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ABSTRACT

Mouse models have been engineered to reveal the
biological mechanisms of human diseases based
on an assumption. The assumption is that ortholo-
gous genes underlie conserved phenotypes across
species. However, genetically modified mouse or-
thologs of human genes do not often recapitulate
human disease phenotypes which might be due to
the molecular evolution of phenotypic differences
across species from the time of the last common
ancestor. Here, we systematically investigated the
evolutionary divergence of regulatory relationships
between transcription factors (TFs) and target genes
in functional modules, and found that the rewiring
of gene regulatory networks (GRNs) contributes to
the phenotypic discrepancies that occur between
humans and mice. We confirmed that the rewired
regulatory networks of orthologous genes contain
a higher proportion of species-specific regulatory el-
ements. Additionally, we verified that the divergence
of target gene expression levels, which was trig-
gered by network rewiring, could lead to phenotypic
differences. Taken together, a careful consideration
of evolutionary divergence in regulatory networks
could be a novel strategy to understand the failure
or success of mouse models to mimic human dis-
eases. To help interpret mouse phenotypes in hu-
man disease studies, we provide quantitative com-
parisons of gene expression profiles on our website
(http://sbi.postech.ac.kr/w/RN).

INTRODUCTION

Mice are very useful model organisms for studying human
disease biology, considering the common anatomical fea-
tures and physiological processes among mammals (1,2).
Human phenotyping using mice has been possible based
on the assumption that orthologues may be associated with
similar phenotypes (3,4). Using a reverse-genetics approach
with CRISPR-Cas9 engineering facilitates the design of dis-
ease models by knocking out mouse orthologues of human
disease gene candidates (5). Currently, numerous mouse
models are available to identify the molecular mechanisms
of human diseases and are rapidly applicable to the devel-
opment of therapeutic strategies and prognostic markers of
diseases (2).

Unfortunately, due to the ∼100-million-year divergence
between humans and mice, knockout mouse models of hu-
man diseases often fail to recapitulate the human pheno-
types of interest (1,6). Despite their highly conserved se-
quences, functional divergence between orthologous gene
products has frequently emerged during evolution (7). A
plausible hypothesis for this observation is that the expres-
sion of orthologous genes has changed and given rise to
phenotypic differences between species. Owing to the efforts
of systematic phenotyping and semantic comparison, it is
now possible to directly test this hypothesis in a comprehen-
sive manner (8). Thus, taking advantage of systematic phe-
notype comparisons between humans and mice, our pre-
vious study recently demonstrated that orthologous genes
with greater levels of phenotypic divergence convey highly
diverged cis-regulatory elements (REs) and altered tran-
scription across tissues. (9)

However, it remains largely unknown how the evolu-
tion of cis-regulatory regions impacts phenotypic diver-
gence, since changes in cis-regulatory regions often have
no impact on gene regulatory networks (GRNs). Although
cis-regulation diverged extensively in terms of nucleotide

*To whom correspondence should be addressed. Tel: +82 54 279 2348; Fax: +82 54 279 2199; Email: sukim@postech.ac.kr

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0002-6574-7311
https://orcid.org/0000-0002-8097-3675
https://orcid.org/0000-0002-4134-3953
https://orcid.org/0000-0001-7778-0592
https://orcid.org/0000-0002-3532-3163
https://orcid.org/0000-0001-9312-2864
https://orcid.org/0000-0002-3449-3814
http://sbi.postech.ac.kr/w/RN


1850 Nucleic Acids Research, 2022, Vol. 50, No. 4

sequences and tissue location, its significance in phenotypic
divergence via varied gene expression is only speculative
(10–12). The trans-regulatory circuitry is highly conserved
between humans and mice, despite the substantial plastic-
ity of the cis-regulatory regions (13). With transcription fac-
tors (TFs) connected by shared regulatory targets, the TF-
to-TF networks are nearly identical between humans and
mice. These findings strongly indicate that changes in cis-
regulatory regions may only slightly affect gene expression,
hindering our ability to assess phenotypic divergence in or-
thologous genes that rely on TF conservation.

We hypothesize that the rewiring of GRNs leads to phe-
notypic divergence of orthologous genes by altering func-
tional modules composed of many regulatory targets, rather
than a single target. It was previously shown that genotype–
phenotype relationships tend to be modular. Indeed, bipar-
tite networks connecting gene knockouts and their func-
tional traits have revealed highly modular structures in both
mice (14) and humans, and genes associated with similar
diseases often share physical interactions and similar ex-
pression profiles (15). Genotypic and gene expression rela-
tionships usually display modular behaviors. Bipartite net-
works comprising expression quantitative trait loci exhibit
a highly modular structure, where the gene modules are
likely associated with similar biological processes (16). Im-
portantly, genes within these functional modules have co-
evolved (17,18). Therefore, comprehensively understanding
the modular structure among regulatory target genes would
provide insights into the evolution of GRNs and their sub-
sequent phenotypic divergence.

Here, we introduce a computational framework to quan-
tify the evolutionary rewiring of GRNs. For semantic com-
parisons between the descriptions of human diseases and
mouse phenotypic outcomes (9), we utilized the pheno-
type similarity (PS) score, a quantitative measure of the
phenotypic similarity of orthologous genes between the
two species. Taking advantage of the PS score, we found
that phenotypic discrepancies can be explained by the
rewiring of regulatory network connections between two
species. Furthermore, we show that species-specific REs,
such as promoters and enhancers, contribute to rewired reg-
ulatory connections (RCs) and phenotypic differences be-
tween humans and mice. We validated these correlations
by transcriptomic profiling using multiple transcriptome
databases, revealing that the divergence of gene expression
is triggered by rewired RCs and leads to phenotypic dif-
ferences between species. We provide quantitative compar-
isons of orthologous gene expression profiles between hu-
mans and mice on our website (http://sbi.postech.ac.kr/w/
RN), which can be utilized to interpret phenotypic differ-
ences in mouse models of human diseases.

MATERIALS AND METHODS

Calculating PS score

We collected human gene–phenotype relationships using
the OMIM and HPO databases (19,20). OMIM pro-
vides manually curated relationships between genetic vari-
ants and Mendelian disorders (21). HPOs associate a
disorder with a standard phenotype term. We compiled

links between 2380 genes and 6506 HPOs. Next, we ex-
ploited mouse gene–phenotype relationships in the MGI
database, which houses gene–phenotype relationship data
obtained from mouse gene knockout experiments used for
phenotyping (22). We downloaded and compiled ‘MGI
GenePheno rpt’ and ‘MPK ENSEMBL.rpt’ files from the
MGI database. We used phenotypes from mouse models
with only one MGI accession number because these phe-
notypes are associated with perturbation of single genes.
If multiple mouse models were available for a single gene,
we used all phenotypic information from the models. We
collected links between 5737 genes and 7839 MPOs. Thus,
‘associated phenotypes of the gene’ in this study indicates
(i) recorded disease symptoms when the gene is mapped
to the disease, or (ii) observed phenotypic outcomes when
mouse models showed genetic perturbation of the gene. PS
scores of orthologous genes were calculated based on se-
mantic comparisons utilizing PhenoDigm (8). Normaliza-
tion of PS scores was conducted by computing Z-scores
with SR, which carry similar numbers of associated phe-
notype ontologies. Consequently, PS scores of 2142 genes
were calculated with 642 HPGs and 642 LPGs (Supplemen-
tary Figure S1; Supplementary Figure S2; Supplementary
data S1). The detailed methods and validation of the PS
scores were described previously (9). Importantly, the criti-
cal difference between the PS score and the IMPC measure-
ment is that PS scores are calculated for orthologous genes,
while IMPC focuses on the relationship between a mouse
gene and a human disease. We compared our PS scores
with IMPC similarities by classifying genes into two groups,
those mimicking any human diseases versus the rest, based
on IMPC database. LPGs are significantly enriched with
a set of mouse genes that fail to mimic human disease
phenotypes based on the data of IMPC (Supplementary
Figure S3) (23). Notably, to investigate characteristics of
orthologous genes of phenotypic differences, we analyzed
enrichment of developmental (and late-onset) phenotypes
in orthologous genes of phenotypic differences. LPGs and
HPGs may not be simply classified into gene groups of early
or late-onset phenotypes (Supplementary Figure S4). We
downloaded phenotype onset data from Orphanet. (https:
//www.orpha.net/consor/cgi-bin/index.php) Genes with age
of onset, including ‘Antenatal’ and ‘Neonatal’, were sorted
into a gene group of early onset phenotypes, and genes with
age of onset, including ‘Adult’ and ‘Elderly’, were sorted
into a gene group of late onset phenotypes. The analysis
shows LPGs and HPGs have similar proportions in gene
groups of early and late onset phenotypes.

Constructing regulatory networks

The construction of regulatory networks comprised three
steps: building a functional module of a gene in humans,
transferring the functional module for the mouse orthol-
ogous gene, and connecting transcription factors to func-
tional modules in each species. (i) Functional module in
humans: we first selected genes that are involved in the
same biological process with a human gene. The gene set
was defined as a functional module and designated as tar-
get genes in the regulatory network of the gene. Anno-
tated biological processes associated with genes were down-
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loaded from GSEA msigdb [https://www.gsea-msigdb.org/
gsea/index.jsp, c5: gene ontology gene sets and biological
processes]. To delete general functional terms, we only used
gene ontology biological processes with fewer than 50 genes.
(ii) Functional module in mice: mouse functional modules
were transferred from human functional modules based on
one-to-one orthologous relationships.

(iii) Connecting TFs to functional modules: to gener-
ate species-specific regulatory networks, we gathered TF–
target gene relationships in humans and mice. The Reg-
ulatory Network Repository (RegNetwork) (http://www.
regnetworkweb.org/home.jsp) provides integrated data con-
cerning RCs between TFs and target genes in humans and
mice for 391 human TFs and 215 mouse TFs (24). To
exploit RCs of high confidence, we analyzed TF–target
gene associations validated by experimental evidence and
removed all predicted connections. Regulatory networks
were built by linking RCs between TFs and target genes
in the functional modules, in which RCs were filtered by
enrichment testing. We used the hypergeometric distribu-
tion for the enrichment testing of RCs and corrected for
multiple hypothesis testing (25). If the target genes of a
certain TF were enriched in a functional module of a hu-
man orthologous gene with an adjusted P value lower than
0.01, the RCs between the TF and functional module were
used to construct the regulatory network. The same pro-
cedure is applied for mouse regulatory networks. Finally,
for an orthologous relationship, one regulatory network
was built in humans, and one regulatory network was con-
structed in mice. Additionally, we analyzed the RCs from
the literature-based database TRRUST, which provides
TF–target gene regulatory relationships for 800 human
TFs and 828 mouse TFs, (https://www.grnpedia.org/trrust/)
(26).

Validating the construction of the regulatory network

Validation of the regulatory networks was conducted in
three steps. First, to test whether a set of genes in a func-
tional module was co-regulated as a unit, we measured co-
expression within the functional modules (Supplementary
Figure S5). Co-expression within a functional module was
calculated by measuring the Pearson coefficient (ρ) of tissue
transcriptomes between the human orthologous gene and
other genes in the functional module. 10 000 random mod-
ules were generated for each regulatory network. Each ran-
dom module contains the same number of genes as that of
the functional module, and genes were selected from among
genes that have transcriptomic data in ENCODE and or-
thologous relationships with mouse genes. The statistical
significance of co-expression levels within functional mod-
ules was tested against random functional modules. Tran-
scriptomic data from both species were downloaded from
ENCODE (27).

Second, the co-expression levels of TFs and functional
modules were evaluated. For a functional module, TFs were
divided into two segments: TFs with RCs and TFs with-
out RCs (Supplementary Figure S6). TFs with RCs have
connections with functional modules in both species. TFs
without RCs have connections in only one species. Co-

expression levels in the functional modules were measured
using the Pearson coefficient of tissue transcriptomes of the
TF and genes in the functional module.

Finally, to test whether functional modules of regulatory
networks represent disease phenotypes of human ortholo-
gous genes, we calculated the similarity of disease symp-
toms within the functional modules (Supplementary Figure
S7). Phenotypic similarity within functional modules was
measured using the overlap of disease symptom terms be-
tween the human orthologous gene and other genes in the
functional module. Similar to the first validation step, for
each regulatory network, 10 000 random functional mod-
ules were generated by collecting 10 000 random gene sets.
The statistical significance of the phenotypic similarity was
tested using random functional modules. Disease symp-
toms were obtained from HPOs and OMIM, and the anno-
tation of the gene in OMIM was conducted using BioMart
data, which provides information on the relationships be-
tween an Ensembl gene name and MIM morbid accession
number (21,28).

Calculating the conservation of the regulatory network

To measure the evolution of the regulatory network of an
orthologous gene, we calculated the conservation of RCs
between the two species. Based on the constructed regula-
tory networks of each species, we used the Jaccard similarity
coefficient, which is frequently used to measure the evolu-
tionary rewiring of biological networks (29), to examine the
RCs in humans and mice. The measurement is defined as the
size of the intersection divided by the size of the union of the
groups.

Conservation of RC = |RCh ∩ RCm|
|RCh ∪ RCm| ,

RCh = (x ∈ Xh , y ∈ Yh) | x targets y},

RCm = {(x ∈ Xm, y ∈ Ym) | x targets y},
where Yh and Ym are the functional modules of the orthol-
ogous genes in human and mouse, respectively, and Xh and
Xm are the TFs whose targets are significantly enriched in
Yh and Ym, respectively. The phrase ‘x targets y’ was used to
identify the RCs between ‘x’ and ‘y’ in the RegNetwork (24)
and TRRUST (26) databases. Additionally, we analyzed the
rewiring of the regulatory networks of orthologous genes
using a different similarity measurement, the overlap coef-
ficient (OC), which is defined as the size of the intersection
divided by the smaller size of the two groups. OC can cap-
ture high similarity when one group is almost included in
the other group, and this condition could be regarded as
conserved regulatory networks in the evolutionary lineage.

Conservation of RCoc = |RCh ∩ RCm|
min (|RCh | , |RCm|) ,

where all conditions are the same as described above.
To calculate the conservation of the co-regulation by

TFs, we analyzed the RCs linked to the same target gene
in a functional module of the regulatory networks. Co-
regulatory relationships are defined as the connections of
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one target gene in a functional module to two or more
TFs. If a co-regulatory relationship is detected in both
species, the relationship is classified as conserved. Con-
versely, when one or more changes are observed in the RCs
of a co-regulatory relationship, the relationship is classi-
fied as rewired. The ‘conservation of the co-regulation by
TFs’ was calculated using the proportion of conserved co-
regulatory relationships in a functional module of the regu-
latory network. Furthermore, to calculate the conservation
of the regulation of a single gene, we analyzed RCs only
linked to a single gene without functional modules in the
regulatory network.

Construction of co-regulation network

We constructed the co-regulation networks for each mod-
ule by assigning co-regulation links to the genes sharing
one or more TFs. This procedure changes the bipartite net-
works (TF–target) into unipartite ones (target – target), in-
vestigating another facet of the network structure. Here, we
explored k-core because it can characterize sub-modular
structure given a module. (30) Within the co-regulation net-
works, k-cores were identified by collecting the connected
components after discarding nodes with the degree smaller
than k. To quantify the conservation of cores, we followed
the approach proposed in (31), the maximum-matching ra-
tio, which was designed for the comparison between pro-
tein complexes. Between a mouse core A and a human
core B, their overlap was calculated by the overlap score,
|A∩B|2/|A||B|, and the core overlap is the average of the
overlap scores. Since a co-regulation networks might have
two or more cores, the pairs with the greatest overlap score
were taken. Each core was allowed to participate in the pair
only once. The link overlap is the Jaccard index of the sets
of links.

Calculating conservation of REs in regulatory networks

We leveraged species-specific REs used in our pre-
vious works (32). Human and mouse RE (promoter
and enhancers) candidates predicted by human and
mouse ENCODE projects (http://promoter.bx.psu.edu/
ENCODE/download.html) were used. Next, REs were
classified as species-specific or conserved by conducting
BLASTZ chain alignments of human and mouse genomes
and using BnMapper to align mouse cis-REs with the hu-
man genome (33). Specifically, ‘mm9.hg19.rBest.chain’ was
used to conduct one-to-one mapping of sequence chains be-
tween the mouse and human genomes (‘mm9’ and ‘hg19’).
One-to-many orthologous sequences were excluded from
the mapping analysis.

To quantitatively represent the species specificity of the
REs in regulatory networks, we measured the ‘conservation
of REs’ by calculating the ratio of conserved REs to all de-
tected REs in the functional module of each regulatory net-
work. ‘Species-specific RE in regulatory network’ was mea-
sured by calculating the ratio of species-specific REs to all
detected REs in the functional module of each regulatory
network. All processes were conducted in promoters and
enhancers.

Calculating conservation of TFBSs in regulatory networks

To obtain the genomic locations of TFBSs in the regulatory
network, we used a curated collection of sequence-binding
motifs for 662 TFs, and each was assigned a confidence
score based on its evolutionary conservation across mam-
mals (34–36). To use reliable associations between TFBSs
and their target genes, TFBSs were assigned to the genes
when the sites were localized within 5000 bps from the TSSs.
A TSS of a gene is defined as the first 5′ base of the gene
sequence deposited in the Ensembl genome annotation sys-
tem.

To examine the evolutionary divergence of TFBSs in the
regulatory network, we aligned human and mouse genomes
and calculated the sequence identities of the TFBSs in the
regulatory network of each HPG and LPG and then found
the average. As an alignment method, we used BLASTZ
(37,38), specifically designed to align two long genomic se-
quences. This alignment method has been used in studies of
the evolutionary conservation of sequences, such as miR-
NAs (39) and TFBSs (40). The TFBSs of HPGs and LPGs
were mapped to the human genome (hg19) and aligned with
the mouse genome (mm10). We obtained 105 HPGs and 113
LPGs comprising at least one aligned TFBS in their regula-
tory networks. The calculation of sequence identities of the
TFBSs was conducted except for 2 bp at both ends of the
TFBSs (4 bp in total) since sequence mismatches in periph-
eral positions have less impact on TF binding than those in
core positions (41).

Validating the transcriptomic differences between human and
mouse
Validating the rewired RCs was conducted by calculating
the changes in target gene expression in the regulatory net-
works between humans and mice. We utilized the expression
datasets of both species from ENCODE and FANTOM5,
which provide expression levels for each gene in human
and mouse homologous tissues (27). Specifically, in the EN-
CODE dataset, transcriptomes of both species were avail-
able in 13 tissues (brain, lung, heart, liver, spleen, adrenal
gland, adipose tissue, kidney, pancreas, small intestine, sig-
moid colon, testis and ovary). In FANTOM5, transcrip-
tomes of the both species were available in 21 tissues (lymph
node, artery, appendix, cerebellum, colon, diencephalon,
epididymis, hippocampus, lung, medulla oblongata, ovary,
pancreas, prostate, skin, spinal cord, spleen, submandibu-
lar gland, testis, tongue, uterus and vagina). To compare
gene expression data from each species, we performed quan-
tile normalization of the FPKM values. Covariance- and
rank-based correlations of the gene expression profiles were
calculated using the Pearson coefficient and Kendall co-
efficient (� ). The expression conservation of the regula-
tory network is defined as the average value of the cor-
relation of target gene expression levels in the functional
module.

Expression conservationρ =

1
|G|

∑
g∈G

∑
t∈T [SH (g, t)SM(g, t)] − 1

|T|
∑

t∈T SH (g, t)SM(g, t)√(∑
t∈T [SH (g, t)]2 − 1

|T|
∑

t∈T [SH (g, t)]2
) (∑

t∈T [SM(g, t)]2 − 1
|T|

∑
t∈T [SM(g, t)]2

) ,

where G is a gene group in a functional module within the
regulatory network, and T is a homologous tissue used for
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measuring transcriptomic profiling. SH(g, t) and SM (g, t)
are the expression levels (FPKM) of gene g in a homologous
tissue t of human and mouse, respectively.

Expression conservationτ =
1

|G|
∑
g∈G

2
|T| (|T| − 1)

∑
t1, t2 ∈ T

t1

lt; t2

[sgn (SH (g, t1) − SH (g, t2)) sgn (SM (g, t1) − SM (g, t2))] ,

where all the conditions are the same as described above.
Furthermore, module boundaries to shape the pheno-

typic outcomes could be diverse, so we processed all tran-
scriptomic analyses using different boundaries for the func-
tional modules as follows: gene function (gene ontology
bioprocess), protein complex (CORUM), and biological
pathway (Reactome) (42–44).

RESULTS

Measurements of the PS scores of orthologous genes in hu-
mans and mice

To create a normalized PS score, all So were transformed
into Z-scores by comparisons with random gene pair se-
mantic similarity scores (SR) (Supplementary Figure S1C).
So could have bias due to the number of phenotype ontolo-
gies associated with orthologous genes. To delete term num-
ber bias in each orthologous gene pair, we processed the
normalization step using SR with similar numbers of pheno-
type terms in both human and mouse species. For the nor-
malization of NEXN, SR were chosen with the same number
of HPO terms for human genes and MPO terms for mouse
orthologues. The PS score was calculated by transforming
SO into Z-scores by term number normalization. (SR of
NEXN is 4.72.) Finally, we obtained 2,142 PS scores for or-
thologous relationships (Supplementary Figure S1D; Sup-
plementary data S1); 642 high phenotype similarity genes
(HPGs) represented the set of orthologous genes ranked in
the top 30% of PS score and showed significantly high phe-
notype similarity with SR (P≤ 1.33 × 10–2). In contrast,
642 low phenotype similarity genes (LPGs) represented the
orthologous gene group ranked in the bottom 30% of PS
score. The presence of LPGs, which show no statistical dif-
ference in phenotypic similarity distribution compared with
SR (P ≥ 0.2486), indicates that a certain proportion of or-
thologous genes do not share the same or similar pheno-
types across species. Notably, we randomly deleted x% of
phenotype terms in genotype–phenotype mapping in both
species and then newly calculated the PS scores for each or-
thologous relationship (10 ≤ x ≤ 90). The original PS score
and the x%-deleted-version PS score show high correlation,
and the convergent tendency was detected using a small pro-
portion of deleted phenotype terms (Supplementary Figure
S8).

Constructing GRNs for orthologous genes based on func-
tional modules

To analyze whether observed phenotypic differences can be
explained by the rewiring of regulatory networks between
species, we first constructed regulatory networks for each

orthologous gene. The regulatory network of an ortholo-
gous gene consists of a functional module, TFs, and RCs be-
tween TFs and target genes. A functional module is defined
as genes sharing biological processes with an orthologous
gene and is regarded as a gene regulation target of a reg-
ulatory network. Gene sets in functional modules showed
significantly high co-expression levels compared to random
gene modules (Supplementary Figure S5; P = 8.91 × 10–150,
Mann–Whitney U test;), indicating that the expression lev-
els of genes in a functional module are regulated together.
TFs are used when RCs exist between a TF and a gene in a
functional module (24,26). TFs that are not significantly en-
riched in a functional module are filtered because those TFs
are not likely to be considered regulators of the functional
module (25).

Whether regulatory networks of orthologous genes can
be built on a collection of false-positive connections dur-
ing immunoprecipitation in ChIP-seq may be speculative
(45). To validate this idea, we analyzed the co-expression
of TFs and target genes in the functional module. We com-
pared TF–target gene co-expression levels with and without
RCs (Supplementary Figure S6). TFs with RCs were highly
co-expressed in the functional module compared with TFs
without RCs (P = 1.11 × 10–41; Mann–Whitney U test).
Furthermore, we validated that the regulatory network of
an orthologous gene can represent phenotypes of the or-
thologous gene; thus, we analyzed the phenotypic similar-
ity between genes in a functional module of the regulatory
network. Specifically, the phenotypic similarity between a
human orthologous gene and the gene set of the func-
tional module was calculated using the overlap of annotated
HPO terms to genes. We found that the functional mod-
ules of the regulatory network showed significantly high
similarity to HPOs of the human orthologous gene com-
pared to sets of random gene modules (Supplementary Fig-
ure S7; P = 8.10 × 10–182, Mann–Whitney U test;). Taken
together, we constructed regulatory networks for ortholo-
gous genes that were potentially generated by the regula-
tory relationship between TFs and target gene sets, rep-
resenting the phenotypes associated with the orthologous
genes.

Analysis of the conservation of gene regulation

Based on the constructed regulatory networks, we analyzed
the conservation of RCs, REs, and transcriptomic patterns
in tissues. First, to quantitatively measure the rewiring of
regulatory networks, we compared the RCs of regulatory
networks between human and mouse species (Figure 1A).
Evolutionary explanations for the discrepancies in RCs be-
tween species could be found in noncoding REs (46). Thus,
to measure the conservation of REs, we classified all REs
into species-specific or conserved REs (Figure 1B). After
aligning the human and mouse noncoding sequences, pro-
moters and enhancers that were detected in only one species
were regarded as species-specific REs. For the validation of
the conservation of the regulatory network, we proceeded to
analyze the conservation of transcriptomic patterns across
21 tissues ((Figure 1C). The following results show the com-
parison of LPGs and HPGs to identify the correlation be-
tween phenotypic differences and the rewiring of regulatory
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Figure 1. Conservation of regulatory network connections, regulatory elements, and transcriptomic tissue patterns. (A) The conservation of regulatory
connections (RCs) represents the conservation of regulatory networks between humans and mice. (B) The conservation of regulatory elements (REs) was
measured by detecting REs including enhancers and promoters in both species. If an enhancer was detected in one species, it was mapped as a species-
specific enhancer. If an enhancer was found in both species, it was considered a conserved enhancer. (C) The conservation of gene expression was calculated
by comparing tissue transcriptomes in humans and mice using ENCODE and FANTOM5.

networks between human and mouse species occurring dur-
ing evolution.

Rewiring of regulatory networks indicates phenotypic differ-
ences in orthologous genes

We observed that the evolutionary rewiring of regulatory
networks contributes to phenotypic discrepancies in orthol-
ogous genes between humans and mice. Importantly, this
observation was only shown when we used regulatory net-
works that we based on functional modules, not on the di-
rect regulation of a single gene. The regulatory networks
of LPGs showed low conservation scores of RCs, whereas
those of HPGs had relatively high conservation scores (Fig-
ure 2A, P = 1.93 × 10–4, Mann–Whitney U test; Supple-
mentary Figure S9; Supplementary data S2). Specifically,
we quantified the conservation of RCs between humans and
mice using the Jaccard index for the regulatory networks
of each orthologous gene. When we exploited a database
of regulatory connections, TRRUST, which uses literature-
based data mining, significant differences in the conser-
vation of RCs were also observed between the regulatory
networks of LPGs and HPGs (Supplementary Figure S10)
(26). We validated the conservation of RCs using a different
similarity coefficient method, the overlap coefficient, and
discovered that regulatory networks of LPGs are rewired

more frequently than HPGs (Supplementary Figure S11A).
In contrast, without regulatory networks for orthologous
genes, the regulation of single genes for TFs does not ex-
plain the phenotypic differences between species (Figure
2B, P = 1.58 × 10–1, Mann–Whitney U test; Supplementary
Figure S11B). Additionally, evolutionary rewiring of the
regulatory networks in varied module sizes and diverse PG
class cutoffs captured phenotypic differences between or-
thologous genes between the species. (Supplementary Fig-
ure S12; Supplementary Figure S13). These results suggest
that genes that confer different phenotypes tend to be reg-
ulated by distinct TFs between humans and mice.

TFs often cooperate with each other to regulate the ex-
pression of target genes (47,48). Based on this biologi-
cal mechanism, we scrutinized the conservation of the co-
regulation by TFs of the regulatory networks for each or-
thologous gene. The conservation of the co-regulatory rela-
tionship between human and mouse was significantly lower
in the regulatory networks of LPGs than in those of HPGs
(Figure 2C; P = 2.68 × 10–3, Mann–Whitney U test;). Sim-
ilar to results shown in Figure 2B, the conservation of TF
co-regulation could not explain the phenotypic differences
in orthologous genes between human and mouse (Figure
2D; P = 2.67 × 10–1, Mann–Whitney U test). Additionally,
we tested whether LPGs were under different developmen-
tal trajectories between the species. Orthologous genes of
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Figure 2. Regulatory network conservation and phenotypic similarity. (A) The conservation of regulatory networks in low phenotype similarity genes
(LPGs) and high phenotype similarity genes (HPGs). (B) The conservation of the regulation of a single gene in LPGs and HPGs. (C) The conservation of
transcription factor (TF) co-regulation of networks in LPGs and HPGs. (D) The conservation of TF co-regulation of single genes in LPGs and HPGs. The
number of LPGs and HPGs used in each test is written under the x-axis. An LPG, phosphorylase kinase catalytic subunit gamma 2 (PHKG2), was used
to illustrate (E) the phenotypic similarity matrix and (F) regulatory network conservation, and an HPG, tetratricopeptide repeat domain 21B (TTC21B),
was used to illustrate (G) the phenotypic similarity matrix and (H) regulatory network conservation. Filtered-out TF indicates a TF that was filtered out
during the enrichment test because of its regulatory links to the functional module.
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phenotypic differences showed different expression trajec-
tories in organ development (Supplementary Figure S14).

PHKG2, an LPG, showed low phenotypic similarity with
a PS score 0.15 (Figure 2E), and high network rewiring was
observed between humans and mice (Figure 2F). HPOs as-
sociated with PHKG2 usually mapped to liver physiology
and morphological dysfunctions such as ‘cirrhosis’, ‘hep-
atomegaly’, and ‘elevated hepatic transaminases’. Unlike
the human gene, Phkg2, the orthologous gene in mouse,
showed erythrocyte-related phenotypes from MPOs like
“increased erythrocyte cell number.” The regulatory net-
work for PHKG2 exhibited a low conservation of RCs, and
FOXO3 and CREB1 were the main contributors to this low
conservation (Figure 2F). FOXO3 has RCs in the human
regulatory network and was reported as a regulator of liver
growth (49), whereas Creb1, which has RCs in the mouse
network, was reported as a regulator of hemoglobin dif-
ferentiation in mice (50). Next, we analyzed the rewiring
of regulatory networks of genes related to burn, an inflam-
matory disease, which was previously analyzed in terms of
mimicking the human disease with gene expression changed
between the two species. Regulatory networks of the burn-
related genes were highly rewired between humans and
mice (Supplementary Figure S15; P = 5.9 × 10−3, Mann–
Whitney U test). This result indicates a challenge exists to
engineer mouse models of inflammatory diseases, including
burn, consistent with previous study findings (51).

Conversely, as examples of HPGs, TTC21B and Ttc21b
(which have an orthologous relationship) map to similar
phenotypic traits from HPOs and MPOs, mostly to limb
bone and chest rib morphology (Figure 2G). The PS score
(2.66) indicated a high phenotypic similarity for this orthol-
ogous relationship, and a high conservation of network con-
nections was observed with consistent regulation by GLI1,
GLI2 and GLI3 across species (Figure 2H). Previous stud-
ies have reported that GLI1, GLI2 and GLI3 play key roles
as osteogenic progenitors for bone formation and fracture
repair both in humans and mice (52–54).

The structure of co-regulation networks impacts on pheno-
typic differences

We next investigated how the rewiring of RCs collectively
impacts on the regulation of the functional modules based
on network topology (Figure 3A). We constructed co-
regulation networks, in which target genes were connected
by shared TFs, and investigated their core structures within
the functional modules. The cores were defined as k-cores,
which are the subnetworks comprising only the nodes with
the network degree greater than or equal to k. It was shown
that the k-cores are effective decomposition for examining
the structural diversity embedded in the networks. (30)

We observed that co-regulatory networks of LPGs were
less conserved for the core structure of the co-regulation
networks than those of HPGs. With k = 3, co-regulatory
networks of LPG showed lower overlap of core structures
between human and mouse than those of HPGs. (Figure
3B; P = 3.03 × 10–2, Mann–Whitney U test) To quantify
the overlap, we calculated the maximum matching ratio that
takes the average overlap score with 1-to-1 pairs of the best
matching. (see Methods) We also observed similar results

with varying k = [1, 4] (Supplementary Figure S16A). The
only exception was the case of k = 2, in which the lower
overlap of LPGs was not statistically significant (P = N.S.,
5.69 × 10–2).

One would expect that the dissimilarity of core struc-
tures is derived from the rewiring of co-regulation links. As
expected, co-regulatory networks of LPGs exhibited lower
overlap of co-regulation links than co-regulatory networks
of HPGs. (Figure 3C; P = 4.76 × 10–3, Mann–Whitney U
test) Interestingly, we found that the core structures play im-
portant role for the distinction between co-regulatory net-
works of LPGs and HPGs with controlled levels of the
rewiring. Divided into three bins with the link overlap,
the low and medium group showed differences in the core
structure between the co-regulatory networks of LPGs and
HPGs (Figure 3D; k = 3). This finding indicates that the
core structure further characterizes the conservation of co-
regulation networks relevant to the phenotypic conserva-
tion, accompanied with that of links. Of note, in case of
k = 2, co-regulatory networks of LPGs exhibited a lower
core overlap in the medium group. (Supplementary Fig-
ure S16B) Examples of LPGs and HPGs are Glucokinase
(GCK) and Bone Morphogenetic Protein Receptor Type 1B
(BMPR1B), respectively. (Figure 3E and F)

Species-specific REs are related to network rewiring and phe-
notypic differences

REs that control the expression of target genes are ex-
pected to undergo faster evolution than TFs (46); there-
fore, their sequence alterations could be indicative of regu-
latory network rewiring across evolution in many cases (55).
We found that species-specific REs, including promoters
and enhancers, can bring about the rewiring of regulatory
networks across species. More specifically, the conserva-
tion of RCs in a regulatory network is positively correlated
with promoter and enhancer conservation between the two
species (Figure 4A and B; P = 1.58 × 10–13 and ρ = 0.403
(promoter), P = 3.97 × 10–7 and ρ = 0.204 (enhancer)).
The conservation of REs can be expressed as a quantitative
score of the ratio of conserved REs to all REs in a regu-
latory network. Next, to test whether species-specific REs
could contribute to the evolution of associated phenotypes,
we analyzed the proportion of species-specific REs in reg-
ulatory networks according to LPGs and HPGs. We found
that regulatory networks of LPGs have a higher proportion
of species-specific REs compared to those of HPGs (Figure
4C and D; P = 5.74 × 10–8 (promoter), P = 1.15 × 10–24

(enhancer), Mann–Whitney U test). Additionally, the dis-
crepancy of the TF sequence could not explain the rewiring
of the regulatory networks of orthologous genes (Supple-
mentary Figure S17) (56). These data reveal that the evolu-
tionary divergence of REs potentially leads to the rewiring
of RCs and brings about associated phenotypic differences
in orthologous genes between humans and mice.

Species-specific REs in regulatory networks could ex-
plain the phenotypic differences in orthologous genes. For
example, the regulatory network of PHKG2, an LPG, has
multiple species-specific enhancer candidates in the up-
stream regions of target genes such as Ppara and Nfkb1
(Figure 4E). Specifically, the mouse histone modification
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Figure 3. The structure of co-regulation and phenotypic differences. (A) LPGs have lower overlap of co-regulation networks between humans and mice
compared with HPGs. (B and C) Core overlap and link overlap of co-regulatory networks in low phenotype similarity genes (LPGs) and high phenotype
similarity genes (HPGs). (D) Comparison of core overlap between HPGs and LPGs along with link overlap. (E and F) Examples of co-regulatory networks
in LPGs (Glucokinase, GCK) and in HPGs (Bone Morphogenetic Protein Receptor Type 1B, BMPR1B).

marker H3K4me1, which is a hallmark of enhancer activ-
ity, was not aligned with similar markers found on human
regulatory noncoding sequences. Conversely, the regulatory
network of plakophilin 2 (PKP2), an HPG, showed multi-
ple conserved enhancer candidates in the upstream regions
of Tnni1 and Sgk3 (Figure 4F).

Next, for a more in-depth analysis, the sequence iden-
tity of transcription factor-binding sites (TFBSs) were an-
alyzed according to genes with phenotypic differences. We
found that target genes in the regulatory networks of genes
with phenotypic differences show a low sequence identity

of TFBSs between humans and mice (Supplementary Fig-
ure S18A, P = 4.23 × 10–2, Mann–Whitney U test). Specif-
ically, we processed the sequence alignments by utilizing a
BLASTZ search between human and mouse chromosomes
(37) and measured the sequence similarities between hu-
man TFBSs with the aligned mouse chromosome. In the
regulatory network of PHKG2, an LPG, the MYB proto-
oncogene (MYB, a TF) was found to regulate high-mobility
group protein 1 (HMBG1), and the TFBS of MYB showed
sequence differences between humans and mice (Supple-
mentary Figure S18B). Meanwhile, for the regulatory net-
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Figure 4. Conservation of regulatory elements, the regulatory network, and associated phenotypes. (A and B) Correlation between the conservation of
regulatory connections and regulatory elements (REs): promoters (A) and enhancers (B). (C and D) Species-specific REs [promoters (C) and enhancers
(D)] in regulatory networks for low phenotype similarity genes (LPGs) and high phenotype similarity genes (HPGs). (E and F) Examples of species-specific
enhancers in regulatory networks of PHKG2 (LPGs) (E) and PKP2 (HPGs) (F).
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works of genes with similar phenotypes, the TFBSs of target
genes showed high sequence conservation between species.
In the regulatory network of the ATP-binding cassette sub-
family D member 3 (ABCD3), an HPG, the peroxisome
proliferator-activated receptor gamma TF regulated acyl-
CoA synthetase long chain family member 1 (ACSL1),
and its TFBS showed significantly high identity between
humans and mice (Supplementary Figure S18C). Further-
more, we validated the correlation between the conserva-
tion of RCs and TFBS sequence identities in the regula-
tory networks. We found that the conservation of RCs was
substantially lower in the regulatory networks of low TFBS
sequence identity than those of high TFBS sequence iden-
tity (Supplementary Figure S19, P = 3.51 × 10–4, Mann–
Whitney U test). Thus, we conclude that the evolution of
TFBS sequence differences may induce phenotypic differ-
ences through the rewiring of regulatory networks. Addi-
tionally, we analyzed the predictive power of the features
(conservation of RC and conservation of RE) and found
that those features inferred the phenotypic similarity of or-
thologous genes between humans and mice (Supplementary
Figure S20).

Validation of phenotypic differences between human and
mouse transcriptomes

Regulatory networks control target gene expression; thus,
regulatory changes across species can lead to transcriptomic
divergence during evolution (46). We observed that highly
conserved regulatory networks of orthologous genes re-
sulted in high expression conservation between humans and
mice. Specifically, regulatory networks of highly conserved
RCs showed significantly high levels of expression conser-
vation between species compared to those with low con-
served RCs (Figure 5A; P = 1.01 × 10–5, Mann–Whitney U
test). Expression conservation was measured by calculating
the similarity of tissue expression patterns obtained from
the Encyclopedia of DNA Elements (ENCODE) and Func-
tional Annotation of the Mouse/Mammalian Genome
(FANTOM5) datasets. We validated phenotypic differences
by analyzing transcriptomic divergence in the functional
modules of regulatory networks between humans and mice.
Target genes in the regulatory networks of LPGs showed
lower expression conservation than those of HPGs (Figure
5B; P = 1.03 × 10–4, Mann–Whitney U test; supplementary
data S3).

For example, the transient receptor potential cation chan-
nel subfamily M member 7 (TRPM7), an LPG, exhib-
ited different human disease phenotypes compared with
the mouse orthologous gene, Trpm7 (Figure 5C). Ge-
nomic alterations in human TRPM7 are known to asso-
ciate with Parkinson’s disease via the phenotype terms of
“Parkinsonism” and “muscle weakness.” However, either
the knockout or mutation of mouse Trpm7 exhibited dif-
ferent phenotypic symptoms, such as “abnormal cell phys-
iology” and “embryonic growth arrest.” Moreover, the or-
thologous relationship between human TRPM7 and mouse
Trpm7 showed low expression conservation in the func-
tional module of the regulatory network (Figure 5D). In
the tissue transcriptome obtained from ENCODE, differ-
ent gene expression patterns were detected in the brain, for

instance, for PGAM family member 5 (PGAM5), trans-
membrane protein 123 (TMEM123), and baculoviral IAP
repeat-containing 2 (BIRC2), which are target genes of the
regulatory network of TRPM7.

Conversely, 5′-aminolevulinate synthase 2 (ALAS2), an
HPG, mapped to the human disease term “sideroblastic
anemia,” and the mouse orthologue Alas2 is associated with
the mouse phenotype terms ‘pancytopenia’ and ‘anemia’, a
near-identical finding (Figure 5E). Expression conservation
of the ALAS2 functional module was relatively higher than
that of TRPM7 (Figure 5F). Target genes in the regulatory
network of ALAS2 exhibited similar expression patterns be-
tween human and mouse as shown by the tissue transcrip-
tomic data, for instance, in biliverdin reductase B (BLVRB),
protoporphyrinogen oxidase (PPOX), and heme oxygenase
1 (HMOX1).

Our approach is valid, not merely using functional mod-
ules as defined by gene ontology but also using different
types of molecular interactions. One might ask whether
such a functional module boundary might influence the
analyses; thus, we applied diverse biological boundaries of
functional modules, such as bioprocess, mammalian protein
complex, and pathway modules (42–44). We found that the
conservation of expression was higher in functional mod-
ules of HPGs than those of LPGs in the examined tests
of available functional boundaries (Supplementary Figure
S21). For robust validation, we measured the conservation
of expression using different similarity coefficient measure-
ments of independent transcriptomic databases (i.e. EN-
CODE and FANTOM5). All of the results indicated that
the divergent expression of target genes in regulatory net-
works contributed to the phenotypic differences of orthol-
ogous genes between humans and mice.

DISCUSSION

Our analysis will be useful for developing mouse models
and the interpretation of biological results from mouse ge-
netics studies. Mouse phenologues, orthologous gene repre-
senting identical or similar phenotypes as human molecular
or disease symptoms, should be considered candidate genes
in experiments using mouse models (1). When it comes to
biological interpretation, unexpected phenotypic readouts
from mouse studies could be due to different evolution-
ary trajectories of regulatory mechanisms and discordance
of tissue gene expression levels between the two species.
Here, we showed that rewiring of GRNs and the diver-
gence of modular gene expression across species correlated
with the phenotypic differences of orthologous genes (Fig-
ure 2 and (Figure 5). We provide quantitative counting of
a tissue transcriptomic conservation to examine the con-
servation of phenotypic differences of orthologous genes
(http://sbi.postech.ac.kr/w/RN). We demonstrated that or-
thologous genes with high expression conservation, which
are controlled by conserved regulatory networks between
humans and mice, are more likely to be suitable for the anal-
ysis of human diseases using mouse models.

By reducing the high complexity of GRNs using the func-
tional modules of regulatory targets, we demonstrated that
the rewiring of RCs derived from varied cis-regulatory re-
gions contributes to the phenotypic divergence of orthol-

http://sbi.postech.ac.kr/w/RN
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Figure 5. Transcriptomic validation of regulatory network rewiring and phenotypic differences. (A) Comparison of the conservation of gene expression in
regulatory networks with low and high conservation of regulatory connections (RCs). (B) The conservation of gene expression in regulatory networks of
low phenotype similarity genes (LPGs) and high phenotype similarity genes (HPGs). (C) The PS score and gene set in functional modules of the regulatory
networks of TRPM7, an LPG. (D) The conservation of gene expression in the regulatory network of ALAS2, with a conservation score of all genes in the
functional module of the regulatory network. Examples of genes representing tissue transcriptomes in humans and mice. (E) The PS score and gene set in
the functional modules of the regulatory networks of ALAS2, an HPG. (F) The conservation of gene expression in the regulatory network of ALAS2, with
a conservation score of all genes in the functional module of the regulatory network. Examples of genes representing tissue transcriptomes in humans and
mice.



Nucleic Acids Research, 2022, Vol. 50, No. 4 1861

ogous genes between humans and mice. GRNs are com-
plicated because TFs usually have many regulatory targets
with various molecular functions and exert their activity
in a combinatorial manner (48). Indeed, we observed that
we could not characterize phenotypic divergence by inves-
tigating each regulatory target alone (Figure 2), possibly
because RCs linked to a single gene are unable to capture
the functional divergence associated with polygenic traits
across species. However, the investigation of all regulatory
targets may also not be a plausible approach, since the roles
of TFs in GRNs were almost identical between humans and
mice (13,32). Therefore, we anticipate that the functional
modules, as the unit of evolutionary divergence, effectively
connects the cis-REs and phenotypes. We indeed observed
that the core structures of co-regulation networks within
functional modules further improves our ability to com-
prehend phenotypic divergence between human and mouse
(Figure 3), indicating the modular structure at many differ-
ent hierarchies may play a pivotal role to comprehend the
phenotypic consequences emerged from the GRN’s diver-
gence. Importantly, previous studies support the hypothe-
sis that the functional module is the unit of evolutionary
divergence (17,18,57). Notably, the rewiring of regulatory
networks with predicted regulatory connections could not
explain the phenotypic differences of orthologous genes be-
tween humans and mice (Supplementary Figure S22), in-
dicating the need for sophisticated prediction of regulatory
connections.

We expanded the boundaries of phenotypes to physiolog-
ical traits in phenotypic evolution analysis, and quantita-
tively measured phenotypic similarity by comparing pheno-
type terms between humans and mice (supplementary Fig-
ure S1). Previous analyses of gene regulation have revealed
that different developmental processes lead to distinct mor-
phological phenotypes across species. Specifically, Those
studies analyzed changes in TF activity related to the loss
of specific morphological phenotypes (58,59). Due to pre-
viously uncovered associations between human genes and
diseases, we can take advantage of HPOs, which include on-
tology terms associated with disease symptoms (19). MPOs
could also be used to examine phenotype terms associated
with gene–phenotype relationships in mice (20). Genotype–
phenotype mapping is still limited to precisely compare phe-
notype terms because all the detectable symptoms are not
tested in whole genes in all tissues. The PS score is expected
to be the more explicit measurement with the accumulation
of phenotype annotations to genes across species. Addition-
ally, phenotypes that may be associated with certain phys-
iological systems affected in humans have not been thor-
oughly investigated in mouse models. In this case, the PS
scores of orthologous genes related to those phenotypes
could have low PS scores due to study bias. With the im-
provement in the MGI database for physiological pheno-
types of human diseases, the PS score will be updated to
overcome the limitation.

The integration of biological omics data within the
genotype–phenotype relationship is needed to better un-
derstand phenotypic discrepancies that arise during species
evolution (60–62). In our analysis, we explain phenotypic
evolution by analyzing the regulation of gene expression,

which is a part of the central dogma for the shaping of
phenotypes. A part of genotype–phenotype relationships
may not perfectly explain phenotypic differences, and some
LPGs still show high conservation scores of the regulatory
networks in our results (Figure 2). The molecular evolution
of other biological processes such as post-transcriptional
and translational regulation may also contribute to the
shaping of distinct phenotypes (63,64); thus, their molec-
ular evolution may further explain phenotypic differences
between species. Moreover, comparative analyses of pro-
teomes across species have revealed conserved and unique
biological processes (65). With advances in proteomics tech-
niques for the detection of multiple proteins and biomarkers
of post-translational regulation, cross-species comparisons
of proteomes could also be used to explain phenotypic dif-
ferences of orthologous genes between species in the near
future. The integration of gene expression and proteome
profiling is expected to provide a clearer understanding of
the phenotypic evolution of orthologous genes between hu-
mans and mice.
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