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Abstract: Proteins involved in the regulation of the cell cycle are highly conserved across all eukaryotes, and so a relatively 
simple eukaryote such as yeast can provide insight into a variety of cell cycle perturbations including those that occur in human 
cancer. To date, the budding yeast Saccharomyces cerevisiae has provided the largest amount of experimental and modeling data 
on the progression of the cell cycle, making it a logical choice for in-depth studies of this process. Moreover, the advent of 
methods for collection of high-throughput genome, transcriptome, and proteome data has provided a means to collect and pre-
cisely quantify simultaneous cell cycle gene transcript and protein levels, permitting modeling of the cell cycle on the systems 
level. With the appropriate mathematical framework and suffi cient and accurate data on cell cycle components, it should be 
possible to create a model of the cell cycle that not only effectively describes its operation, but can also predict responses to 
perturbations such as variation in protein levels and responses to external stimuli including targeted inhibition by drugs. In this 
review, we summarize existing data on the yeast cell cycle, proteomics technologies for quantifying cell cycle proteins, and 
the mathematical frameworks that can integrate this data into representative and effective models. Systems level modeling of the 
cell cycle will require the integration of high-quality data with the appropriate mathematical framework, which can currently be 
attained through the combination of dynamic modeling based on proteomics data and using yeast as a model organism.
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Introduction
The development and spread of cancer involves the interplay of a vast number of factors involved in 
processes such as cell cycle progression, preservation of genome integrity, apoptosis, angiogenesis and 
metastasis, among others. The way in which these factors interact with one another can vary greatly 
between different forms of cancer and thus diagnostic and prognostic indicators for a particular cancer 
type are often poor indicators for cancers affecting cells in other organs or tissues. One of the best hopes 
for grappling with such complexity is the use of systems biology.

A thorough understanding of cell cycle regulation is of central importance to obtaining an accurate 
description of cancer development. A hallmark of cancer is the breakdown of the normal mechanisms 
governing cell proliferation and so determining precisely how these processes work is key to the devel-
opment of improved cancer diagnostics and therapeutics. In addressing the cell division cycle, the 
foundations for these efforts have already been laid in a series of mathematical representations of cell 
cycle progression in the budding yeast Saccharomyces cerevisiae.

Effective systems level modeling will require high quality data sets. Recent advances in proteomics 
methods promise to deliver high quality qualitative and quantitative data which, when combined with 
dynamic mathematical approaches, will provide more accurate and predictive models of the genesis 
and spread of cancer than are currently available. In this review, we describe the characteristics of 
S. cerevisiae that make this organism particularly useful for systems biology approaches, survey 
proteomics tools for collecting systems level data, and assess the progress that has already been made 
in modeling the eukaryotic cell cycle.

The Use of Saccharomyces cerevisiae in Systems Biology
The budding yeast Saccharomyces cerevisiae has long been a leading model organism for cell cycle 
studies. The numerous advantages to working with S. cerevisiae include the fact that it is easily grown 
in the lab, has a comparatively short generation time (typically 90 minutes for a wild type strain at 30 °C) 
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and has less susceptibility to contamination relative 
to most other eukaryotic cell cultures. Many mutant 
strains for genes encoding factors involved in a 
wide array of cellular functions have been identi-
fi ed in budding yeast. A large proportion of these 
are temperature-sensitive conditional mutants, for 
which the protein product of the mutant allele is 
functional at one (permissive) temperature and 
inactive at another (restrictive) temperature. These 
strains are ideally suited for simple temperature-
shift experiments to study a protein’s function and 
role within a network. Homologous recombination 
can be effi ciently used in S. cerevisiae to manipu-
late the genome more easily than is currently 
possible for most other model organisms, which 
allows researchers to delete, mutate and epitope-tag 
specifi c genes, as well as replace their upstream 
regulatory elements (Amberg et al. 2005).

In somatic cells, the process of cell division can 
be divided into four stages: G1 phase, during which 
cells grow and monitor the external environment 
to decide whether to exit the cell cycle (G0) or 
commit to cell division; S phase, during which the 
genome is duplicated; G2 phase, during which the 
cells prepare for mitosis; and fi nally M phase, 
during which the chromosomes are partitioned and 
cytokinesis occurs resulting in two cells. Most 
mutations resulting in human cancer are in genes 
encoding factors involved in the transition of cells 
from G1 phase to S phase (reviewed in Sidorova 
and Breeden, 2003). Many of these factors were 
originally isolated and characterized in budding 
yeast, and their human orthologues have recently 
shown great promise as biomarkers for early cancer 
detection (reviewed in Semple and Duncker, 2004). 
The use of systems biology to develop models of 
the yeast cell cycle, and the G1 to S transition in 
particular, holds out great hope not only for the 
development of new diagnostic biomarkers, but 
for identifying promising new drug targets for 
cancer therapy.

The complete genome sequence of S. cerevisiae 
was published in 1996 (Goffeau et al. 1996), rep-
resenting the fi rst time this had been accomplished 
for a eukaryote. Combined with the aforemen-
tioned genetic tractability, this knowledge opened 
the fl oodgates for a large number of ambitious 
studies of the budding yeast genome and 
proteome. These include genome level analyses 
of expression via microarrays and proteomics 
techniques, functional perturbation via deletion 
and overexpression studies, and localization and 

interaction studies via tagged mutant strains, as 
discussed below.

High-Throughput Functional
Analyses
Of all the aspects of cell biology that have been 
studied in budding yeast, none have been more 
thoroughly investigated than the mechanisms gov-
erning cell cycle progression. Stemming from the 
pioneering genetic screens of Leland Hartwell 
(Hartwell et al. 1970; Culotti and Hartwell, 1971; 
Hartwell, 1971a; Hartwell, 1971b), a large number 
of temperature-sensitive cdc (cell division cycle) 
mutants were identifi ed for genes important for such 
processes as DNA replication, nuclear division and 
cytokinesis. More recently, genomic level func-
tional characterization has been investigated 
through systematic gene deletion (Winzeler et al. 
1999) protein over-expression (Sopko et al. 2006), 
and protein localization through GFP fusions (Huh 
et al. 2003). Composition of large complexes can 
now also be effectively investigated by mass spec-
trometry, for example as demonstrated by the 
identifi cation of proteins within yeast nuclear pore 
complexes (Rout et al. 2000) and within spindle 
pole bodies (Wigge et al. 1998). A number of high 
throughput procedures have benefi ted from automa-
tion of various steps, an approach to which budding 
yeast is exceptionally well suited. For example, 
Boone and colleagues have developed an ordered 
array of the ∼4700 viable yeast gene-deletion 
mutant strains which can be mated with specifi c 
mutant query strains to identify synthetic lethal 
interactions using automated robotic pinning (Tong 
et al. 2001). Synthetic lethality or synthetic sickness 
can arise when mutant alleles for redundant pathways, 
which individually have no phenotypic consequences, 
are combined through mating of individual haploid 
yeast strains followed by sporulation to produce new 
haploids. This has proven to be a powerful approach 
to identify epistatic relationships between genes 
(Jorgensen et al. 2002, Goehring et al. 2003, Suter 
et al. 2004, Audhya et al. 2004, Wong et al. 2004, 
Chang et al. 2005, Davierwala et al. 2005, Measday 
et al. 2005).

An exciting recent use of the deletion mutant 
strain collection is chemical-genetic profi ling, in 
which hypersensitivity to 82 compounds and natu-
ral extracts was assessed (Parsons et al. 2006). 
Compounds with similar patterns of effects on the 
deletion mutants were clustered together giving 
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insight as to which cellular pathways they might 
be affecting, providing a powerful new means for 
assessing the potential of novel pharmaceutical and 
natural treatments. Drug sensitivities have also 
been tested in haploids with increased dosage of 
specifi c genes and with a set of heterozygous dip-
loid strains representing deletions in ∼5000 non-
essential and ∼1000 essential genes (reviewed in 
Sturgeon et al. 2006).

The interactions of proteins provide another key 
component that can be used for elucidating function. 
Two high-throughput methods for identifying inter-
actions between proteins are yeast two-hybrid (Uetz 
et al. 2000, Ito et al. 2001) and affi nity purifi cation 
(Gavin et al. 2006, Ho et al. 2002, Krogan et al. 
2006), which identify physical pairwise protein-
protein interactions and members of protein com-
plexes respectively. Yeast two hybrid methods 
identify interactions via binding between two 
recombinant fusion proteins, one known as the 
“bait” which includes a DNA binding domain that 
targets it upstream of a reporter gene, and another 
termed the “prey” which includes a transcriptional 
activation domain (reviewed in Parrish et al. 2006). 
The extent to which the proteins fused to these two 
domains interact can be determined from the expres-
sion levels of the reporter gene. While this method 
is susceptible to false positives and false negatives, 
it has provided the bulk of binary interaction data 
currently available (Parrish et al. 2006).

Affi nity purifi cation methods usually utilize an 
epitope-tagged target protein to selectively purify 
proteins binding with the target protein of interest. 
Although a variety of methods exist, high-throughput 
analyses have typically used either tandem affi nity 
purifi cation (TAP) or fl ag-tagging (reviewed in 
Gingras et al. 2007). Tandem affi nity purifi cation 
(TAP) uses proteins tagged with two epitopes, and 
can selectively extract protein complexes from 
whole cell extracts through sequential affi nity 
columns corresponding to each of the epitopes. 
Flag-tagging adopts a similar approach, using a 
one-step purifi cation via fl ag-tag specifi c antibod-
ies immobilized on a resin column. In each case, 
proteins interacting with the tagged protein will be 
co-purified, and can be identified by mass 
spectrometry. These techniques have been used 
effectively to survey complexes present within the 
yeast proteome (Krogan et al. 2006; Gavin et al. 
2006; Ho et al. 2002). The data generated by these 
high throughput studies typically requires process-
ing to separate the true interaction complexes from 

false positives, using methods such as reciprocal 
interactions and clustering algorithms (discussed 
in Gingras, 2007). It is possible that some transient 
interactions may be identified using similar 
procedures, though to date they have been primarily 
applied to the identifi cation of protein complexes.

A promising technique for identifi cation of 
protein complexes and potential identification 
of transient interactions is fl uorescence resonance 
energy transfer (FRET). FRET has been used to 
elucidate the architecture of the spindle pole body 
(Muller et al. 2005) by developing a set of protein-
protein distance constraints based on signal inten-
sities. In theory, this method could be effectively 
applied to identify transient protein-protein interac-
tions within a functioning cell.

Studies such as these have provided a wealth of 
new resources now available for yeast research. 
These include strain collections for systematic gene 
deletion (Winzeler et al. 1999, available from 
EUROSCARF, http://web.uni-frankfurt.de/
fb15/mikro/euroscarf/), TAP (tandem affinity 
purifi cation)-fusions (Ghaemmaghami et al. 2003, 
available from Open Biosystems; Gavin et al. 2006, 
available from EUROSCARF), GFP fusions (Huh 
et al. 2003, available from Invitrogen), and titratable 
Tet-promoters (Mnaimneh et al. 2004, available 
from Open Biosystems). Databases with the results 
of many of the high-throughput screens are also 
available, as well as a variety of tools for visualizing 
and managing systems-level data (Table 1).

Global Expression Analysis
of the Cell Cycle
Genomics and proteomics tools can be used to probe 
dynamic function by monitoring changes in the 
abundance of the network components. These data 
could include large scale monitoring of gene expres-
sion via microarrays or monitoring of protein expres-
sion via proteomics techniques. The fi rst genome-wide 
studies of gene expression in yeast (Cho et al. 1998; 
Spellman et al. 1998) used microarrays to success-
fully identify over 800 cyclically expressed genes 
correlated to the cell cycle. More recently, Pramila 
et al. (2006) obtained comparable data and further 
identifi ed promoter elements and transcription fac-
tors specifi c to individual phases of the yeast cell 
cycle. Similarly, 750 cyclically regulated genes were 
also identifi ed in the cell cycle of the fi ssion yeast 
Schizosaccharomyces pombe (Oliva et al. 2005), 
with a considerable overlap in the genes, transcription 
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Table 1. Online resources for yeast interactions, complexes and pathways.

Database or resource name URL link Service and content
Yeast-specifi c resources:
Protein-Protein Interaction  http://Mips.gsf.de/proj/yeast/C Protein-protein interaction from  
and Complex Viewer YGD/interaction/ large scale screenings
(MIPS-CYDB)   
General Repository for  http://Biodata.mshri.on.ca/grid Central repository for yeast   
Interaction Datasets (GRID)  protein interactions
Curagene Drosophila/yeast  http://Portal.curagen.com/cgi- Protein interactions
interaction database bin/interaction/fl yHome.pl
 http://Portal.curagen.com/cgi-
 bin/interaction/yeastHome.pl
Yeast Protein Complex  http://Yeast.cellzome.com Systematic analysis of multiprotein
Database   complexes in yeast
Saccharomyces Genome  http://www.yeastgenome.org Information of the broadest range 
Database (SGD)  on yeast biology, and inter-
  connected service with other   
  public databases like 
  YPD, GenBank, Medline, MIPS,  
  SWISS-PROT, etc.
Prophecy Database http://prophecy.lundberg.gu.se Phenotypic collection for deletion  
  strains of yeast
MIPS Comprehensive Yeast  http://mips.gsf.de/genre/proj/yeast Information on the molecular 
Genome Database (CYGD)  structure and functional 
  network of annotated proteins 
  in yeast
Yeast GFP Fusion  http://yeastgfp.ucsf.edu Protein localization data set using  
Localization Database  GFP fusion proteins in yeast
Yeast Proteome Database (YPD) http://www.biobase- Annotation focuses on the mole- 
 international.com cular function and 
  biological role of proteins,   
  consequences of gene 
  mutation, and the physical and  
  regulatory interactions 
  between proteins and genes
Invitrogen GFP Clone  http://clones.invitrogen.com/cl A collection of GFP-tagged yeast  
Collection oneinfo.php?clone=yeastgfp strain is available 
  from Invitrogen, the database   
  covers three-quarters of 
  the yeast proteome and over two- 
  thirds of previously 
  unlocalized proteins. 
Open Biosystem Yeast  http://www.openbiosystems.com/ Yeast collections including ORF  
Collections Genomics collection, Tet-Promoter Hughes  
  collection, Yeast Knock Out   
  collection, TAP tagged collection,  
  HA tagged collection
European Saccharomyces  http://web.uni-frankfurt.de/ Collections of systematic deletion  
Cerevisiae Archive for fb15/mikro/euroscarf/ mutants, TAP fusion 
Functional Analysis   strains, and degron strains
(EUROSCARF)   
General resources:
Database of Interacting  http://Dip.doe-mbi-ucla.edu Experimentally determined
Proteins (DIP)  protein-protein interactions
     (Continued)
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factors, and regulatory mechanisms between the two 
species in spite of over a billion years since diver-
gence. The consistency across widely divergent 
species permits ready comparison of cell cycle genes 
and proteins across eukaryotic organisms, providing 
further utility for yeast as a model organism for 
investigating the cell cycle.

Systems level investigation of gene expression 
provides considerable information on the function 
and regulation of genes and protein products. How-
ever, as proteins are the predominant functional units 
within a network and gene expression is only mod-
erately correlated with protein expression, gene 
expression provides an incomplete picture from a 
modeling perspective. Proteomic quantitation is thus 
a valuable complement to genetic data and develop-
ment of quantitative proteomics methods is key in 
a systems biology context. Proteomics technologies 
provide a means to separate, identify, and potentially 
quantify the set of protein isoforms expressed within 
a cell or tissue. Two methods have become widely 
used in proteomics studies: 2D gel electrophoresis 
(a ‘top down’ approach, separating intact proteins 
prior to identifi cation), and liquid chromatography 
(a ‘bottom up’ approach, separating peptide frag-
ments from complex protein digests).

2D gel methods typically use a fi rst dimension 
separation by charge, in which components within 
a complex protein mixture are separated by iso-
electric point. Separation in the second dimension 
is by molecular weight, using sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-

PAGE). Separated proteins are visualized by silver 
stain, Coomassie blue dyes, or fl uorescent dyes. 
Depending on the system used, it is possible to 
visualize hundreds to more than a thousand unique 
proteins. Once separated, proteins of interest are 
excised from the gel matrix, digested, and identi-
fi ed by mass spectrometry. 2D gel methods have 
been applied to S. cerevisiae, resulting in a set of 
reference maps for the yeast proteome (for exam-
ple, Perrot et al. 1999; Wildgruber et al. 2002). 
While these maps are useful guides, subsequent 
2D gel experiments typically require confi rmation 
of protein IDs by mass spectrometry. With respect 
to systems-level modeling, an advantage of gel-
based methodologies is that post-translational 
modifi cations and different isoforms of the same 
protein can be effectively monitored.

The establishment of proteome maps provides a 
list of proteins present under given experimental 
conditions. However, by itself this provides little 
information on the roles of specifi c proteins. To 
identify changes in abundance, two or more exper-
imental conditions are compared to identify differ-
entially regulated proteins, similar to what is 
accomplished at the transcript level in microarray 
analysis. There has been a variety of comparative 
expression studies in yeast, such as investigations 
of differences in protein expression under glucose 
limitation or ethanol limitation (Kolkman et al. 
2005), cadmium exposure (Vido et al. 2001) or 
amino acid starvation (Yin et al. 2004). Similar 
methodologies can be used with synchronized yeast 

Table 1. (Continued)

Database or resource name URL link Service and content
Database of ligand receptor  http://Dip.doe-mbi.ucla.edu/  Ligand-receptor complexes   
partners (DLRP) dip/DLRP.cgi involved in signal transduction
Biomolecular Interaction  http://www.blueprint.org/bind/  Molecular interactions, complexes and 
Network Database (BIND) bind.php pathways
Molecular Interaction  http://Cbm/bio.uniroma2.it/mint/ Protein interactions with proteins,   
Database (MINT)  nucleic acids and small molecules
Peptide Atlas http://www.peptideatlas.org Compendium of peptides identifi ed by  
  tandem mass spectrometry
Cytoscape http://cytoscape.org Visualization of interactions and integration
  of expression and state data
BioNetBuilder http://err.bio.nyu.edu/ Cytoscape plug-in for creation of biological
 cytoscape/bionetbuilder/ networks from multiple database sources
SBEAMS http://www.sbeams.org/ Systems Biology Experiment Analysis  
  Management System, a framework for  
  managing systems level data
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cultures to obtain cell cycle data, though detection 
of low-abundance proteins remains challenging.

Issues with reproducibility in earlier 2D gel-based 
methods have led to the development of techniques 
such as Differential In Gel Electrophoresis (DIGE, 
Tonge et al. 2001), in which two samples plus an 
internal standard are labeled with different fl uores-
cent dyes, which are then combined and run on a 
standard 2D gel. Proteins from the different samples 
co-migrate to the same spot on the 2D gel, and DIGE 
can thus identify proteins up- or down-regulated 
under the given experimental conditions. Experi-
ments can be designed such that the samples repre-
sent multiple points within a dynamic time-series, 
providing coarse-grained information on dynamic 
responses. Quantitative 2D gel based methods such 
as these can thus provide extensive information on 
differentially expressed proteins and post-translational 
modifi cations via different protein isoforms.

The other primary means of collecting proteomic 
data is liquid chromatography/mass spectrometry 
(LC/MS), which replaces the gel-based charge and 
molecular weight separation of proteins with liquid 
phase separation of peptides. Separation in two 
dimensions is often used here as well, such as ion 
exchange followed by separation according to 
hydrophobicity. One example of a versatile LC 
method is multi-dimensional protein identifi cation 
technology, or MudPIT (Link et al. 1999; Wolters 
et al. 2001). In this technique, a sample such as a 
whole cell extract is digested and separated by 2D-LC 
directly coupled to a tandem mass spectrometer. 
This technique has been successfully applied to the 
yeast genome (Washburn et al. 2001; Graumann 
et al. 2004). Recently this method was expanded by 
including a third dimension of separation, resulting 
in identifi cation of 3109 yeast proteins (Wei et al. 
2005). A potential drawback of LC methods is the 
variability of MS peak intensities, making direct 
quantifi cation diffi cult. However, several strategies 
have been developed to quantify differences in 
proteins using LC-MS based methods, which can 
be grouped depending on labeling procedures: 
metabolic labeling, chemical labeling of thiol 
groups, enzymatic isotopic labeling, derivatization 
of the N- or C-terminus of peptides, lysine specifi c 
labeling, phosphopeptide labeling, and differential 
mass mapping (for a general review and comparison 
see Lill, 2003). Isotopes may be incorporated at the 
metabolic level by including stable isotopes as a 
component within a food source, at the protein level, 
or at the peptide level (reviewed in Julka and 

Regnier, 2004; Sechi and Oda, 2003). Among these 
methods, various applications of Isotope Coded 
Affi nity Tags (ICAT) and Stable Isotope Labeling 
with Amino acids in Cell culture (SILAC) have been 
utilized in proteomic analyses (reviewed in Gingras 
et al. 2005). In principle, these methods exploit small 
mass differences between heavy and light isotopes 
of chemically indistinguishable peptides. SILAC 
involves metabolic incorporation of heavy isotopes 
such as 13C using labeled amino acids (Ong et al. 
2002). In contrast to in vivo metabolic labeling, 
chemical attachment after protein extraction pro-
vides another strategy for comparing protein sam-
ples. This requires modification of protein and 
peptides with reactive chemicals containing isotopic 
mass differences and can be accomplished using 
ICAT methods (Gygi et al. 1999), in which cysteines 
are labeled with either a light or heavy isotopic tag. 
A similar labeling can be done at the peptide level 
by digestion in 18O labeled water or by derivatization 
by methods such as iTRAQ (Ross et al. 2004). The 
iTRAQ methodology is particularly appealing for 
complex samples, as different isoforms of a given 
differentially labeled peptide will appear as a 
single MS peak, with differential abundances 
quantifi ed during the MS/MS stage. Each of the 
above methods requires proteolysis of proteins, 
MS-based identifi cation of each peptide, and quan-
titation analysis.

Quantitative methods for analysis of post-
translational modifi cations are also being developed 
for both gel-based and LC-MS/MS proteomics 
methods. One of the most common forms of post-
translational modifi cations is phosphorylation, 
which is a key regulator in numerous functions 
including signal transduction, metabolic control 
and gene regulation. A quantitative analysis of 
phosphorylation patterns in the yeast pheromone 
pathway has been conducted (Gruhler et al. 2005), 
in which SILAC labeling was used in combination 
with phosphopeptide enrichment and three-stage 
MS. Over 700 identifi ed phosphopeptides were 
identifi ed and 139 of these were differentially 
regulated in response to the pheromone alpha-
factor, including a number of cell-cycle proteins. 
Phosphopeptides were specifi cally targeted in the 
third stage MS by selection of peaks with a neutral 
loss corresponding to the phosphate group, increas-
ing the specifi city and improving detection of 
post-translational modifi cation. Combinations of 
techniques such as these can permit targeting 
of specific low abundance proteins and/or 
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post-translational modifi cations, and will greatly 
aid in pathway elucidation.

Looking beyond the gel or MS based proteomics 
tools for protein quantitation, applications of 
protein arrays represent a relatively new technology 
that is being developed to generate high-throughput 
data on proteins and protein interactions (see 
Cretich et al. 2006; Stoll et al. 2005 for reviews). 
The most popular approaches to date have been the 
use of a variety of monoclonal or polyclonal anti-
bodies reactive to a subset of protein targets (e.g. 
phospho-proteins, Gembitsky et al. 2004), and the 
development of microarrays for protein expression 
(Kopf et al. 2005; Wingren and Borreback, 2004). 
Protein microarray methods are reminiscent of 
genome-wide DNA microarray technologies that 
have been providing powerful and informative 
quantitation of gene expression networks. Once 
established, protein microarray technology should 
provide an effective means of rapidly quantifying 
protein expression at the proteome level.

Many of these methods have their own limita-
tions in providing quantitative data for systems 
biology analysis. Indeed, recently acquired system-
atic quantitation data have come more from classi-
cal methodologies such as immunoprecipitation and 
western blotting rather than novel proteomics 
approaches, largely because these methods are 
simple and provide more accuracy in small-scale 
experimentation for specifi c sets of proteins. This 
refl ects the importance of key unsolved issues facing 
quantitative proteomics: (1) isolation of functional 
proteins and complexes of proteins among the whole 
protein population; (2) sensitive detection of proteins 
in multiplexed samples; and (3) suffi ciently high 
throughput data acquisition. However, once these 
challenges are surmounted proteomics techniques 
should provide accurate and detailed quantitative 
data suitable for constructing detailed models of the 
cell cycle and other cellular processes. Although 
proteomics approaches can pose signifi cant techni-
cal challenges and have not been widely utilized in 
modeling of cellular systems to date, they hold a 
great deal of promise in modeling as they provide 
a means to directly monitor proteins and protein 
isoforms within networks.

Integration of Systems-Level
Experimental Data
Given the numerous advantages of working with 
S. cerevisiae, it is not surprising that this organism 

has been at the forefront of efforts to quantitatively 
model a variety of cellular processes. In one of the 
fi rst direct attempts at systems-level modeling, Ideker 
et al. (2001) applied systematic perturbations to 
galactose pathway components in yeast, and used 
microarray gene expression, quantitative proteomics, 
and physical interaction data to monitor pathway 
responses. From these data, a model of galactose 
pathway regulation in yeast was developed. In this 
paper, a general approach to systems level modeling 
was proposed, consisting of (i) pathway component 
defi nition, (ii) systematic perturbation of compo-
nents, (iii) integration of data into the proposed 
model, and (iv) hypothesis generation based on 
deviations from the model. These steps are repeated, 
leading to successive model refi nements.

In addition to the application of systematic per-
turbations, inherently cyclic processes such as the 
cell cycle may also be monitored over time. 
Recently, the fi rst global proteome analysis of the 
cell cycle in S. cerevisiae was achieved using high-
throughput MS/MS data and ICAT labels (Flory 
et al. 2006). In this study, synchronized cultures of 
yeast were sampled over the course of the cell cycle, 
and expression of 48% of open reading frames were 
quantifi ed. Interestingly, no signifi cant correlation 
was found with gene expression levels determined 
from previous microarray studies. Although integra-
tion of the data into a model of the cell cycle was 
not attempted, this study could provide valuable 
data for comprehensive integration into quantitative 
cell cycle models. More sophisticated computa-
tional tools for analyzing and comparing proteome-
level experiments are also being developed (e.g. 
Prakash et al. 2006), which may lead to greater 
accuracy and coverage of expressed proteins.

Modeling efforts have also centered on character-
izing the budding yeast pheromone response. In one 
case, the focus was on the G protein signaling 
involved in this process (Yi et al. 2003). Strains 
expressing fl uorescently tagged versions of two 
G protein subunits, Gα (tagged with CFP) and Gγ 
(tagged with YFP) were constructed. A central fea-
ture of this response is the dissociation of Gα from 
both Gγ and a third G protein subunit, Gβ, in 
response to mating pheromone. By using fl uores-
cence resonance energy transfer (FRET) to measure 
the dissociation of Gα-CFP and Gγ-YFP in a variety 
of mutant strain backgrounds, quantitative data was 
generated which could then be used for mathemat-
ical modeling. A second report (Kofahl and Klipp, 
2004) presented a more comprehensive modeling 
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effort characterizing the overall dynamics of the 
yeast pheromone pathway, incorporating data 
derived from numerous previously published stud-
ies. Klipp and colleagues (2005) have similarly 
integrated a large amount of experimental data relat-
ing to budding yeast osmoregulation to model the 
overall dynamics of the response to osmotic shock. 
These efforts represent an important advance in our 
understanding of a number of cellular processes, 
and offer the capability of predicting the behavior 
of individual components in response to perturba-
tions to the system. It is important, however, to 
recognize that networks of proteins governing spe-
cifi c processes do not function in isolation in living 
cells. Indeed, there is typically interplay between 
the regulatory components involved in biological 
pathways that are conventionally described as dis-
tinct. An important step in obtaining mathematical 
models that are truly representative of living systems 
is to determine and incorporate the crosstalk between 
processes, as has recently been done for the phero-
mone and starvation pathways in budding yeast 
(Schaber et al. 2006).

From the data on genes, proteins, and pairwise 
interactions obtained using methods such as synthetic 
lethal and tagging studies and yeast two-hybrid 
assays, a representation of the network of pathways 
and interactions occurring within the cell and, in 
particular, the sub-network responsible for regulation 
of the cell cycle can be constructed. In addition to this 
network architecture, one must also account for the 
time dependence of the system and its response to 
perturbations in order to gain an understanding of 
overall cellular behavior. These factors may be 
addressed through dynamic modeling.

Analysis and Interpretation 
through Dynamic Modeling
Given the complexity of many of the underlying 
networks it is essential to provide a mathematical 
framework to augment our intuitive understanding 
of their behavior. In this section we outline the 
progress made in applying mathematical analyses 
to investigations of the cell division cycle, much 
of which has focused on budding yeast. The fi rst 
ordinary differential equation (ODE) based models 
of the eukaryotic cell cycle were proposed in the 
mid 1970’s (cf. chapter 10 of Goldbeter, 1996, for 
a comprehensive review of early activity in this 
area). These early models were constructed in the 
absence of biochemical detail; the proposed 

oscillatory mechanisms were inspired by chemical 
networks with periodic behavior (e.g. Kauffman 
and Wille, 1975). Once molecular details of cell 
cycle regulation began to emerge, a new generation 
of models emerged in an attempt to more accurately 
describe the process (Hyver and Le Guyader, 1990; 
Goldbeter, 1991; Tyson, 1991; Norel and Agur, 
1991). These models address cell cycle progression 
in amphibian embryonic cells, during the stage in 
which nuclear division is decoupled from cell 
growth. In this case the key step in cell cycle pro-
gression is entry into mitosis, driven by the Matu-
ration Promoting Factor, MPF, a heterodimer 
composed of cyclin and a cyclin-dependent kinase. 
These models were constructed in an attempt to 
understand how the interaction between these two 
proteins could lead to oscillatory behavior.

Since then, much effort has been dedicated to 
incorporating our increasing understanding of the 
molecular basis for cell cycle progression into 
models that can account for the system’s behavior. 
These attempts to elucidate the general principles 
underlying the eukaryotic cell cycle have been 
reviewed in Ingolia and Murray (2004). Recent 
contributions include Csikász-Nagy et al. (2006), 
Srividhya and Gopinathan (2006) and Yang et al. 
(2006), the latter of which describes a spatio-
temporal model. The data used to inform these 
models is collected from specifi c organisms, each of 
which employs unique elements in cell cycle regula-
tion. Consequently, an additional complement to the 
investigation of the generic mechanism of the cell 
cycle is the description of the specifi c aspects found 
in particular species. Recent examples of these 
species-specifi c modeling efforts include Xenopus 
(Sha et al. 2003), fi ssion yeast (Novak and Pataki, 
2001; Sveiczer et al. 2001), and mammalian cells 
(Chassagnole et al. 2006: Novak and Tyson, 2004; 
Qu et al. 2003; Sawt et al. 2004). The most extensive 
modeling efforts however have been made in the 
context of budding yeast, to which we now turn.

As outlined above, the experimental commu-
nity has had great success in uncovering the 
molecular details of budding yeast physiology. As 
such, there is a wealth of data available for the 
construction of mathematical models of the yeast 
cell cycle. A number of distinct approaches have 
been taken in an attempt to reconcile the known 
biochemical interactions with the observed 
dynamic phenomena.

Li et al. (2004) describes a simple Boolean 
model of the cell cycle process. The authors propose 
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a model composed of 11 proteins, including Clb5 
and Clb6, the cyclins which bind to the cyclin-
dependent kinase Cdc28 to form the budding 
yeast Maturation Promoting Factor. The interac-
tions contained in the model were extracted from 
the literature; no parameter fi tting was performed. 
In standard Boolean fashion, this model describes 
lockstep progression of the proteins between their 
active and inactive forms. The analysis stresses 
the stability of normal cell-cycle behavior among 
all possible model confi gurations, and the authors 
suggest that this may be an illustration of the 
general level of stability of existing biochemical 
networks. A similar conclusion is reached in 
Wang et al. (2006) and Wang and Han (2007), in 
which the authors investigate the energy land-
scape of a simple stochastic model of the yeast 
cell cycle.

An alternative approach is taken in Chen, H.-C. 
et al. (2004), in which the authors present a sys-
tematic model-construction algorithm driven by 
gene expression data. The algorithm is illustrated 
by application to microarray data on genes impli-
cated in the budding yeast cell cycle. The resulting 
model represents a characterization of the tran-
scriptional regulatory network underlying the cell 
cycle process. This is a promising approach for 
hypothesis-generation based on time-series micro-
array data. However, as the authors point out, its 
use in this case suffers from the limitation that 
expression data can only indirectly reveal post-
translational regulation and other modifi cations 
known to be integral to cell cycle progression.

The papers discussed above use the budding 
yeast cell cycle as an illustration of more general 
analytic issues. In contrast, the model presented 
by Chen et al. (2000) has as its main purpose the 
elucidation of the budding yeast cell cycle. This 
model involves nine independent protein concen-
trations whose time-evolution is governed by a set 
of nonlinear ODE’s involving about 50 parameters. 
The interactions were identifi ed from the literature, 
and the specifi c form of the reaction rates were 
based on standard biochemical kinetics. Some 
parameter values are provided by experimental 
data on kinetics, but many are fi t manually to train-
ing data. This data consists of descriptions of 
genetic perturbations (knockouts and altered gene 
dosage) on the length of G1 phase and the cell mass 
at various points in the cycle. The model succeeds 
in accounting for a great deal of molecular detail 
on cell cycle regulation. It is able to predict the 

result of a number of genetic perturbations, and so 
can be used to probe hypotheses about novel 
experiments or mechanisms.

Cross et al. (2002) present experimental results 
designed as a systematic test of the validity of the 
model in Chen et al. (2000). Using both morpho-
logical and molecular observations, Cross et al. 
were able to identify aspects of the model which 
provide robust predictions (e.g. dependence of cell 
size on CLN3 dosage) and areas in which improve-
ment is required (e.g. interactions between G1 
cyclins and Cdh1). Overall, the experimental 
results confi rm that the model of Chen et al. (2000) 
is a worthy attempt at describing the dynamic 
complexities of the budding yeast cell cycle.

Validation of the sort presented in Cross et al. 
(2002) is an essential component of the analysis 
and evolution of mathematical models. In the 
absence of interplay with experiments, modeling 
quickly becomes a sterile activity. Conversely, the 
activity surrounding the Chen model is an example 
of the opportunities that such models provide for 
improving our understanding of complex phenom-
ena. For example, the model has been used to 
investigate the underlying mechanisms of the cell 
cycle both experimentally (Cross, 2003) and theo-
retically (Battogtokh and Tyson, 2004). Moreover, 
extensions to the model have been proposed: 
a complementary model of the morphogenesis 
checkpoint appeared Ciliberto et al. (2003), and 
the model was used to provide the “background” 
for a model of cell growth and the G1/S transition 
in Alarcón and Tindall (2007).

An extended version of the Chen model appeared 
in Chen, K. C. et al. (2004), in which details of the 
M-G1 transition are incorporated into the model. 
This paper also describes an extensive validation 
against more than 100 mutant phenotypes, the vast 
majority of which provide agreement with model 
predictions.

The model in Chen, K. C. et al. (2004) could be 
described as the state-of-the-art in terms of dynamic 
description of cell cycle regulation in budding 
yeast, but it is hardly the end of the story. Any 
model represents a working hypothesis, and can 
be improved by refi nement or extension. Exten-
sions of this model will occur in a number of direc-
tions. The current description necessarily provides 
only a very abstract representation of certain 
aspects of the cell cycle machinery. These include 
spindle and bud formation, the mechanism by 
which cell size is sensed (as addressed in Alarcón 
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and Tindall, 2007, and Barberis et al. 2007), the 
initiation of DNA replication, and the DNA repli-
cation process itself. In each such case, it may be 
that the mechanism under consideration can 
be given a dynamic description that is relatively 
modular, in the sense that interactions within 
the module are more dense than interactions 
between modules. Our group is currently undertak-
ing the construction of a dynamic model of the 
initiation of DNA replication. This mechanism 
involves a number of interacting molecular factors, 
but there are relatively few interactions between 
these initiation factors and the other components 
of the Chen, K. C. et al. (2004) model. Whether 
such modularity is an inherent biological design 
principle or simply a byproduct of biases in our 
analysis techniques is currently a topic of debate 
(Lauffenburger, 2000; Wolf and Arkin, 2003; 
Szallasi, Periwal and Stelling, 2006).

Refi nements of this type of model may come in 
the form of corrections to the underlying interac-
tion map, the presumed form of the reaction 
kinetics, or the model parameters (primarily kinetic 
constants). The topology of the interaction map is 
the most robust information on which the model 
is based. It is typically confi rmed by a number of 
previously reported experimental results and so 
should only be altered if those experimental fi nd-
ings are drawn into question. The individual inter-
actions are described by standard functional forms 
(e.g. mass action, Michaelis-Menten, Goldbeter-
Koshland switch). The decision as to which form 
to use is based on knowledge of the underlying 
chemical mechanism when it is available. Other-
wise, intuition is followed, along with the guiding 
principle of Occam’s Razor that simple descrip-
tions should be presumed in the absence of any 
evidence to the contrary. This ad hoc procedure 
leaves room for improvement as more details of 
molecular events are revealed. An alternative 
approach is to use an algorithm to “fi t” the func-
tional form for the kinetic events to experimental 
results, as presented in Sugimoto et al. (2005). This 
“bottom up” approach can be lauded for the 
primary role that experimental fi ndings play in 
dictating the form of the model, but an ideal 
approach would also take advantage of known 
details of chemical kinetics.

The most subtle form of model refi nement is 
improvement in the choice of parameter values 
representing kinetic constants. In some cases these 
have been measured directly (e.g. by enzymological 

assays) or can be inferred (e.g. degradation rates 
from in vivo half lives). However, in a complex 
model such as that described by Chen, K. C. et al. 
(2004), the majority of these parameter values are 
indirectly represented in the behavior of the system 
as a whole. The so-called “inverse problem” of 
choosing parameter values so that the model fi ts the 
experimental data is challenging, and a number of 
methods have been applied. A direct approach is to 
pose and solve an optimization problem to minimize 
the difference between the model’s prediction and 
the experimental fi ndings, as carried out in Moles 
et al. (2003), Rodriguez-Fernandez et al. (2006), 
and Tsai and Wang (2005), for example. While this 
method is often successful, its utility can be argued 
in the case of a model of biochemical events, where 
one frequently has a lack of confi dence in the model 
formulation and/or the experimental measurements. 
In cases such as these, some groups have argued 
that rather than identifying a single “best fit” 
parameter set, it is more useful to report the region 
in parameter space over which the model is a valid 
description of reality. This approach was taken in 
Battogtokh et al. (2002), in which a best fi t probabil-
ity distribution was given for a model of a genetic 
regulatory circuit. This method was expanded on in 
Brown and Sethna (2003) and in Brown et al. (2004) 
in which the resulting probability distribution is 
made use of for model analysis.

In each case, the models described above 
attempt to provide a dynamic description of the 
abundance (and corresponding activity) of the 
proteins and protein isoforms that regulate cell 
cycle progression. Most of these efforts have relied 
on phenomenological or genetic data, and so could 
be verifi ed only through these indirect measure-
ments. The proteomics methods outlined in the 
previous section hold the promise of providing 
quantitative data on protein abundance which 
would allow direct comparison with model simu-
lation, and so will provide more immediate and 
higher-confi dence model fi delity.

Future Directions
In order to truly represent the complexity of the 
cell cycle, future efforts will need to incorporate 
a number of aspects of cellular growth and divi-
sion that have been largely absent from the models 
established to date. A major challenge is to refl ect 
the myriad roles played by various types of RNA. 
Although assessment of genome-wide mRNA 
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levels has now become a standard practice, pools 
of tRNA and rRNA that regulate translation, as 
well as microRNAs and their effect on gene 
expression (Kloosterman and Plasterk, 2006) may 
also have to incorporated. Further consideration 
of changes in both the inter- and extracellular 
environments, including pH, temperature, ion 
concentrations, and nutrient availability are all 
elements potentially required within realistic 
models. Additionally, as mentioned above, the 
extent of crosstalk between networks of factors 
governing different processes will have to be 
determined.

There remain some technical challenges in data 
collection for precise computational modeling of 
the cell cycle. The majority of cell cycle proteins 
are low abundance proteins, limiting their detection 
and accurate quantitation using most established 
methods. Typically, cell cycle proteins are extracted 
from a large number of synchronized cells, so data 
is by necessity integrated, averaging out individual 
variation. It is also diffi cult to identify transient 
interactions occurring within a short time scale. 
Interactions of this type are not readily assessed 
using standard high throughput tools, but can often 
be addressed experimentally on a case-by-case 
basis. Molecular modeling may also provide 
insight into this problem through effective predic-
tion of protein-protein structural interactions, 
though this is not readily achieved using existing 
computational tools.

Future challenges to the modeling framework 
will involve the extension of existing models across 
spatial and temporal scales. In part, this will require 
the use of complementary methodologies (e.g. 
stochastic methods for addressing networks with 
low copy number, partial differential equations to 
address issues of cellular localization). Experimen-
tally, spatial data may be collected via fl uorescent 
labeling of targeted proteins. Here, tagged target 
proteins can be imaged and sub-cellular locations 
determined within individual cells, and the resulting 
spatial data incorporated into dynamic models. 
These cellular aspects must also be integrated into 
models of cancer progression addressing issues 
such as tumor growth (Byrne et al. 2006), angio-
genesis (Chaplain et al. 2006) and response to 
therapy (Sachs et al. 2001). The work of Alarcón 
et al. (2004) represents a step in this direction.

Finally, the extent to which successful approaches 
to cell cycle modeling in yeast are adaptable to 
human cells will need to be assessed. Although a 

large proportion of yeast cell cycle factors have 
human orthologs that function in much the same 
manner, there are differences that will need to be 
accounted for, including the multiple CDKs pres-
ent in human cells compared to a single one 
(Cdc28) in budding yeast, and factors such as p53 
and geminin which are present in humans but not 
yeast. Researchers working with S. cerevisiae have 
long enjoyed the advantage of being able to easily 
knock-out or down-regulate specifi c protein fac-
tors, facilitating the ability to make targeted per-
turbations that can test the predictive ability of 
mathematical models. With the advent of siRNA 
knockdown technology, similar assessments of 
robustness can be conducted for models developed 
for human cells. Ultimately, one hopes that these 
efforts will result in a much clearer understanding 
of the molecular differences between normal and 
cancerous cells along with the development of drug 
targeting strategies that are effective at combating 
cancer with minimal side effects.
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