000 randomly extracted) and confidence map (middle), 265 
discriminative subwindows and confidence map (bottom).
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LifeDBFigure 5
LifeDB. Pair of images for classes nucleus (top), cytoplasm (middle), mitochondria (bottom).

HeLa cellsFigure 6
HeLa cells. From left to right, top to bottom: one image for each class actinfilaments, endosome, er, golgi gia, golgi gpp, lyso-
some, microtubules, mitochondria, nucleolus, nucleus.
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Training
During the training phase, a large number (Nls) of square
subwindows of random sizes are extracted at random
positions from each training image (see examples for
LifeDB images in Figure 1). This random subwindow
extraction provides a rich representation of images corre-
sponding to various overlapping regions, both local and
global, whatever the task and content of images. Each sub-
window is then resized to a fixed size (16 × 16), to
improve robustness to scale changes, and described by a
high-dimensional feature vector of its raw pixel values (ie.
256 numerical values in the case of greyscale images, 768
in color images) to avoid discarding potentially useful
information while being generic. Each subwindow is then
labeled with the class of its parent image.

A subwindow classification model is then built by an
ensemble of extremely randomized decision trees (Extra-
Trees) algorithm [20]. This machine learning method has
been shown effective (in terms of accuracy and computa-
tional efficiency) in a large variety of high-dimensional
problems such as proteomic mass spectra classification
[40] and DNA sequence classification [26]. Starting with
the whole learning set of subwindows at the top-node, the
Extra-Trees algorithm builds an ensemble of T fully-devel-
oped decision trees according to the classical top-down

decision tree induction procedure [41]. The main differ-
ence between this algorithm and other tree methods is
that while growing a tree, it splits nodes by choosing both
attributes and cut-points at random. In the case of sub-
window image classification, a binary test within a tree
node simply compares the value of a pixel (intensity of a
grey level or of a certain color component) at a fixed loca-
tion within a subwindow to a cut-point value. In order to
filter irrelevant attributes, the filtering parameter k corre-
sponds to the number of attributes (ie. pixel locations)
chosen at random at each node, where k can take all pos-
sible values from 1 to the number of attributes describing
the subwindows. For each of these k attributes, a pixel
intensity value threshold is randomly choosen. The score
of each binary test is then computed on the current sub-
window subset according to an information criterion
[42], and the best test among the k tests is chosen to split
the current node. The procedure is repeated recursively on
subwindow subsets until the tree is fully developed. T
fully-developed trees are built according to this scheme
and saved (learning images and subwindows are no
longer required for prediction).

Prediction
Classification of a new image similarly entails extraction
and description of Ntest subwindows from this image, and

Red-blood cellsFigure 7
Red-blood cells. Images of classes stomatocytes (top), discocytes (middle), echinocytes (bottom).

Retinal detachmentFigure 8
Retinal detachment. One image per class (normal, 1 day after detachment, 3 days, 7 days).
Page 10 of 12
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the application of the model to these latter. Aggregation of
subwindow predictions is then performed to classify the
image, by assigning to the image the majority class among
the classes assigned to each subwindow by each one of the
T trees.

The method provides an interesting way to help domain
experts to focus on discriminative regions in the images.
Indeed subwindow individual votes are available when
we predict the class of a new image. We can observe for
each subwindow the distribution of votes for all classes
assigned by the decision trees. The subwindows that
receive the highest number of votes for a given class can
then be considered as the most specific ones for that class
and their visualization on the top of the image can bring
potentially useful information about that class. Also, it is
possible to generate a class-specific confidence map where
each pixel corresponds to the sum of votes for that class
received by every subwindows (correctly classified or only
the most specific ones) the pixel belongs to. These func-
tions are illustrated on the Retinal detachment images in
the Results section.

Parameters and computational efficiency
The important parameters of the method are the number
of subwindows extracted during learning (Nls) and predic-
tion (Ntest), the number of trees T, and the extra-trees fil-
tering parameter k. As a first try, we generally use a few
hundred thousand of learning subwindows, a hundred or
so subwindows per test image, and we build ten trees
using the filtering parameter equal to the rounded square
root of the number of attributes (default value suggested
by [20]). As a general rule, we observe that the more sub-
windows we extract and trees we build, the better the accu-
racy is. Higher values of the filtering parameter also
generally improve accuracy results. The parameter values
could be adjusted in order to comply with desired compu-
tational efficiency requirements given that the complexity
of the decision tree ensemble learning is on the order of
kT NlslogNls and that the prediction step is essentially pro-
portional to NtestTlogNls. Note that the approach scales
very well and, moreover, it is easy to parallelize.

Software
The above image classification method was implemented
as a Java user-friendly software called PiXiT [43]. This soft-
ware is freely available for research purpose. Screenshots
of the software are shown in Figure 2. This software comes
together with Annotor [44], a software developed by Vin-
cent Botta which helps to annotate image databases. This
second Java software allows users to annotate images
through polygon labelling and to export individual anno-
tations into directories of classes of images that can be
imported into PiXiT to build classifiers.
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