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Abstract.—When the process underlying DNA substitutions varies across evolutionary history, some standard Markov
models underlying phylogenetic methods are mathematically inconsistent. The most prominent example is the general
time-reversible model (GTR) together with some, but not all, of its submodels. To rectify this deficiency, nonhomogeneous
Lie Markov models have been identified as the class of models that are consistent in the face of a changing process of DNA
substitutions regardless of taxon sampling. Some well-known models in popular use are within this class, but are either
overly simplistic (e.g., the Kimura two-parameter model) or overly complex (the general Markov model). On a diverse set
of biological data sets, we test a hierarchy of Lie Markov models spanning the full range of parameter richness. Compared
against the benchmark of the ever-popular GTR model, we find that as a whole the Lie Markov models perform well,
with the best performing models having 8–10 parameters and the ability to recognize the distinction between purines and
pyrimidines. [Lie Markov models; Model selection; ModelTest; multiplicative closure; phylogenetics.]

Exclusively from a mathematical point of view,
Sumner et al. (2012a) introduced the Lie Markov models
of DNA evolution that have the property of closure
under matrix multiplication. We will give a detailed
explanation of what is meant by closure and why it
is of practical importance, but essentially it ensures
that a nonhomogeneous process (where rate matrices
change with time while staying within a given model) is
equivalent to an “average” homogeneous process using
rate matrices obtainable from the same model. Models
which do not have this property (notably including
general time-reversible model, GTR) have a consistency
problem when modeling a nonhomogeneous process
(Sumner et al. 2012a): if a sequence evolves for a time
under one set of GTR rate parameters, then for a time
under a different set of GTR rate parameters, the joint
probabilities (pattern frequencies) between the start and
end of this process cannot (in general) be described by
a single GTR model. One consequence of this is that,
in a nonhomogeneous GTR model (i.e., different GTR
rate matrices on each branch of a tree), pruning the tree
changes the distribution of site patterns achievable at the
remaining taxa.

Nonhomogeneous Lie Markov models on a tree will
provide consistent estimation, in the presence of a
nonhomogeneous model, regardless of taxon sampling.
However, in the likelihood testing section of this article
we only apply homogeneous Lie Markov models (a
single rate matrix across the tree). This is a test to
establish the biological plausibility (or otherwise) of
each Lie Markov model. To realize the consistency
advantages of Lie Markov models requires modeling
nonhomogeneous evolution which is a difficult but
not insurmountable problem, for example, Jayaswal
et al. (2014). We intend to take this step in a future
article.

From a mathematician’s viewpoint, a “closed” model
is defined by the set of Markov matrices in the
model being closed under matrix multiplication. From
a phylogeneticist’s point of view, the property we care
about is that we can add or remove taxa without affecting
the site patterns that the model can generate over the
remaining taxa. We can view this as a closure property on
tree pruning, and the phylogeneticist’s closure property
is implied by the mathematician’s closure property.
The practical significance of model misspecification that
can occur when implementing a model that is not
closed under matrix multiplication has been explored
by Sumner et al. (2012b).

Sumner et al. (2012a) derived the hierarchy of
Lie Markov models with maximal symmetry (those
that treat all nucleotides equivalently). This hierarchy
consists of the Jukes–Cantor (JC; one-parameter)
model (Jukes and Cantor 1969), the K3ST (three-
parameter) model (Kimura 1981), the F81 (four-
parameter) model (Felsenstein 1981), the general Markov
(twelve-parameter) model (Barry and Hartigan 1987),
and a previously unknown six-parameter model
“F81+K3ST,” which has rate matrices that are the sum
of F81 and K3ST rate matrices. In Sumner et al. (2012b;
Table 2), these models were compared to GTR under an
Akaike information criterion (Akaike 1974) framework.
There it was found that F81+K3ST was marginally
superior to GTR on one data set (human mitochondrial
genomes), and markedly inferior on the other four
data sets examined. Despite its novelty, a practical
disadvantage of the F81+K3ST model is that it does not
account for the biological fact that transitions occur at
higher rate than transversions (Kimura 1980, 1981).

It is the purpose of this article to explore a
larger hierarchy of “RY” Lie Markov models sensitive
to the grouping of nucleotides into purines (R)
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and pyrimidines (Y). This hierarchy was derived in
Fernández-Sánchez et al. (2014) and totals 37 models
capable of distinguishing transitions from transversions.
Here we present the models in a more accessible way;
present some new results on model nesting, equilibrium
frequencies, and parameterization; and test the models.

We will start with an example model, RY5.6b, to
illustrate the various technical issues that arise when
using these models. Next we describe the construction
of the Lie Markov models in a manner that is friendly to
nonmathematicians, and discuss how the hierarchy of
purine/pyrimidine models can be extended to include
models distinguishing different DNA pairs. We test
the Lie Markov models for biological plausibility on a
range of real data sets comparing directly to commonly
used time reversible models. We finish with a few
technical issues, covering model-nesting relationships,
parameterization of the models, and embeddability.

AN EXAMPLE LIE MARKOV MODEL: RY5.6B
To motivate the rest of our discussion, we start

by presenting one of the RY Lie Markov models in
detail. First, we note some notational conventions and
definitions. The column of a Markov matrix (also known
as a stochastic, probability, or substitution matrix) or of
a rate matrix indicates the initial state of the base, and
the row the final state, hence rate matrices have columns
which sum to zero (and Markov matrix columns sum
to one). Note that this varies from the commonly used
rows sum to zero convention. The rows and columns are
indexed by the DNA bases in the order A, G, C, T. This
deviation from standard alphabetical order groups the
purines and pyrimidines, making the relations among
matrix entries more apparent. The term “stochastic”
when applied to a rate matrix means that all off-diagonal
entries are non-negative, and when applied to a Markov
matrix means all entries are non-negative. We refer to
the number of independent parameters in a Lie Markov
model as its “dimension.”

The rate matrices of model RY5.6b can be expressed as

Q5.6b =

⎛
⎜⎜⎜⎝

−3a+d+e1 a+2a2 +d+e1 a−a2 +d+e1 a−a2 +d+e1

a+2a2 +d−e1 −3a+d−e1 a−a2 +d−e1 a−a2 +d−e1

a−a2 −d+e2 a−a2 −d+e2 −3a−d+e2 a+2a2 −d+e2

a−a2 −d−e2 a−a2 −d−e2 a+2a2 −d−e2 −3a−d−e2

⎞
⎟⎟⎟⎠.

(1)

The “5” in the model name indicates that this is a
five-dimensional model, with parameters a,a2,d,e1,e2.
(The choice of parameter labels will be explained in the
next section.)

The model is five dimensional in the sense that we
require five degrees of freedom to specify any rate matrix
within the model. Note that we can multiply Q5.6b by
a scalar and remain in the model. It is common when
considering DNA mutation models to fix the scale of the
rate matrix in some manner, otherwise the scale of the
rate matrix and the overall scale of tree branch lengths
form a redundant pair of parameters. Our preferred

manner of fixing the scale is to constrain the rate matrix
to have a trace of −4. If the scale is fixed (by whatever
method), then this becomes a four-dimensional model.

Note that the entries of the rate matrix are linear
expressions in the parameters. This is a feature of all Lie
Markov models, but not of the GTR and related models.

The reader should be alarmed by the appearance
of minus signs in the off-diagonal entries of the rate
matrix in equation (1). Unfortunately, there are no simple
constraints on the parameters a,a2,d,e1,e2 which restrict
to exactly the set of stochastic matrices of this form. A
reformulation solves this problem and illuminates the
model structure significantly:

Q5.6b =

⎛
⎜⎜⎜⎝

∗ �+�A �+�A �+�A
�+�G ∗ �+�G �+�G
�+�C �+�C ∗ �+�C
�+�T �+�T �+�T ∗

⎞
⎟⎟⎟⎠ (2)

where the “∗” stands for the values required for the
columns to sum to zero. Now Q is stochastic so long as the
parameters are all nonnegative: �,�,�A,�G,�C,�T ≥0,
but the cost of this reformulation is that we are now using
six parameters to express a five-dimensional model. The
resulting parameter redundancy is expressed by

Q5.6b(�,�,�A,�G,�C,�T)=
Q5.6b(�+�,�+�,�A −�,�G −�,�C −�,�T −�),

for all choices �. The ability to express the model with
six nonnegative parameters is due to the set of stochastic
rate matrices of this model forming a “polyhedral cone”
having six “rays,” this being the origin of the “6” in the
model name. Rays and polyhedral cones in this context
are more fully explained in Fernández-Sánchez et al.
(2014).

While all the Lie Markov models can be formulated in
this way, most of them acquire redundant parameters—
in some cases many redundant parameters—to ensure
stochastic rate matrices. Later in this article we
will explore some alternative parameterizations which
generate the set of stochastic rate matrices of a Lie
Markov model with simple parameter constraints and
without redundant parameters.

The matrix (2) also reveals that model 5.6b can be
thought of as the sum of the Kimura two-substitution-
type (K2ST) model (Kimura 1980) (parameters �, �)
and the F81 model (Felsenstein 1981) (parameters �A,
�G, �C, �T). If we changed the additions in matrix (2)
to multiplications, we would have the HKY model
(Hasegawa et al. 1985). Most of the Lie Markov models
are not so easily related to existing models.

The defining features of the RY Lie Markov models
(illustrated here by RY5.6b) are 2- fold: First, the Markov
matrices obtained from this model are closed under
matrix multiplication (this is what makes the model “Lie
Markov”). This means that if M1 and M2 are Markov
matrices obtained by taking the matrix exponential of
two (distinct) rate matrices from the model, then the
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product M1M2 is obtainable as the matrix exponential
of a third RY5.6b rate matrix. Second, the model
recognizes the groupings of nucleotides into purines
and pyrimidines (this is easily seen by inspection of
matrix (2)). The simple idea is that any interchange
of nucleotides that preserves the purine/pyrimidine
grouping will correspond to a row and column
permutation of an RY5.6b rate matrix that will produce
another RY5.6b rate matrix.

It is also worth noting that model RY5.6b can have
any equilibrium frequencies of bases (under a suitable
choice of rate parameters). The easiest way to see this is
to notice model 5.6b has F81 as a submodel (i.e., F81 is a
special case of RY5.6b), and F81 can have any equilibrium
base frequencies (EBF). This is not a general property of
Lie Markov models — as noted above, the JC and K3ST
models are Lie Markov models, but these have uniform
base frequencies at equilibrium. The EBF of the various
Lie Markov models are derived below.

COMPOSITION OF THE LIE MARKOV MODELS

Under a continuous-time formulation with time
parameter t, a Markov matrix M, whose elements are the
probabilities of nucleotide substitutions, is constructed
from a rate matrix Q by matrix exponentiation:

M=exp(Qt)= I+Qt+ Q2t2

2! + Q3t3

3! + ...

Fix a model (e.g., GTR or Kimura’s K2ST), and take any
two rate matrices Q1 and Q2 from the model. Suppose
there exists stochastic Q′ such that exp(Q′(t1 +t2))=
exp(Q1t1)exp(Q2t2), we would like Q′ to be in the same
model. Putting aside the caveat “if Q′ exists”—in most
cases Q′ will exist as long as Q1 and Q2 are not too
different—this would appear a natural condition to ask
of a model, especially if one expects some time non
homogeneity in the DNA substitution process.

For this property to hold for a given Markov model,
Sumner et al. (2012a) have shown that is a sufficient
condition that the subset of rate matrices that define the
model be:

(i) closed under addition and scalar multiplication
(i.e. the set forms a vector space), and

(ii) closed under matrix commutator (Lie) brackets,
that is, [Q1,Q2] :=Q1Q2 −Q2Q1 is also in the space.

For the purpose of these conditions we are forced to
include nonstochastic rate matrices in the discussion, for
example, [Q1,Q2] is often not stochastic. Together these
conditions demand that the model forms a Lie algebra.
Any continuous time Markov model which satisfies
these conditions is referred to as a “Lie Markov model.”

As stated in the introduction, Sumner et al. (2012a)
derived the set of Lie Markov models that treat each
nucleotide on an equal footing. Fernández-Sánchez et al.
(2014) went further and characterized the “RY” Lie
Markov models which have a symmetry condition that

TABLE 1. The rate matrices of RY Lie Markov models are linear
combinations of basis matrices

A=

⎛
⎜⎜⎜⎝

−3 +1 +1 +1
+1 −3 +1 +1
+1 +1 −3 +1
+1 +1 +1 −3

⎞
⎟⎟⎟⎠ A1 =

⎛
⎜⎜⎜⎝

−1 +1 0 0
+1 −1 0 0
0 0 −1 +1
0 0 +1 −1

⎞
⎟⎟⎟⎠C=

⎛
⎜⎜⎜⎝

0 0 +1 −1
0 0 −1 +1

−1 +1 0 0
+1 −1 0 0

⎞
⎟⎟⎟⎠

B=

⎛
⎜⎜⎜⎝

0 0 +1 −1
0 0 −1 +1

+1 −1 0 0
−1 +1 0 0

⎞
⎟⎟⎟⎠ D1 =

⎛
⎜⎜⎜⎝

−1 +1 0 0
+1 −1 0 0
0 0 +1 −1
0 0 −1 +1

⎞
⎟⎟⎟⎠D=

⎛
⎜⎜⎜⎝

+1 +1 +1 +1
+1 +1 +1 +1
−1 −1 −1 −1
−1 −1 −1 −1

⎞
⎟⎟⎟⎠

E1 =

⎛
⎜⎜⎜⎝

+1 +1 +1 +1
−1 −1 −1 −1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠F1 =

⎛
⎜⎜⎜⎝

+1 +1 −1 −1
−1 −1 +1 +1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ G1 =

⎛
⎜⎜⎝

+1 −1 0 0
+1 −1 0 0
−1 +1 0 0
−1 +1 0 0

⎞
⎟⎟⎠

E2 =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0

+1 +1 +1 +1
−1 −1 −1 −1

⎞
⎟⎟⎟⎠F2 =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0

+1 +1 −1 −1
−1 −1 +1 +1

⎞
⎟⎟⎟⎠ G2 =

⎛
⎜⎜⎝

0 0 +1 −1
0 0 +1 −1
0 0 −1 +1
0 0 −1 +1

⎞
⎟⎟⎠

A2 =

⎛
⎜⎜⎜⎝

0 +2 −1 −1
+2 0 −1 −1
−1 −1 0 +2
−1 −1 +2 0

⎞
⎟⎟⎟⎠

Notes: Each model uses a subset of the first 12 matrices listed here.
Under some circumstances it is mathematically convenient to replace
A1 with the 13th matrix, A2 =3A1 −A.

allow one pairing of DNA bases (canonically the RY
pairing: AG and CT) to be treated differently from other
pairings. We reiterate the essential results here without
further discussion as to how they were obtained.

Each RY Lie Markov model has rate matrices which
are a linear combination of basis matrices chosen from a
set of 12 (Table 1). Not all subsets of these basis matrices
yield a Lie Markov model. The list of the 37 that do is
given in Table 2. We adopt a convention that the variable
used for the weight of a basis matrix is the same as the
basis matrix name, but in lowercase, for example, e1 is
the weight of E1, hence the choice of variable names in
equation (1).

If we take the basis matrices in Table 1 as having
rows and columns labeled in our canonical order A, G,
C, T, then AG and CT are the distinguished pairings,
and we describe this as an RY model. The ordering of
bases is immaterial so long as it pairs the purines and
pyrimidines. Taking the matrices in Table 1 to be ordered
(for example) T, C, A, G as used by PAML (Yang 1997) will
yield the same models, just with some permutation and
sign changes of weights of basis matrices. Alternatively,
if we label the basis matrices in the order A, T, C, G, we
distinguish the Watson–Crick pairs AT and CG, which
we describe as a WS (Weak/Strong) model. Finally if we
label the basis matrices in order A, C, G, T, we distinguish
AC and GT and call these MK (aMino,Keto) models.
(R, Y, W, S, M, and K are the standard IUPAC ambiguity
codes for these pairings.) This allows us to distinguish
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TABLE 2. The RY Lie Markov models. Basis matrix A2 can be
substituted for A1 throughout

Name Basis matrices Name Basis matrices

1.1 A 6.6 A,A1,B,C,D,D1
2.2b A,A1 6.7a A,A1,B,D,E1,E2
3.3a A,A1,B 6.7b A,A1,C,D,E1,E2
3.3b A,A1,C 6.8a A,A1,D,D1,E1,E2
3.3c A,A1,D1 6.8b A,A1,D,D1,G1,G2
3.4 A,A1,D 6.17a A,A1,B,D,G1,G2
4.4a A,D,E1,E2 6.17b A,A1,C,D,G1,G2
4.4b A,A1,D,D1 8.8 A,A1,D,D1,E1,E2,F1,F2
4.5a A,A1,B,D 8.10a A,A1,B,C,D,D1,E1,E2
4.5b A,A1,C,D 8.10b A,A1,B,C,D,D1,G1,G2
5.6a A,A1,B,C,D1 8.16 A,A1,D,D1,E1,E2,G1,G2
5.6b A,A1,D,E1,E2 8.17 A,A1,B,D,E1,E2,G1,G2
5.7a A,A1,B,E1,E2 8.18 A,A1,B,D,E1,E2,F1,F2
5.7b A,A1,B,F1,F2 9.20a A,A1,B,C,D1,E1,E2,F1,F2
5.7c A,A1,B,G1,G2 9.20b A,A1,B,C,D1,F1,F2,G1,G2
5.11a A,A1,D1,E1,E2 10.12 A,A1,B,C,D,D1,E1,E2,F1,F2
5.11b A,A1,D1,F1,F2 10.34 A,A1,B,C,D,D1,E1,E2,G1,G2
5.11c A,A1,D1,G1,G2 12.12 A,A1,B,C,D,D1,
5.16 A,A1,D,G1 G2 E1,E2,F1,F2,G1,G2

Notes: The number before the point indicates the dimension (number
of parameters) of the model, the number after the point is the number
of rays generated by the model.

RY5.6b as model 5.6b with the RY grouping, whereas
models WS5.6b or MK5.6b have the same structure but
distinguish AT and CG (i.e., the matrix in equation (1)
with row/column ordering A,T,C,G), or AC and GT (i.e.,
the matrix in equation (1) with row/column ordering
A,C,G,T), respectively.

If we make statements about (for example) the
5.6b model without “RY,” “WS” or “MK” prefix,
the statement applies equally to RY5.6b, WS5.6b, and
MK5.6b. Additionally, some of the models have full
symmetry, meaning there is no distinction between the
RY, WS and MK variants. These are models 1.1 (JC),
3.3a (K3ST), 4.4a (F81), 6.7a (F81+K3ST), 9.20b (doubly
stochastic), and 12.12 (general Markov). These models
never get a two-letter prefix. Since there are 37 models
listed in table 2, 31 of which have distinct RY, WS, and MK
variants, we have 99 models in total. By comparison, the
original ModelTest program (Posada and Crandall 1998)
compares 14 models and jModelTest2 (Darriba et al. 2012)
compares up to 406 models. (These counts are before
considering rate variation across sites.)

A number of these models have already been studied:
1.1 is the JC model (Jukes and Cantor 1969), RY2.2b
and 3.3a are the Kimura two- and three-substitution-
type models (Kimura 1980, 1981) (also known as the
K2ST/K2P/K80 and K3ST/K3P/K81 models), RY3.3c
is the Tamura Nei model with equal base frequencies
(Tamura and Nei 1993), 4.4a is the F81 model (Felsenstein
1981), WS6.6 is the strand symmetric model (Yap and
Pachter 2004; Casanellas and Sullivant 2005), 9.20b is
the doubly stochastic model and 12.12 is the general
Markov model (Barry and Hartigan 1987). Table 3 lists
these model aliases, along with information on time
reversibility and EBF which we shall develop later in
this article. Some of this information is also reiterated in
Figure 1.

TABLE 3. Some properties of the RY Lie Markov models

Name aka Rev? EBFDF Name aka Rev? EBFDF

1.1 JC � 0 6.6 (SSM) × 1
2.2b K2ST � 0 6.7a × 3
3.3a K3ST � 0 6.7b × 3
3.3b × 0 6.8a × 3
3.3c TrNef � 0 6.8b × 1
3.4 � 1 6.17a × 1
4.4a F81 � 3 6.17b × 1
4.4b � 1 8.8 × 3
4.5a × 1 8.10a × 3
4.5b × 1 8.10b × 1
5.6a × 0 8.16 × 3
5.6b × 3 8.17 × 3
5.7a × 2 8.18 × 3
5.7b × 0 9.20a × 2
5.7c × 0 9.20b DS × 0
5.11a × 2 10.12 × 3
5.11b × 0 10.34 × 3
5.11c × 0 12.12 GM × 3
5.16 × 1

Notes: The “aka” (“also known as”) column identifies models already
known to phylogenetics under a different name (see text). “Rev?”
indicates which models are time reversible (�) and which are not
(×). “EBFDF” is the equilibrium base frequency degrees of freedom.
EBFDF=0 has �A =�G =�C =�T . EBFDF=1 has �A =�G;�C =�T .
EBFDF=2 has �A +�G = 1

2 =�C +�T . EBFDF=3 has unconstrained EBF.

For the purpose of easy comparison to the
presentation given in Fernández-Sánchez et al. (2014),
note that we have renamed the basis matrices and added
A2 as an alternative to A1. A table of the basis matrix
renaming is in the Supplementary Material available
on Dryad at http://dx.doi.org/10.5061/dryad.461g6.
We have also omitted model 2.2a, which is of no
phylogenetic interest as it forbids transversions entirely.
Model 2.2a has basis matrices A1,D1.

LIKELIHOOD TESTING ON REAL DATA

We proceed to investigate how well these models fit
real data. We have taken seven diverse aligned DNA
data sets and calculated the maximum likelihood under
each model. The data sets were chosen to cover a range
of DNA types (nuclear, mitochondrial, and chloroplast)
and phylogenetic ranges (within a single species to
covering a class.)

The data sets are 53 individuals × 16589 sites human
mitochondria (of which only 202 sites are variable)
(Ingman et al. 2000), 15×89436 (taxa × sites) angiosperm
(+outgroup) chloroplast (Goremykin et al. 2005), 33×
1141 cormorants and shags (family Phalacrocoracinae),
mixed mitochondria and nuclear (Holland et al.
2010), 8×127026 Saccharomyces (+outgroup) yeast mostly
nuclear plus some mitochondria (Rokas et al. 2003),
11×2178 teleost fish nuclear (Zakon et al. 2006), 14×4135
buttercup (genus Ranunculus) chloroplast (Joly et al.
2009), and 27×7324 Ratite (bird-order) mitochondria
(Phillips et al. 2010).

The models tested are the 99 Lie Markov models
discussed above (6 fully symmetric, 31 with RY, WS, and

http://dx.doi.org/10.5061/dryad.461g6
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FIGURE 1. Nesting relationships of the RY Lie Markov models. Box shape and weight indicates the degrees of freedom in EBF. Alternate
model names are in parentheses. Solid or dotted connecting lines are to reduce visual confusion and have no additional significance.

MK variants) and, for comparison, the time-reversible
models of the original ModelTest program (Posada
and Crandall 1998). ModelTest uses 14 models, but
five of these are also RY Lie Markov models (JC=1.1,
K80=RY2.2b, K81=3.3a, TrNef=3.3c, F81=4.4a) so this
adds nine models for a total of 108.

Our analysis imitates the procedure used by
ModelTest (Posada and Crandall 1998): (i) A neighbor
joining tree is created using the JC distances; (ii) The tree
is then midpoint rooted (as most RY Lie Markov models
are not time reversible, root location is relevant. We
midpoint root for simplicity, as we are only establishing
model plausibility rather than attempting to construct

an accurate phylogeny); (iii) For each model, we find the
maximum likelihood by optimizing model parameters
and branch lengths (but not tree topology) using a
hill-climbing algorithm (the base distribution at the
root is assumed equal to the equilibrium distribution
of the model); (iv) The optimization is performed for
four different models of rate variations across site:
single rate, invariant sites (+I), gamma rate distribution
(+�, with 8 rate classes), and both invariant sites and
gamma distribution (+I+�); and (v) Finally, we apply
the Bayesian Information Criterion (BIC) (Schwarz 1978)
correction to penalize models with more parameters
(Table 4).
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TABLE 4. The top 10 models for each data set, by Bayesian Information Criterion (BIC)

Clade: Human Angiosperms Cormorants Yeast Teleost Fish Buttercups Ratites
Approx range: Species Class Family Genus mult. orders Genus Order
Tree diameter: 0.008 0.434 0.721 1.465 0.523 0.021 1.085
DNA type mitoch chlorop mito/nuc mostly nuc nuclear chlorop mitoch
taxa×sites 53×16589 15×89436 33×1141 8×127026 11×2178 14×4135 27×7324
Site rate model +�+I +� +�+I +�+I +� +I +�+I

1st TrN MK10.34 HKY 12.12 RY5.11b WS4.4b RY8.16
2nd HKY RY8.18 TrN GTR RY3.3c WS3.4 RY10.34
�BIC 8.9 16.0 6.5 79.8 0.1 0.0 7.8

3rd TIM 12.12 K81uf RY10.12 RY2.2b WS4.5a TVM
�BIC 9.7 16.9 6.8 912.0 3.4 5.1 8.6

4th RY8.8 MK8.17 RY8.8 RY8.8 RY5.7b WS4.5b 12.12
�BIC 13.5 26.9 10.8 946.5 6.4 6.0 14.0

5th RY8.18 WS8.10a TIM RY9.20a TIMef MK5.7a GTR
�BIC 15.4 27.3 13.3 1156.6 6.7 10.3 15.2

6th K81uf WS10.12 RY8.18 WS10.12 RY4.4b RY5.7a WS10.12
�BIC 18.6 28.3 16.2 1450.6 7.5 10.7 18.6

7th GTR RY10.12 MK8.10a TVM RY3.4 WS6.8a RY8.17
�BIC 21.3 29.8 17.3 1518.7 8.5 11.5 30.5

8th TVM WS10.34 TVM TIM SYM WS5.6b WS8.10a
�BIC 29.9 36.1 19.3 1613.4 9.5 12.4 34.7

9th RY10.12 RY9.20a RY10.12 TrN RY5.11a WS6.6 MK10.12
�BIC 30.5 89.5 20.1 1640.5 9.6 13.1 42.3

10th MK10.34 WS8.10b WS8.17 MK10.34 3.3a K81uf WS10.34
�BIC 31.1 108.5 21.6 1663.0 10.0 14.4 44.6

Notes: �BIC is how much worse this model scores than the optimal model (first). A complete table of BIC scores is available in the Supplementary
Material available on Dryad at http://dx.doi.org/10.5061/dryad.461g6. Tree diameter is approximately the number of mutations per site between
the most distant taxa.

In Table 4, we present BIC scores for the best models
for each data set under the optimal rate variation across
sites model. (Scores for nonoptimal rate variation models
are in the Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.461g6.) For each data
set, the models were ranked by BIC and, for each model,
these rankings are summarized in Table 5.

The top-ranked model, TVM (transversional model),
is GTR with a constraint that the two transition rates
be equal. A trio of 10-dimensional Lie Markov models
follow, then GTR and the general Markov model. The
time-reversible models compete well, taking about half
the top spots despite being fewer in number than the Lie
Markov models. The most successful Lie Markov models
are all parameter-rich, having eight (same as TVM) or
more dimensions. We caution against reading too much
into these rankings, due to the small size of the sample.
The most compelling point for this article is that at least
some of the Lie Markov models are competitive with
established models.

We expect the WS and MK models to do poorly
since they do not recognize the established biological
preference for transitions over transversions. They do
indeed dominate the bottom of the table, however the
top of the table shows only slight preference for RY over
MK or WS models.

Some models score poorly overall, but score well for
one data set. The top-ranked models for the fish data set
are RY5.11b and RY3.3c (median ranks 50 and 67). The

top-ranked models for the buttercup data set are WS4.4b
and WS3.4 (median ranks 92 and 91). We will have more
to say on the buttercup results later in this section, and
the fish data set in the next section.

The corrected AIC (AICc) (Akaike 1974; Hurvich and
Tsai 1989) penalizes extra parameters much less than
the BIC. An analysis using AICc in place of BIC is
given in the Supplementary Material available on Dryad
at http://dx.doi.org/10.5061/dryad.461g6. Under AICc
ranking, the top four models are 12.12 (general Markov
model), RY10.12, RY8.8, RY8.18, and then GTR.

Despite model RY5.6b’s structural similarity to HKY
(discussed in the section on RY5.6b), it does not perform
well in comparison to HKY ranking 26th to HKY’s 13th.
Model 6.7a (the sum of K3ST and F81) ranks better (23rd),
but still well below HKY.

Model RY8.8 performed well (especially under AICc)
and is of particular interest since it is the smallest
Lie Markov model that contains all Markov matrices
obtainable by multiplying different HKY Markov
matrices (the curious reader will be interested to learn
the corresponding closure of GTR is the General Markov
model, 12.12). For reference, the RY8.8 rate matrix can be
parameterized as

Q8.8 =
⎛
⎜⎝

∗ a e e
b ∗ f f
g g ∗ c
h h d ∗

⎞
⎟⎠.

http://dx.doi.org/10.5061/dryad.461g6
http://dx.doi.org/10.5061/dryad.461g6
http://dx.doi.org/10.5061/dryad.461g6
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TABLE 5. Summary of rankings of models under BIC for the seven data sets. Models marked “*” are time reversible, non-Lie Markov models

Model Median Best EBF Model Median Best EBF Model Median Best EBF
rank rank DF rank rank DF rank rank DF

*TVM 8 3 3 WS9.20a 38 28 2 WS8.8 73 22 3
RY10.12 9 3 3 *SYM 41 8 0 MK6.7b 74 42 3
MK10.34 11 1 3 9.20b 41 39 0 WS8.16 75 23 3
WS10.34 11 8 3 RY6.8b 42 34 1 WS6.7b 77 14 3
*GTR 12 2 3 WS6.6 43 9 1 MK8.8 77 39 3
12.12 12 1 3 MK8.10b 43 17 1 WS6.8a 78 7 3
RY8.18 14 2 3 RY8.10b 46 33 1 WS5.6b 79 8 3
RY8.8 14 4 3 WS8.10b 47 10 1 MK6.8a 79 40 3
*K81uf 15 3 3 RY6.6 48 33 1 MK8.16 81 38 3
*TIM 16 3 3 *TVMef 49 13 0 WS5.11a 81 50 2
WS8.10a 17 5 3 RY4.4b 49 6 1 WS6.17b 82 16 1
MK8.17 17 4 3 MK6.6 50 18 1 MK5.6b 83 34 3
*HKY 18 1 3 RY5.11b 50 1 0 WS6.8b 87 12 1
*TrN 18 1 3 RY5.11c 50 15 0 WS5.16 87 11 1
WS10.12 18 6 3 RY5.16 51 39 1 MK5.11a 88 37 2
RY9.20a 19 5 2 RY4.5a 53 18 1 MK4.5b 88 69 1
MK10.12 20 9 3 MK6.17a 54 32 1 WS5.11b 88 65 0
RY8.16 21 1 3 RY6.17a 54 34 1 WS4.5b 89 4 1
RY8.10a 23 11 3 MK5.6a 55 19 0 MK4.4b 89 64 1
RY10.34 23 2 3 RY6.17b 57 35 1 WS3.3b 90 59 0
MK8.10a 24 7 3 MK4.5a 58 25 1 WS3.4 91 2 1
RY6.8a 24 13 3 RY5.7b 59 4 0 MK6.8b 91 67 1
6.7a 25 13 3 *TIMef 60 5 0 WS4.4b 92 1 1
MK8.18 25 16 3 RY3.4 60 7 1 WS2.2b 93 57 0
RY8.17 26 7 3 WS5.6a 61 23 0 MK6.17b 94 71 1
RY5.6b 26 21 3 RY5.6a 61 14 0 WS3.3c 95 56 0
WS8.17 27 10 3 RY4.5b 61 22 1 MK5.16 96 70 1
WS8.18 28 24 3 RY5.7c 61 43 0 WS5.11c 97 67 0
RY6.7b 31 22 3 WS5.7c 62 16 0 MK5.11b 97 85 0
RY5.11a 32 9 2 MK5.7b 63 37 0 MK3.4 98 68 1
MK5.7a 32 5 2 MK5.7c 64 17 0 MK3.3c 98 75 0
WS6.17a 32 15 1 WS5.7b 64 40 0 4.4a 99 44 3
RY5.7a 33 6 2 3.3a 65 10 0 MK5.11c 99 78 0
MK9.20a 33 19 2 RY3.3c 67 2 0 MK3.3b 100 77 0
WS5.7a 35 23 2 RY3.3b 71 11 0 MK2.2b 102 74 0
WS4.5a 37 3 1 RY2.2b 72 3 0 *JC 108 83 0

Notes: EBFDF = Equilibrium base frequency degrees of freedom (see text under “Equilibrium base frequencies”). The best ranked models have
high EBFDF.

The buttercup data set produced results markedly
different from the rest, highly ranking WS models with
few parameters, and ranking RY models poorly in
general. The top four models are all submodels of WS6.6,
the strand symmetric model (Casanellas and Sullivant
2005). It appears that the assumptions behind the strand
symmetric model, and the WS models generally, hold for
these chloroplast sequences (which are largely intergenic
spacers (Joly et al. 2009)). This observation is an excellent
example of how the nesting relationships of the Lie
Markov models can be used to uncover additional
information regarding specifics of past evolutionary
processes.

In conclusion, we see that for a given data set, we can
generally find a Lie Markov model which outscores a
time-reversible model, although time-reversible models
perform well in comparison to the full set of Lie Markov
models. Model RY8.8 stands out as one of the best
performing, while also having theoretical justification
as the closure of the HKY model. Unexpectedly, models
with other base pairings (WS and MK) can also score well
for particular models (MK10.34, WS10.34) or particular
data sets (buttercups).

THE STRUCTURE OF RY MODELS

Nesting of the Models
When all the rate matrices in model A also occur in

model B, we say model A is nested within model B—
that is, by adding constraints to model B we can create
model A. We may wish to know these relationships so
that we can justify using a likelihood-ratio test, or to use
the optimal solution for model A as an initial solution
for optimizing model B, or for an MCMC analysis which
allows switching between related models. The nesting
relationships of the RY Lie Markov models can easily
be derived from the basis matrix specifications of the
models, given in Table 2. The hierarchy of nestings is
shown in Figure 1.

Model 6.7a is the F81+K3ST model. This model has full
symmetry, and so is simultaneously in the RY, WS, and
MK model families. This means that in some cases, low-
parameter models in one-model family are nested within
high-parameter models of another, for example RY5.7a,
being nested in 6.7a is (by transitivity) also nested in
WS8.10a.
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A model is “doubly stochastic” if the rows of its
rate matrices always sum to zero (in addition to the
columns sum to zero condition required of a rate matrix).
The most general model with this property is the
“doubly stochastic model,” which is model 9.20b in our
hierarchy. All models nested within 9.20b also have the
doubly stochastic property, for example, 3.3a (K3ST) and
1.1 (JC).

Equilibrium Base Frequencies
An important property of a model is the range of EBF

it can produce. If the base frequencies in the data differ
greatly from the EBF of the model, a poor-likelihood
score is inevitable. The EBF of a given rate matrix is its
principal right eigenvector, which will have eigenvalue
zero (as a consequence of the columns-sum-to-zero
constraint). The same applies for a Markov matrix, except
that the eigenvalue will be one.

The doubly stochastic property implies flat EBF, as
( 1

4 , 1
4 , 1

4 , 1
4 ) is an eigenvector of any doubly stochastic

Markov matrix, with eigenvalue one, and hence the EBF
for 9.20b has zero degrees of freedom, with EBF �A =
�G =�C =�T = 1

4 . Nine of the basis matrices (Table 1)
have this doubly stochastic property, those nine being
A,A1,B,C,D1,F1,F2,G1 and G2, which are also basis
matrices of 9.20b, the most general doubly stochastic
model. Any model whose basis matrices come from
this set will also be doubly stochastic and so have
flat EBF. These models (the submodels of 9.20b) are
1.1, 2.2a, 2.2b, 3.3a, 3.3b, 5.6a, 5.7b, 5.7c, 5.11b, and
5.11c.

The remaining three basis matrices are D, E1, and E2.
Each matrix adds one degree of freedom to the EBF
distribution. The simplest model to contain all three is
4.4a, the F81 model (Felsenstein 1981). This model has the
maximum of three degrees of freedom in its EBF since
�A +�G +�C +�T =1. Supermodels of 4.4a also have full
EBF freedom, being 5.6b, 6.7a, 6.7b, 6.8a, 8.8, 8.10a, 8.16,
8.17, 8.18, 10.12, 10.34, and 12.12.

Models which contain D but not E1 and E2 have �A =
�G �=�C =�T (one degree of freedom). (This equation
holds for RY models; WS and MK have similar
equations.) These models are 3.4, 4.4b, 4.5a, 4.5b, 5.16,
6.6, 6.8b, 6.17a, 6.17b, and 8.10b.

Any model with E1 or E2 has both, and the
models containing these two but not D are 5.7a,
5.11a, and 9.20a. The EBF of these models have two
degrees of freedom, �A +�G =�C +�T = 1

2 (for the RY
models).

These degrees of freedom are indicated in Figure 1.
Table 5 demonstrates that models with many EBF
degrees of freedom generally outperform those with
few degrees of freedom. We now can understand the
unusual choice of models for the fish data set: the top
three models (RY5.11b, RY3.3c and RY2.2b) all have
zero EBF degrees of freedom. Because this data set is
unusual in having close to flat base frequencies (24.4%
A, 25.2% G, 23.1% C, 27.4% T), it is able to accept

these models where the other data sets strongly reject
them.

In contrast to GTR, the relationship between EBF and
model parameters for Lie Markov models is often not
simple. For example, for model RY5.6b (equation 1) the
EBF are:

(�A,�G,�C,�T) = (
1
4
,

1
4
,

1
4
,

1
4

)+ 1
4p

(q+2e1,q−2e1,

−q+2e2,−q−2e2)

where p=2a+a1 and q=2d+ a1d
a . A general formula for

the EBF is given in the Supplementary Material available
on Dryad at http://dx.doi.org/10.5061/dryad.461g6.

Only a few of the Lie Markov models presented
here are time reversible, namely 1.1, 2.2a, 2.2b, 3.3a,
3.3c, 3.4, 4.4a, and 4.4b (Table 3). In the context of
a time nonhomogeneous mutation process, we expect
base frequencies to be out of equilibrium, so a time-
reversible analysis is inappropriate in any case. In this
circumstance, there is no advantage to a time-reversible
model, so we do not regard the nonreversibility of our
models as a major drawback. Time reversibility is a
computational convenience, not a law of nature.

In passing, it would be interesting to see how well
these restricted EBFs would work with standard time-
reversible models. Programs such as jModelTest2 allow
only the extremes of zero or three degrees of freedom,
but it is plausible that for many data sets three degrees
of freedom is overparameterizing, yet zero degrees is
insufficient.

PARAMETERIZATIONS

In the RY5.6b example, we briefly alluded to the
problem of generating rate matrices that are stochastic,
that is, all off-diagonal elements are nonnegative. We
seek parameterizations of the Lie Markov models for
which: (1) simple bounds on the parameters (i.e., not
dependent on the values of other parameters) restrict the
resulting rate matrices to be stochastic; (2) all stochastic
rate matrices in the model can be generated from
parameters within the bounds; and (3) that slightly
different rate matrices can always be specified by slightly
different parameters (i.e., the inverse transformation of
rate matrix to parameters is continuous).

These conditions allow us to conduct likelihood
optimizations by hill climbing. The simple bounds
give us a well-defined region of parameter space to
search. Condition (2) ensures that all legitimate solutions
lie within the space to be searched. Condition (3)
ensures the hill climb does not get blocked by a
parameterization boundary. We will now derive such a
parameterization.

A DNA rate matrix is defined by its 12 off-
diagonal elements, so DNA rate matrices lie within a
12-dimensional space. The portion of this space that is
stochastic can be equated to the general Markov model,
and less general models are subsets of it, generally
of lower dimension. The corresponding regions of

http://dx.doi.org/10.5061/dryad.461g6


646 SYSTEMATIC BIOLOGY VOL. 64

(a)

(c)

(b)

FIGURE 2. A parameterization of model 3.4 which is restricted to only the stochastic rate matrices. (a) The region of stochasticity for model
3.4 with fixed a. (b) Without loss of generality, we take a=1. Given (x,y) in [−1,1]2 defines point (representing a matrix) P on the edge of the
region of stochasticity, and s=max(|x|,|y|) a measure of how far (x,y) is from the origin, which defines the JC matrix A. (c) (x,y) have defined a
stochastic rate matrix Q(x,y)=A+sP.

stochasticity describe a geometric entity known as a
convex polydreal cone. The interested reader is referred
to Fernández-Sánchez et al. (2014) for details.

In the context of this section, it simplifies matters
to take A2 as a basis matrix in place of A1 (Table 1).
Then, all matrices Bi �=A from Table 1 are orthogonal
to A, and span the space of rate matrices with trace
zero. In particular, the scale (trace) of the rate matrix
is determined only by a, the weight of A, and that for
fixed a, none of the other weights can go to infinity
without violating stochasticity. It follows that the set of
rate matrices with a fixed trace defines a bounded set.

For example, model 3.4 has rate matrix:

Q3.4 =
⎛
⎜⎝

−3a+d a+2a2 +d a−a2 +d a−a2 +d
a+2a2 +d −3a+d a−a2 +d a−a2 +d
a−a2 −d a−a2 −d −3a+d a+2a2 −d
a−a2 −d a−a2 −d a+2a2 −d −3a+d

⎞
⎟⎠,

so the stochasticity constraints can be expressed as:

a+2a2 +d≥0,

a+2a2 −d≥0,

a−a2 +d≥0,

a−a2 −d≥0.

(3)

This is shown graphically in Figure 2a.
We refer to our preferred parameterization of the RY

Lie Markov models as the Cartesian parameterization (it
is illustrated for model 3.4 in Fig. 2b,c). From a choice
of parameters, this parameterization will produce a
stochastic rate matrix Q within the model, and with some
given trace. In general, we are given an n dimensional RY
Lie Markov model, having basis matrices A,B1,...Bn−1
(where the Bi stand for non-A basis matrices from



2015 WOODHAMS ET AL.—A NEW HIERARCHY OF PHYLOGENETIC MODELS 647

Table 1 as above). Next, we proceed to describe the
parameterization in three steps:

1. Generate a matrix

P′ =
∑

i

biBi, where all bi ∈[−1,1].

The weights (b1,...,bn−1) are taken as the
parameters.

2. Define the “perturbation” matrix P by

P= 1
−min(P′)P′

where min(P′) is the minimum off-diagonal
element in P′. Note all the Bi have off-diagonal
elements summing to zero, therefore P′ will always
contain a negative off-diagonal element (unless it
is zero.) Therefore min(P′)<0 except if P′ =0.

3. Now we find the “saturation” value by

s=max
i

|bi|
and finally our rate matrix is

Q=A+sP=A− s
min(P′)P′

If s=1, Q will be on the boundary of stochasticity, having
(at least) one off-diagonal element equal to zero, as A has
all off-diagonal elements equal to one.

The map from the bi to Q defined as above is one
to one, and parameterizes uniformly the section of the
stochastic cone with trace −12 taking as parameter space
the hypercube [1,1]n−1. Should a different fixed scale be
desired, we can multiply by a constant. Should we wish
the scale of Q to be variable, we can add a scale parameter.

The essence of this method is that the ratios of the bi
define the direction in which we will deviate from the
JC matrix A, and the overall scale of the bi sets how far
we travel from JC toward the boundary of stochasticity.
We can also think of it geometrically, as using the bi to
form a hypercube enclosing the hyperpolyhedron which
is the region of stochasticity, and then shrink-wrapping
the hypercube around the hyperpolyhedron. While this
parameterization gives Q as a continuous function of
the bi, it is not a smooth function, and so may not work
well with hill-climbing methods which calculate partial
derivatives.

We will briefly describe three alternative
parameterizations which we explored prior to settling on
the Cartesian parameterization described above. Given
the stochasticity inequalities (e.g., equations (3) for
model 3.4) we can progressively eliminate variables by
Fourier–Motzkin elimination (Motzkin 1936). This gives
us a parameterization where, having used x1,...,xk to set
the weights of B1,...,Bk , we know the allowable range of
weights for Bk+1 which will keep stochasticity, and we
linearly transform xk+1 appropriately. The disadvantage
of this parameterization is that we need extra computer

code specific to each model to implement the Fourier–
Motzkin-derived transformation. The Mathematica file
in the Supplementary Material available on Dryad
at http://dx.doi.org/10.5061/dryad.461g6 derives
Fourier–Motzkin transformations for each of the
models.

The Cartesian parameterization uses the ratios of n−1
parameters to determine a direction and the scale of
the parameters to determine a distance. We can separate
these roles and use n−2 parameters to specify a direction
and supply the “saturation” directly as the n−1th

parameter, that is, we use polar coordinates in the space
of matrices with zero trace. In the shrink wrap analogy
described above, this corresponds to shrink-wrapping
a hypersphere rather than hypercube. The weakness
of this method is that the inverse transformation is
noncontinuous: Q matrices which are close to each other
may not have parameters which are close to each other,
due to an angle wrapping from 2� to zero. We tested an
extension where angles were unbounded and the radius
parameter was in [−1,1] instead of [0,1] (which means
the parameter to rate matrix mapping is no longer 1:1.)
This helped, but optimization still often failed to find the
best likelihood.

Finally, we can form a rate matrix as a sum of
nonnegatively weighted ray matrices. While this is
simple to code and gives a continuous and smooth
function, for most models this uses more parameters
than there are dimensions to the model, that is, it
overparameterizes, resulting in redundancy and slower
optimizations. (For our software, it is slower by about
25% averaged over all models.)

EMBEDDABILITY

Multiplicative closure can be tested by taking
stochastic rate matrices Q1 and Q2 from a model and
calculating Q′ = log(exp(Q1)exp(Q2)) (where “log” is
the matrix logarithm). The desired result is that Q′ be
stochastic and in the model.

There are three possible failure modes: (i) the matrix
logarithm can produce complex values, so Q′ may be
complex and hence not stochastic; (ii) Q′ may be real
but not stochastic; or (iii) Q′ may not be in the model.
In the Markov chain literature, the property of Q′ being
stochastic is called “embeddability,” and it is discussed
at length in the context of phylogenetics and time
nonhomogeneous DNA models by Verbyla et al. (2013).
General Lie theory tells us that the last of these failure
modes should not be a possibility for a Lie Markov
model, however we included this possibility in what
follows as a sanity check.

We made a preliminary Monte Carlo investigation
to get some feeling of how often these failures occur.
For each model, we repeatedly generate two random
rate matrices Q1 and Q2 within the model and having
predetermined trace, and calculate Q′. We determine
whether this Q′ is stochastic, real, and in the model.
As the traces of Q1 and Q2 get larger, the chances of

http://dx.doi.org/10.5061/dryad.461g6
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TABLE 6. Approximate levels of saturation of model Markov
matrices before their product matrix has significant (>5%) chance of
being nonembeddable (i.e., “average” rate matrix Q′, as defined in the
text, is nonstochastic)

Saturation Possible embeddability issues

1 Substitution/site 5.6a, 6.6, 6.8a, 6.8b, 8.8, 8.10a,
8.10b, 8.16, 8.17, 8.18, 10.12, 10.34

2 Substitution/site 5.6b, 5.7b, 5.11a, 5.11b, 5.11c,
5.16, 6.7a, 6.7b, 6.17a, 6.17b

3 Substitution/site 4.4b, 5.7c
> 3 Substitution/site 3.4, 4.5a, 4.5b
never 2.2b, 3.3a, 3.3b, 3.3c, 4.4a

Notes: Data derived from Monte Carlo simulation.

nonstochastic (or nonreal) Q′ grows. In Table 6, we
show the level of saturation before about 5% of random
products give a nonstochastic (or nonreal) Q′. (one
expected substitution per site corresponds to a trace
of −4.) By this measure, the worst performing model
was 10.12, which achieved this 5% nonembeddability
threshold with trace about −3.3. We observed no
instances of Q′ not being in the model, even when
Q′ is complex. These Monte Carlo calculations are
carried out in the Mathematica notebook included in
the Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.461g6.

The theoretical results of (Sumner et al. 2012a)
and (Fernández-Sánchez et al. 2014) prove only that
the Lie Markov models have “local multiplicative
closure.” This means that the “average” rate matrix
of a time varying process can be nonstochastic or
even complex. Here, we see that “local” is really
quite broad: phylogenies have to be quite deep before
nonembeddability potentially becomes an issue, and
very deep before the average Q becomes complex.
Under most practical circumstances where we would be
attempting to reconstruct phylogenies from real data, the
Lie Markov models can safely be considered to be simply
“multiplicatively closed,” without further reference to
the “local” condition.

It is natural to expect that the more different Q1 and
Q2 are, the more likely it is that Q will be nonstochastic.
We tested this on models 6.6, 8.8, 8.10b, and 10.12 (see the
Mathematica notebook). Using a trace value for (Q1, Q2)
which resulted in nonembeddability rate close to 50%,
we generated a thousand random (Q1,Q2) pairs, then
measured the difference |Q1 −Q2| (where |...| indicates
the root mean square of off-diagonal elements). The
mean difference for nonembeddable pairs was higher
than for embeddable pairs, but only by about 0.3
standard deviations, so embeddability is only weakly
dependent on the difference between the input rate
matrices.

To compare these results to our likelihood analysis,
we found a tree diameter for each data set: we optimized
each data set with model 12.12 (general Markov model)
with invariable sites (+I), then the tree diameter is
measured as the maximum distance between any two
taxa. The results are shown in Table 4. In this analysis,

the rate matrices were constrained to have trace −4,
which in turn means that the units of branch length are
approximately mutations per site.

We see that the data set with the most mutations per
site was the yeast data set, having tree diameter of almost
1.5. The worst performing Lie Markov model (from an
embeddability point of view) was 10.12, which reached
5% chance of nonembeddability for Q1 and Q2 having
trace −3.3 each, which corresponds to a tree diameter
of 1.65. So we see that for the highest mutation rate
data set and the most embeddability-sensitive model,
the chances of an embeddability problem are below 5%.

The impact of embeddability problems, should they
occur, is low. When considering the rate matrix to put
on a branch and demanding that the rate matrix be
stochastic, we only exclude parts of the parameter space
which could be allowed by applying two (or more)
distinct stochastic rate matrices over different portions
of that branch.

DISCUSSION

If we model DNA mutation as nonhomogeneous
across a phylogeny, using a model which does not have
multiplicative closure leads to a lack of consistency
(Sumner et al. 2012b). With such a model, applying a
single set of model parameters to a given edge cannot
reproduce the effects of model parameters varying
with time along that edge. The Lie Markov models
were developed to avoid this problem (Sumner et al.
2012a). The fully symmetric Lie Markov models are
few in number (1.1 (JC), 3.3a (K3ST), 4.4a (F81), 6.7a
(K3ST+F81), 9.20b (doubly stochastic), and 12.12 (GM)).
By relaxing the symmetry condition to allow one pairing
of DNA bases to be distinguished, we greatly increase
the number of available models while also allowing
for the transition/transversion (RY) distinction which is
common in DNA models (e.g. K2ST, HKY). We call the
Lie Markov models which allow for the RY distinction as
the RY Lie Markov models, although we include within
this category the models which distinguish the WS and
MK base pairings also.

A classification of the RY Lie Markov models
was derived in Fernández-Sánchez et al. (2014), with
emphasis on the mathematical derivation and structure
of the models. In addition to the fully symmetric Lie
Markov models, a further 32 Lie Markov models were
found to exist, most of which are novel. In this article
we have presented the models in a more accessible way,
explored their applicability to real data sets, and dealt
with implementation issues around how to parameterize
the models. For the 31 useful RY Lie Markov models,
we also considered allowing alternative base pairs to
be distinguished: the WS pairing and the MK pairing.
The WS pairing is more natural to consider than RY
for sequences where there is no distinction between the
DNA strands, as is usually the case for noncoding DNA.

We compared the performance of the Lie Markov
models to the standard benchmark of the GTR model and

http://dx.doi.org/10.5061/dryad.461g6
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popular submodels. The majority of Lie Markov models
are not time reversible, but we argue that in the context of
a nonhomogeneous mutation process, time reversibility
has already been lost, so, beyond algorithmic details, this
is not a modeling disadvantage.

We tested the models on a diverse set of eukaryotic
DNA data sets. For each data set, we fixed the tree
topology and then optimized the log-likelihood over
model parameters and branch lengths. The optimal
log-likelihoods of the models were compared via the
BIC. A selection of more traditional time-reversible
models were included in the analysis for purposes of
comparison. The results show that the RY Lie Markov
models are biologically plausible, with five of the seven
data sets selecting a Lie Markov model as the optimal
model (although in one case, the model is the previously
studied General Markov model). One data set (of
buttercup chloroplast mostly intergenic DNA) stood
out from the rest as strongly favoring WS Lie Markov
models with one degree of freedom in base frequencies.
This result highlights the usefulness of considering
base pairings other than RY, and base frequencies other
than uniform or fully unconstrained. This lesson can be
extended to time-reversible models also.

We have shown how the basis matrix structure of
the RY Lie Markov models determines the nesting
relationships of the models, and the EBF that the
models can generate. Additionally, when implementing
the Lie Markov models, the problem of parameterizing
the space of stochastic rate matrices is nontrivial. We
have presented a parameteriziation which successfully
achieves this, with relative simplicity.

To study the “local” character of the multiplicative
closure of Lie Markov models, we performed some
Monte Carlo simulations to conclude that multiplicative
closure (i.e., a real, stochastic average rate matrix)
is very likely to be maintained in all phylogenetic
analyses except those with very deep divergences (for
which, as sequences are nearly uncorrelated across deep
divergence, the choice of model is not very important
anyhow).

Most of the Lie Markov models are not time reversible.
Modeling a nontime reversible process adds a few
complications: the location of the root becomes material
(effectively increasing complexity by one taxon), as do
the base frequencies at the root, and if we have multiple
rate classes, the root base frequencies may be different
for the different rate classes. For a nonhomogeneous
mutation process, these complications exist in any case,
so the non time-reversibility of Lie Markov models costs
nothing in that context.

Our future plans include testing the models in
a nonhomogeneous context, performing likelihood
analysis on many more data sets, and expanding the
range of software which implements the models.

SOFTWARE

Supplementary tables and figures contain a general
formula for equilibrium base frequencies, a colour

version of figure 1, the translation between basis matrix
names used in Fernández-Sánchez et al. (2014) and this
paper, a complete listing of BIC values and ranking of
models, a summary of AICc ranking of the models and
Fourier–Motzkin parameterizations for each model.

A Mathematica notebook derives the Fourier-
Motzkin parameterizations, performs the tests in the
embeddability section, and has derivations of nesting,
equilibrium base frequencies and time reversibility. We
provide source and executable for the Java program used
for the likelihood analysis, along with a spreadsheet
which collates the results. We caution that the program
is experimental and does not have the user interface or
robustness suitable for a public release.

The reference implementation of the Lie Markov
models is a Beast2 plugin (Bouckaert et al. 2014),
available at https://github.com/MichaelWoodhams/
BeastLieMarkov.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.461g6.
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