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Due to the rapid increase in the availability of patient data, there is significant interest 
in precision medicine that could facilitate the development of a personalized treatment 
plan for each patient on an individual basis. Radiation oncology is particularly suited for 
predictive machine learning (ML) models due to the enormous amount of diagnostic data 
used as input and therapeutic data generated as output. An emerging field in precision 
radiation oncology that can take advantage of ML approaches is radiogenomics, which is 
the study of the impact of genomic variations on the sensitivity of normal and tumor tissue 
to radiation. Currently, patients undergoing radiotherapy are treated using uniform dose 
constraints specific to the tumor and surrounding normal tissues. This is suboptimal in 
many ways. First, the dose that can be delivered to the target volume may be insufficient 
for control but is constrained by the surrounding normal tissue, as dose escalation can 
lead to significant morbidity and rare. Second, two patients with nearly identical dose 
distributions can have substantially different acute and late toxicities, resulting in lengthy 
treatment breaks and suboptimal control, or chronic morbidities leading to poor quality 
of life. Despite significant advances in radiogenomics, the magnitude of the genetic con-
tribution to radiation response far exceeds our current understanding of individual risk 
variants. In the field of genomics, ML methods are being used to extract harder-to-detect 
knowledge, but these methods have yet to fully penetrate radiogenomics. Hence, the 
goal of this publication is to provide an overview of ML as it applies to radiogenomics. 
We begin with a brief history of radiogenomics and its relationship to precision medicine. 
We then introduce ML and compare it to statistical hypothesis testing to reflect on 
shared lessons and to avoid common pitfalls. Current ML approaches to genome-wide 
association studies are examined. The application of ML specifically to radiogenomics 
is next presented. We end with important lessons for the proper integration of ML into 
radiogenomics.

Keywords: statistical genetics and genomics, radiation oncology, computational genomics, precision oncology, 
machine learning in radiation oncology, big data, predictive modeling
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1. iNTRODUCTiON TO RADiOGeNOMiCS

1.1. Normal Tissue Toxicity Directly Limits 
Tumor Control
Over 50 years before the discovery of the DNA double helix, radia-
tion therapy and normal tissue radiobiology became irrevocably 
linked after Antoine Henri Becquerel left a container of radium 
in his vest pocket, causing a burn-like reaction of erythema 
followed by ulceration and necrosis (1, 2). Ever since, the goal 
of therapeutic radiation has been to deliver a maximal effective 
dose while minimizing toxicity to normal tissues. The importance 
of this goal has increased as cancers that were previously fatal 
became curable and patients have had to live with long-lasting 
late effects and secondary malignancies (3, 4).

For several tumors, an argument can be made that survival 
is so poor that one should not be as concerned for late effects. 
However, acute toxicity may also constrain dose escalation, 
which directly limits tumor control, since a therapeutically 
efficacious dose may not be achievable due to toxicity. This 
is because dose tolerances are typically set for 5–10% toxicity 
in clinical trials, so the patients with the most radiosensitive 
normal tissue ultimately determine the limit for the maximum 
dosage for all patients (5, 6). As Becquerel noted, tumor control 
and normal tissue toxicity have been, and remain, irrevocably 
linked. Advances in the last decades from the fields of radiation 
physics and radiation biology have focused on finding ways to 
separate these two effects with varying success, as discussed 
below.

1.2. Technology Has improved Normal 
Tissue Toxicity
To improve therapeutic ratio (i.e., the cost–benefit of tumor 
control vs. normal tissue side effects) in recent decades, medical 
physics has made significant advances in the technology and 
techniques of radiation delivery to spare normal tissue (7). 
This includes moving from 2D treatment planning using X-ray 
films to 3D planning using CT-simulation, and now to inverse 
planning and fluence modulation to create conformal dose 
distributions employing intensity-modulated radiation therapy 
(IMRT) (8). IMRT not only utilizes more sophisticated hardware 
but also advanced treatment planning software and optimization 
algorithms. Multiple prospective and retrospective studies have 
demonstrated the superiority of IMRT in reducing toxicity for 
most solid cancer types, including those of the head and neck (9), 
lung (10), prostate (11), anus (8), and soft tissue sarcoma (12). 
Utilizing protons for cancer treatment provides another way 
to increase dose conformality and decrease normal tissue dose 
through the Bragg peak. Complementary technologies include 
improvements in image guidance (13), motion management (14), 
and patient positioning (15). Radiosurgery for central nervous 
system tumors is an attractive alternative to lengthier and more 
toxic treatments. Brachytherapy also offers dosimetric advan-
tages to decrease toxicity and improve tumor control. Due to 
the successes of the technological advancements, there has been 
relatively fast adoption of emerging physics technologies in the 
clinic as standard of care in many places.

1.3. Radiobiology and Normal Tissue 
Toxicity
While radiation physics was using increasingly complex methods 
and data to perform more individualized treatments, advance-
ments in radiation biology were also developing, but have yet to 
achieve the same level of clinical impact. Early efforts in the 1980s 
and 1990s to employ radiation biology approaches in the clinic 
focused on altered fractionation schedules to improve control of 
head and neck tumors and small cell lung cancer while sparing 
normal tissue toxicity. These trials demonstrated benefits to 
both hyperfractionation (16, 17) and accelerated fractionation 
(18, 19), but these protocols have not translated into changes in 
the standard of care at many centers or into similar studies in 
most cancers (20). Therapies for modulating tissue oxygenation 
and the use of hypoxic cell radiosensitizers and bioreductive 
drugs have been moderately successful in animal studies and 
randomized clinical trials (21) but also have not yet reached wide 
penetration in the United States despite level I evidence, often due 
to side effects. More recently, hypofractionation (i.e., larger doses 
of radiation per fraction) has become widely adopted; however, 
there is significant controversy as to how this can best be modeled 
(22–26). Whereas advances in radiation physics brought about 
measurable improvements in both tumor control and normal 
tissue protection as demonstrated through multiple clinical  
trials—largely due to IMRT—this could not be said for advances 
in radiobiology. It became clear that a different approach other 
than modeling of fractionation would be necessary to keep pace 
with the increasing torrent of clinical data. Such an opportunity 
would arise at the turn of the twenty-first century with substantial 
advances in molecular biology and the first draft of the human 
genome (27, 28) as discussed below.

1.4. Genomic Basis for Radiotherapy 
Response
Through studies of patients following radiotherapy (29, 30), it has 
become apparent that patient-related characteristics, including 
genomic factors, could influence susceptibility for the develop-
ment of radiation-related toxicities (31). To identify the genomic 
factors that may be associated with normal tissue toxicities, a 
series of candidate gene studies was performed that resulted in 
more than 100 publications from 1997 to 2015 (32). However, 
with a few exceptions, the findings were largely inconclusive, 
and independent validations were rare (33). The risk of spurious 
single-nucleotide polymorphism (SNP) associations has been a 
concern for candidate gene association studies even before the 
advent of genome-wide association studies (GWAS) (34).

With improved understanding of the genetic architecture 
of complex traits, we now know that a few variants in limited  
pathways—such as DNA damage response—cannot alone explain 
most of variation in radiotherapy response. While this work was 
in progress, results of the Human Genome Project and related 
efforts demonstrated the magnitude of genetic variation between 
individuals. Over 90% of this variation comes from common 
SNPs (frequency >1%) and rare variants. There are about 10 mil-
lion common SNPs in the human genome and any locus can be 
affected. These variants can be in coding regions (exons), introns, 
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or intergenic regulatory regions. Early efforts to understand how 
SNPs were linked to phenotypic traits were marred by poor statis-
tical understanding of correction for multiple hypothesis testing, 
which led to multiple small and underpowered studies (35).

To improve power to detect new SNP biomarkers for radiation 
toxicity, the International Radiogenomics Consortium (RGC) was 
formed in 2009 to pool individual cohorts and research groups. 
One of the main goals is to determine germline predisposition to 
radiation toxicity and there have been several studies from RGC 
investigators that have identified novel risk SNPs.

REQUITE is a project led by RGC members to prospectively 
collect clinical and biological data, and genetic information for 
5,300 lung, prostate, and breast cancer patients (36). The RGC 
also collaborates with the GAME-ON oncoarray initiative (32).

1.4.1. Fundamental Hypothesis of Radiogenomics
Andreassen et  al. reported three basic hypotheses of radiog-
enomics (32):

 (a) Normal tissue radiosensitivity is as a complex trait dependent 
on the combined influence of sequence alteration of several 
genes.

 (b) SNPs may make up a proportion of the genetics underlying 
differences in clinical normal tissue radiosensitivity.

 (c) Some genetic alterations are expressed selectively through 
certain types of normal tissue reactions, whereas others 
exhibit a “global” impact on radiosensitivity.

Regarding these hypotheses, it is prudent to add that we are 
now aware that there are also epigenetic components of normal 
tissue radiosensitivity that are—by definition—not captured by 
genetic sequences but are heritable nonetheless.

1.4.2. The Importance of Fishing
Genome-wide association studies could certainly be categorized 
as a “fishing expedition,” which has pejorative connotations given 
the history of improper correction for multiple hypothesis testing 
(see Multiple Hypothesis Correction). However, fishing expedi-
tions in genomics are a necessity to generate new hypotheses. 
Recent GWAS performed by members of the RGC have been 
able to identify novel associations of SNPs in genes that were 
previously not linked with radiation toxicity (37). For example, 
TANC1 is a gene that encodes a repair protein for muscle damage 
and is one such example of a novel radiosensitivity association 
discovered in 2014 (38). A meta-analysis of four GWAS also 
identified two SNPs, rs17599026 in KDM3B and rs27720298 in 
DNAH5, which are associated with increased urinary frequency 
and decreased urinary stream, respectively (39).

1.5. Precision Medicine and Single  
Drug Targets
Compared to biomarker panels for normal tissue toxicity to 
radiation therapy, the realm of biomarker panels for prediction 
of tumor response is a much wider field, as it also encompasses 
the domains of medical and surgical oncology. Early successes 
in predictive biomarkers focused on single mutations, such as 
the BCR-ABL translocation observed in chronic lymphocytic 

leukemia or oncogene amplification, such as Her2-neu or EGFR. 
In the last half decade, therapies targeting tyrosine kinase muta-
tions in lung cancer or high expressing immune markers in many 
tissue types have become standard of care. In March 2017, the US 
Food and Drug Administration (FDA) granted a tissue-agnostic 
“blanket approval” for the PD-1 inhibitor pembrolizumab for any 
metastatic or unresectable solid tumor with specific mismatch 
repair mutations (40); this was the first time FDA approval had 
been granted for a specific mutation regardless of tumor type.

Given the various targeted agents, there are many who herald 
this as the age of “precision medicine.” In late 2016, the American 
Society for Clinical Oncology (ASCO) launched Journal of 
Clinical Oncology (JCO) subjournals “JCO Clinical Cancer 
Informatics” and “JCO Precision Oncology.” In accordance with 
the single target–single drug approach, contemporary precision 
medicine drug trials are based on amassing targetable single 
mutations (NCI-MATCH) or pathway mutations (NCI-MPACT) 
(41). While the initial tumor response can be quite impressive, 
durable response is an issue as single-target drugs are prone to 
develop resistance (42, 43).

1.6. Precision Medicine and Multigene 
Panels
Since the discovery of the Philadelphia chromosome and 
imantinib, most drugs remain focused on single biomarkers, 
such as a single mutation or a gene expression alteration with 
a large penetrance. However, we are rapidly depleting the pool 
of undiscovered, highly penetrant genes. Soon, targeting the low 
hanging fruit through a one gene–one phenotype approach will 
no longer be sufficient for effective “precision medicine.” This is 
where multiple biomarker panels are making an impact. While 
these do not necessarily provide “multiple targets” for drugs 
to act on, they do provide a prognostic picture of the effects of 
tumor mutational burden. The earliest and most well known of 
these laboratory-developed biomarker panels are the 21-gene 
recurrence score Oncotype DX (Genomic Health, Inc., Redwood 
City, CA, USA) (44) and 70-gene MammaPrint (Agendia BV, The 
Netherlands) (45). These panels are used to make critical clinical 
decisions regarding whether select breast cancer patients are 
predicted to benefit from chemotherapy.

Current efforts are aimed at understanding the genomic sig-
nature of metastatic cancer. Memorial Sloan Kettering has used 
their MSK-IMPACT gene expression panel to sequence tumors 
from over 10,000 patients with metastatic disease to be able to 
prognosticate whether a future patient will develop metastases 
(46). While the development of these laboratory tests requires 
significant investment, they may ultimately save substantial sums 
by decreasing unnecessary therapies and toxicities while improv-
ing quality of life for cancer patients.

Recent discussions about the state of precision medicine 
and genomically guided radiation therapy include a review by 
Baumann et al. (7) and a joint report by the American Society 
for Radiation Oncology (ASTRO), American Association of 
Physicists in Medicine (AAPM), and National Cancer Institute 
(NCI) summarizing a 2016 precision medicine symposium (6) 
(see Promoting Research).
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A complicating factor in tumor genomics is a result of tumor 
heterogeneity, which results in different subtypes within the same 
tumor, as shown in glioblastoma (47), colorectal cancer (48), and 
pancreatic cancer (49). Given the limited ability of single-target 
drugs, therapies may select certain subclones of higher fitness 
to predominate and create mechanisms of resistance. Selection 
occurs not only from therapy but also from local and microen-
vironment constraints (50), leading to an increasingly robust 
evolutionary model of tumor heterogeneity obeying Darwinian 
selection. Distant metastases display this evolutionary behavior 
as well as they seed further distant metastases (51). To better 
target a tumor’s genomic landscape, we may need to sample 
multiple spatially separated sites and incorporate evolutionary 
analysis (52).

1.7. Tumor Control and Radiogenomics
Although a substantial emphasis of radiogenomics has been to 
identify biomarkers predictive of normal tissue toxicities, there 
are efforts being made to develop tests for tumor response to 
radiation (53). In the largest preclinical study, Yard et al. showed 
that there is a rich diversity of resultant mutations after exposing 
533 cell lines across 26 tumor types to radiation (54). Within 
these tumor cell lines, radiation sensitivity was enriched in gene 
sets associated with DNA damage response, cell cycle, chromatin 
organization, and RNA metabolism. By contrast, radiation resist-
ance was associated with cellular signaling, lipid metabolism and 
transport, stem-cell fate, cellular stress, and inflammation.

PORTOS is a 24-gene biomarker predictive assay that can 
determine which post-prostatectomy patients would benefit 
from post-operative radiation therapy to decrease their 10-year 
distant metastasis-free survival (55). PORTOS is the first of future 
clinical radiogenomics assays to help determine which patients 
will benefit from radiation.

The radiosensitivity index (RSI) was developed at Moffitt 
Cancer Center to predict radiation sensitivity in multiple tumor 
types (56, 57). Its signature is based on linear regression on the 
expression of 10 specific genes (AR, cJun, STAT1, PKC, RelA, 
cABL, SUOMO1, CDK1, HDAC1, and IRF1) that were chosen 
from a pool of over >7,000 genes using a pruning method derived 
from systems biology principles. These genes are implicated in 
pathways involved in DNA damage response, histone deacetyla-
tion, cell cycle, apoptosis, and proliferation. More recently, the 
RSI has been combined with the linear quadratic model of cell kill 
to create a unified model of both radiobiologic and genomic vari-
ables to predict for radiation response and provide a quantitative 
link from genomics to clinical dosing (58).

2. iNTRODUCTiON TO MACHiNe 
LeARNiNG (ML)

Machine learning is a field evolved from computer science, arti-
ficial intelligence, and statistical inference that seeks to uncover 
patterns in data to make future predictions. Unlike handcrafted 
heuristic models often seen in clinical medicine, ML methods 
have a foundation in statistical theory and are generalizable to 
a type of problem as opposed to specific problems (59). There 

are many ML methods, and each has unique advantages and 
disadvantages that merit consideration by the user prior to 
attempting to model their results (60, 61). Similarly, there are 
several ML-friendly programming languages and specialized 
libraries to choose from, including Python’s Scikit-learn package 
(62), MATLAB’s Statistics and Machine Learning Toolbox (63), 
and R (64).

2.1. Statistical inference vs. ML
Machine learning has considerable overlap with classical statistics 
and many key principles and methods were developed by stat-
isticians. There continues to be considerable crossover between 
computer science and statistics. Breiman wrote about the differ-
ences between the two fields, calling ML the field of black box 
“algorithmic models” and statistics the field of inferential “data 
models” (65).

In ML, models are commonly validated by various measures 
of raw predictive performance, whereas in statistics, models are 
evaluated by goodness of fit to a presumptive model. These models 
can be used for either explaining or predicting phenomena (66). 
One key difference that readers of clinical papers will immediately 
notice is that formal hypothesis testing is a rarity in ML. This stems 
from the fact that ML is concerned with using prior information 
to improve models, rather than inferring a “belief ” between two 
hypotheses. Classical hypothesis testing—used in most clinical 
studies—relies on the frequentist approach to probability. In this 
interpretation, one selects a level of belief α and—assuming a 
certain probability distribution—then determines whether the 
obtained result is extreme enough such that if the experiment was 
repeated many times, one would see this result at a rate of ≤α. This 
rate is called the p-value, and the significance level α is typically 
set at 0.05. ML papers rarely discuss significance levels, instead 
seeking to identify maximum likelihood models or sample over 
spaces of possible models, as in Bayesian statistics. To determine 
significance levels requires some assumptions regarding the 
distribution implied by a null hypothesis for the data, which is 
more difficult for complex problems such as speech recognition, 
image recognition, and recommender systems.

2.2. An Update of Breiman’s Lessons  
From ML
In 2001, Breiman noted three important lessons from ML over 
the prior 5 years: the Rashomon effect, the Occam dilemma, and 
the curse of dimensionality. Here, we will re-visit these to discuss 
relevance to contemporary issues of ML usage in medicine.

2.2.1. Rashomon Effect
The Rashomon effect describes a multiplicity of models where 
there are many “crowded” models that have very similar per-
formance (i.e., accuracies within 0.01) but which may have very 
different compositions (i.e., different input variables). Within 
oncology, this effect is well demonstrated in breast cancer where 
Fan et al. showed that four of five different gene expression mod-
els (including MammaPrint and Oncotype DX Recurrence Score) 
showed significant agreement in patient prognosis despite having 
very different inputs (67). This model crowding is magnified by 
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variable pruning (i.e., feature selection) as the remaining variables 
must then implicitly carry the effect of the removed variables. The 
Rashomon effect is popularly seen in nutritional epidemiology 
where observational studies routinely seem to show conflicting 
data about the risk or benefits of certain supplements (68). This 
phenomenon was studied in Vitamin E, where depending on 
which combinations of 13 covariates were selected, one could 
find a range in increase or decrease of Vitamin E-associated 
mortality—a so-called “vibration of effects” (69).

The Rashomon effect can manifest as model instability when 
multiple Monte Carlo repetitions of cross-validated model 
selection are performed (see CV Methodology) that result in 
different models selected in each repetition. This occurs due to 
minor perturbations in the data resulting from different splits 
and is particularly magnified for smaller datasets. Ensemble 
models (70) and regularization methods (see Embedding Feature 
Selection With the Prediction Model) (71) seem to work well for 
addressing this problem.

2.2.2. Occam Dilemma
William of Occam (c. 1285–1349) described the Principle of 
Parsimony as: “one should not increase, beyond what is necessary, 
the number of entities required to explain anything.” Breiman 
describes the Occam dilemma as the choice between simplicity— 
and interpretability—and accuracy. He noted that simple  
classifiers—such as decision trees and logistic regression (LR)—
were interpretable but were easily outclassed in classification 
performance by more complex and less-interpretable classifiers 
like random forests (RFs). However, increasing model complexity 
also tends to overfit. This dilemma has been partially mitigated 
by a better understanding of cross validation (CV) (see Cross 
Validation) as well as better strategies for automated control for 
model complexity.

In contemporary usage, where the boundary between inter-
pretable statistical models and “black box” ML models has 
become blurred, interpretability and accuracy discussions have 
resurfaced in the form of generative and discriminative models. 
Generative approaches resemble statistical models where the full 
joint distribution of features is modeled (see Bayesian Networks). 
Discriminative approaches focus on optimizing classification 

accuracy using conditional distributions to separating classes 
(see Support Vector Machines). Both of these approaches have 
been described in ML applications to genomics (72). Generative 
models are more interpretable and handle missing data better, 
whereas discriminative classifiers perform better asymptotically 
with larger datasets (73). Thus, we can update Breiman’s interpre-
tation with a contemporary interpretation of modeling genetic 
information (Figure 1).

Breiman had postulated that physicians would reject less-
interpretable models, but this has not been the case. As discussed 
in Section “Precision Medicine and Multigene Panels,” oncology 
is moving toward validating and using high-dimensional multi-
gene models in the clinic to guide treatment decisions.

As a future where a multigene panel for all cancers is still a 
long way off, creating intuitive models is still relevant. Patients 
can rarely be placed into neat boxes, and physicians must often 
incorporate clinical experience, which becomes more difficult 
for less-interpretable models. A method that was developed 
to overcome this limitation is MediBoost, which attempts to 
emulate the performance of RF while maintaining the intuition 
of classic decision trees (74). In Section “Current ML Approaches 
to Radiogenomics,” we discuss the interpretability of three ML 
methods.

2.2.3. The Curse of Dimensionality
The curse of dimensionality refers to the phenomenon where 
potential data space increases exponentially with the number 
of dimensions (75). For example, a cluster of points on a line 
of length 3  au appears much more desolate when clustered in 
a cube of volume 27  au3. Two things happen with increasing 
dimensions: (1) available data becomes increasingly sparse and 
(2) the number of possible solutions increases exponentially 
while each can become statistically insignificant by overfitting 
to noise (76). Traditional thinking has always been to try to 
reduce feature number; however, some ML methods benefit from 
higher dimensions. For example, when data are nearly linearly 
separable, LR and linear support vector machine (SVM) perform 
similarly. However, when data are not linearly separable, SVM 
can use the kernel trick that increases the dimensionality of data 
to allow separation in higher dimension (see Support Vector 
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Machines). While SVM has built-in protections for this “curse” 
by defining kernel functions around the data points themselves 
and selecting only the most important support vectors, it remains 
vulnerable when too many support vectors are selected with high- 
dimensional kernels.

Within genomics, the curse of dimensionality is reflected in 
the difficulty of finding epistatic interactions (77). In standard 
search for additive genetic variance, one needs to only search n 
SNPs in a single dimension. However, if pairwise or higher-order 
interactions are considered, then the search space increases expo-
nentially; for example, the search space for pairwise interactions 
is n(n − 1)/2. Traversing the large but sparse search space while 
maintaining reasonable performance can be a challenge (see 
Combining ML and Hypothesis Testing).

2.2.4. ML Workflow
In an ideal world, there would exist a perfect protocol to follow 
that will guarantee a great ML model every time. Unfortunately, 
there is no consensus on the “optimal” way to create a model. 
Libbrecht and Noble described general guidelines for applying 
ML to genomics (72). Within radiation oncology, Lambin et al. 
provide a high-level overview of clinical decision support systems 
(78). Kang et al. discussed general ML design principles with case 

examples of radiotherapy toxicity prediction (60). El Naqa et al. 
provide a comprehensive textbook of ML in radiation oncology 
and medical physics (79). Figure 2 provides a sample workflow 
for a general radiation oncology project that incorporates both 
genomics and clinical/dosimetric data. Two critical components 
of model selection include “Cross validation” and “Feature selec-
tion,” which are further discussed below.

2.3. Cross validation
The greater the number of parameters in a model, the better it will 
fit a given set of data. As datasets have become more and more 
complex, there has become an inherent bias toward increasing the 
number of parameters. Overfitting describes the phenomenon of 
creating an overly complex model which may fit a given data set, 
but will fail to generalize (i.e., fit another data set sampled from 
a similar population). CV is a method used in model selection 
aimed to prevent overfitting by estimating how well a model will 
generalize to unseen data.

2.3.1. CV Methodology
Conceptually, CV is used to prevent overfitting by training 
with data separate from validation data. As an example, in 
k-fold CV (KF-CV) for k  =  10, the data are initially divided 
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into 10 equal parts. Next, 9 parts are used to train a model 
while the 10th part is used to assess for how well the model 
was trained in the validation step. This training–validation 
procedure is run 9 more times, with each of the 10 parts taking 
turns as the validation set. The performance averaged over 10 
runs is the cross-validated estimate of how well the model will 
perform on truly unseen data. The optimal number of initial 
splits for the data has not been established, but 10-fold CV is 
commonly used. An alternative to KF-CV that is often used for 
smaller datasets is “leave one out” cross-validation (LOO-CV), 
whereby a dataset of size n is split into n parts. This form of CV 
maximizes the relative amount of information used for training 
the model while minimizing the information used for testing. 
As a result, LOO-CV is prone to higher variance (i.e., a higher 
propensity to overfit) and decreased bias (i.e., a lower propen-
sity to underfit) compared with KF-CV. Similar to balancing 
type I and type II error in statistical genetics, variance and bias 
must be carefully considered to avoid “false positive” and “false 
negative” results.

2.3.2. CV Relationship With Statistical Inference
Cross validation took some time to catch on in statistics literature, 
but has long been a fundamental part of the algorithmic ML 
models (65). Due to the lack of interpretability in the “black box,” 
ML has relied on CV and related methods like bootstrapping to 
demonstrate robust performance without relying formally on 
statistical significance. Small sample sizes can be a problem for 
creating prediction models. In this case, learning curve analysis 
can be used to create empirical scaling models, whereby one varies 
the size of the training set to assess for learning rate (80). Learning 
curve analysis can be used to help determine at what point a 
model is overfitting (81). When learning curve analysis predicts 
large error rates that are unlikely to be significant, permutation 
testing can predict the significance of a classifier by comparing its 
performance with that of random classifiers trained on randomly 
permuted data (80).

2.4. Common errors in Cv
When performed correctly, CV is a powerful tool for selecting 
models that will generalize to new data. However, this seemingly 
simple technique is infamous for being used incorrectly. This 
creates an especially egregious problem as using CV gives results 
an appearance of rigorous methodology when the exact opposite 
may be occurring.

2.4.1. Violating the Independence Assumption
A common mistake is to pre-maturely “show” the test data 
while still training the model and thus violate the independence 
assumption between the training and test data. For example, a 
typical workflow is to set aside test data and train a model using 
only the training data. Once the training results are acceptable, 
the model is tested on the independent testing data. If the testing 
results are unacceptable, one might then use these results to refine 
the model. However, using performance on the test set to guide 
decisions for training, the model creates bias and violates the 
independence assumption between the model design and testing 
(82). The more repetitions of model pruning are performed, the 

higher the chance of the model overfitting to truly independent 
data. See Section “Reusable Hold-Out Set” for a solution to this 
problem.

Sometimes, re-using training samples in testing is intentional. 
This was the case in the MammaPrint assay, where the authors 
used a large proportion of the tumor samples from the initial 
discovery study in their validation study (83, 84). The authors 
claimed this was necessary due to an imbalance of tumor cases 
and controls (see Section “Unbalanced Datasets” below for 
solutions).

In part due to the lack of independence between the testing 
and training sets in biomedical research, which culminated in the 
pre-mature use of omics-based tests used in cancer clinical trials 
at Duke University (85, 86), the Institute of Medicine released 
a report in 2012 (84). Several cautionary steps were advised, 
including validating with a blinded dataset from another institu-
tion (see Replication and Regulatory Concerns).

2.4.2. Freedman’s Paradox
Freedman showed that in high-dimensional data, some variables 
will be randomly associated with an outcome variable by chance 
alone and if these are selected out in model selection, they will 
appear to be strongly significant in an effect called Freedman’s 
paradox (87). This can occur even with no relationship between 
the input variables and outcome variables because with enough 
input variables, by chance one will have a high correlation. Even 
if model selection is performed and low performing variables 
are removed, the same randomly associated features will remain 
correlated and appear to be highly significant. Freedman’s 
paradox manifests when CV is repeated to perform both model 
selection and performance estimation. One solution is to use 
cross model validation, also known as nested CV: the outer loop 
is used for performance estimation and the inner loop for model 
selection (88–90).

2.5. Feature Selection
Often, one is interested in not only fitting an optimal model but 
rather in determining which of the variables—also known as 
features—are the most “important” through the process of feature 
selection. With respect to ML in genomics, Libbrecht and Noble 
described three ways to define “importance” in feature selection 
(72). The first is to identify a very small subset of features that 
still has excellent performance (i.e., to create a cheaper SNP array 
to test association with a phenotype rather than whole genome 
sequencing). The second is to attempt to understand underly-
ing biology by determining which genes are the most relevant. 
The third is to improve predictive performance by removing 
redundant or noisy genes that only serve to overfit the model. 
The authors note, unfortunately, that it is usually very difficult to 
perform all three simultaneously.

There are two general methods for feature selection (and can 
be used together). One is using domain knowledge via feature 
engineering and one is utilizing automated approaches. In feature 
engineering, a domain expert may pick and choose variables from 
a larger pool that he or she thinks are important prior to more for-
mal model selection. As discussed in Section “Rashomon Effect,” 
this bias can often lead to spurious conclusions when different 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


8

Kang et al. ML and Radiogenomics

Frontiers in Oncology | www.frontiersin.org June 2018 | Volume 8 | Article 228

research groups pre-select their variables (69). In many genomics 
applications, often precurated gene ontology data are referenced 
at some point through a hypothesis-driven approach, either as 
an initial screen or as part inferring functional relationships after 
significant genes have been selected. This does introduce a bias 
toward highly studied gene functions or pathways and a bias 
against undiscovered gene function, which reinforces the impor-
tance of hypothesis-generating studies (see The Importance of 
Fishing).

Below, we discuss automated approaches for feature selection. 
The first two are general approaches that are either pre-processing 
features through a method independent or dependent of the final 
predictive model. A third approach is to transform the existing 
features to create new synthetic features (91).

2.5.1. Pre-Processing Variables Independent  
of the Prediction Model
Filtering (or ranking) variables is the least computationally 
intensive method for feature selection. This method involves 
selecting features prior to training a model and is thus inde-
pendent of the model choice. A common method is to perform 
univariate correlation testing (for continuous variables) or 
receiver operating curve analysis (for categorical variables) and 
then only choosing the top-ranking variables. While efficient in 
that the processing time scales linearly with the number of vari-
ables, filtering does not screen out highly correlated features—in 
fact, these will be more likely to be selected together. However, 
Guyon and Elisseeff did show that presumably redundant vari-
ables can decrease noise and consequently improve classification 
(91). Statistically, filtering variables is robust against overfitting 
as it aims to reduce variance by introducing bias (92). Univariate 
filtering methods do not consider interactions between features, 
and thus is unable to assist in determining what variable com-
bination is optimal. In GWAS, statistical tests for univariate sig-
nificance are an example of variable filtering and thus are unable 
to account for multi-locus interactions (93). This weakness is 
magnified when a variable that is uninformative by itself gains 
value when combined with another variable, as is proposed in 
epistasis; in this case, filtering would remove the univariately 
useless variable before it can be tested in combination with 
another variable. To address this weakness, filter methods such 
as the ReliefF family take a multivariate and ensemble approach 
to yield variable rankings (94–96).

2.5.2. Embedding Feature Selection With  
the Prediction Model
Combining feature selection with the model establishes a 
dependence that can be used to address issues with multicol-
linearity and feature interactions. Wrappers combine feature 
selection with model building but are computationally expen-
sive (97). Various search strategies can be utilized, but often used 
are greedy search strategies where predictors are either added 
or removed one-by-one via forward selection or backward 
elimination, respectively. In regularization, feature selection is 
built into a method’s objective function (i.e., the optimization 
goal) through penalty parameters. These penalty parameters 
ensure that feature importance (weight) and/or number is 

incorporated during model training. Common regularization 
methods include L1-norm or lasso regression (98), L2-norm or 
ridge regression (99), and combined L1–L2 or elastic networks 
(100). Regularization methods are of significant interest in 
applications of ML to genomics due to their ability to decrease 
the complexity of a polygenic problem and improve probability 
of replication (90). A relatively novel method developed for 
feature selection in very high dimensions is stability selection, 
which uses subsampling along with a selection algorithm to 
select out important features (101).

2.5.3. Feature Construction and Transformation
Instead of working directly with the given features, features can 
be manipulated to reconstruct the data in a better way or to 
improve predictive performance. There are many methods that 
can perform feature construction with different levels of com-
plexity. Clustering is a classic and simple method for feature 
construction that replaces observed features by fewer features 
called cluster centroids (102). Principal component analysis 
(PCA) provides a method related to eigenvector analysis to 
create synthetic features which can explain the majority of 
the information in the data; for example, PCA can decrease 
type I error by uncovering linkage disequilibrium (LD) pat-
terns in genome-wide analyses due to ancestry (103, 104). 
Kernel-based methods such as SVMs also make use of feature 
transformation into higher dimensions and will be discussed in 
a later Section “Support Vector Machines.” Neural networks are 
another popular ML method that specializes in constructing 
features within the hidden layers after being initialized with 
observed features. In the last few years, neural networks have 
become extremely popular in the form of deep learning, which 
is discussed below.

2.6. Deep Learning
“Deep learning” describes a class of neural networks that has 
exploded in popularity in the recent years—particularly in the 
fields of computer vision (105) and natural language processing 
(106)—as larger training data sets have become available and 
computational processing resources have become more accessible 
and affordable (107). Deep learning is distinguished from earlier 
neural network methods by its complexity: whereas a “shallow” 
neural network may have only a few hidden layers, deep learning 
networks may have dozens (108) to hundreds of layers (109) where 
unsupervised, hierarchical feature transformation can occur. 
In popular science, deep learning is the artificial intelligence 
powering IBM Watson (110) and autonomous driving vehicles. 
Within medical research, there have been several high-profile 
deep learning publications claiming expert-level diagnostic 
performance (111–114). A related domain is radiomics, which 
seeks to use ML and statistical methods to extract informative 
imaging features or “phenotypes” in medical imaging (115–117) 
with a significant focus in oncology imaging (118–121). Deep 
learning is in an early stage within genomics, but has been used 
for discovery of sites for regulation or splicing (122, 123), vari-
ant calling (124), and prediction of variant functions (125). For 
further reading on deep learning, we recommend Lecun et al.’s 
excellent review (107).
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3. ML iN GeNOMiCS

Genomics presents a challenging problem for ML as most meth-
ods were not originally developed for GWAS, and thus improving 
implementations remain a topic of ongoing research (126). The 
quantity of genomics data recommended for finding significant 
SNPs is more akin to that seen in image processing, where there 
could be tens of millions of voxels in a typical computed tomogra-
phy scan. Given the imbalance of features compared with samples 
(the “p ≫ n” problem), there is a challenge in creating predictive 
models that do not overfit. As discussed in Section “Current 
ML Approaches to Radiogenomics,” different ML methods 
have been used to address different concerns in genomics and 
radiogenomics.

In this section, we will review some of the intuition and 
principles behind genomics methods to better understand how 
to improve and apply them to future problems.

3.1. Multiple Hypothesis Correction
Hypothesis testing is a principle based on statistical inference. In 
GWAS, however, one is not just testing a single hypothesis, but 
millions. As such, by random chance, it is a virtual guarantee that 
some of the associations will appear to be statistically significant 
if there is no correction to the pre-specified significance level 
α (127). How to correct for multiple hypothesis comparisons 
is an area of significant interest in GWAS and there are many 
techniques to do so (128). These methods generally aim to con-
trol the number of type I errors and include family-wise error 
rate (FWER)—the probability of at least one type I error—and 
false discovery rate—the expected proportion of false discover-
ies (129). Controlling FDR has greater power than FWER at 
the risk of increased type II error (130). One common FWER 
correction method is Bonferroni correction, which would work 
reasonably well for independent tests, but is an overly strict (i.e., 
conservative) bound for GWAS due to the prevalence of LD 
across the genome. LD causes adjacent regions of the genome to 
be inherited together, and thus Bonferroni will overcorrect due 
to non-independence among SNPs within LD blocks. For rare 
variants which are not thought to be in LD, Bonferroni correction 
would be an appropriate correction.

In ML, poor correction for multiple testing is related to 
p-hacking or data dredging, which is to continuously run 
iterations of this method until it fits a pre-conceived notion or 
hypothesis (131) (see Lessons From Statistics).

3.2. The Case of Missing Heritability
As sample sizes have increased since the first GWAS in 2005, 
more and more robust associations with loci have been discov-
ered in genomics (132). This has also been reflected in radiog-
enomics as larger sample sizes have been possible through the 
RGC (see Genomic Basis for Radiotherapy Response). However, 
the discovered associations are still relatively few and insuf-
ficient to explain the range of observed phenotypes, creating 
the so-called “case of missing heritability” (133). Response of 
both normal and tumor tissue has certainly shown itself to be a 
complex, polygenic trait (29, 30, 54). The cause of this missing 
heritability is thought to arise from several sources, including 

common variants of low effect size, rare variants, epistasis, and 
environmental factors. One clear solution already underway is 
to genotype more samples and to use meta-analysis methods to 
combine results across studies (134). However, there are limits 
to this approach. For one, rare variants [minor allele frequency 
(MAF) < 0.0005] with smaller effect sizes (odds ratios ~1.2) will 
require between 1 and 10 million samples for detection using 
standard GWAS techniques (132). Another issue is that epistatic 
interactions among common variants have not been able to be 
reliably replicated (77). ML provides a complementary approach 
for finding patterns in noisy, complex data and detecting non-
linear interactions.

3.3. Combining ML and Hypothesis Testing
Originally, two-stage GWAS was developed from standard one-
stage GWAS to decrease genotyping costs in an era where SNP 
chips were costlier (135). In this method, all SNP markers are 
genotyped in a proportion of the samples in stage 1, and a subset 
of the SNPs would then be selected for follow-up in stage 2 on 
the remaining samples. This method does not decrease type I or 
II error, however (136). Performing a joint analysis where the 
test statistics in stage 2 were conditional on stage 1 had superior 
results than assuming independence between the two stages 
(i.e., a replication study), but power is unable to exceed that of 
one-stage GWAS (137). Instead of two-stage GWAS, a promis-
ing alternative is to use two-stage models combining ML and 
statistical hypothesis testing, aiming to combine the strengths of 
separate methodologies (see Statistical Inference vs. ML). These 
combined models can increase power and uncover epistatic 
interactions (138).

3.3.1. Learning Curves and Power
In principle, combining ML and hypothesis testing works 
because, by design with setting a pre-determined alpha level 
and power, statistical inference does not benefit from larger 
datasets once a result has met statistical significance. Indeed, 
larger datasets can result in detection of statistically significant 
associations of decreasing effect size and potentially decreasing 
clinical relevance. This limitation does not apply to ML, which can 
asymptotically use more data to improve predictive performance. 
Many ML methods are characterized by a learning rate obeying 
an inverse power law with respect to sample size (80, 139, 140). 
This behavior suggests that ML offers a complementary approach 
to statistical methods by continuing to learn for each additional 
sample. With increasing sample sizes and meta-analyses, one can 
imagine a scenario where one is well in the “plateau” portion of 
the power curve and can afford samples to be used in the ML 
method (Figure 3).

3.3.2. Using ML to Detect Epistasis
Epistasis, which includes interactions between SNPs, is not well 
accounted for in standard GWAS. Epistatic interactions are rec-
ognized as a cause of non-linear effects and may help elucidate 
functional mechanisms as well (141). Biological interpretations 
of epistasis have been difficult with little correlation between 
statistical interaction and physical interaction (i.e., protein– 
protein binding) or other biologic interactions (142). Regardless 
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of whether protein products are physically interacting with other 
proteins or environment, the statistical interaction suggests that 
there is dependence at some level for a specific disease (141).

Given the exponentially increased search space for SNP inter-
actions, there is a high concern for false positives (see The Curse 
of Dimensionality). This concern is magnified when SNPs are in 
LD. A filtering method is often used to decrease the search space 
for only the most promising interactions (see Pre-Processing 
Variables Independent of the Prediction Model). Exhaustive 
searches for pairwise interactions are also now becoming possible, 
aided by the massive advances in parallel processing throughout 
offered by graphical processing units (143, 144).

Due to technical limitations in accounting for non-linear 
effects and multiple hypothesis correction in an exhaustive 
search, interaction studies have typically focused on SNPs with 
weak marginal effects (77). Unfortunately, many of the studies 
in non-cancer diseases have not been successful (145, 146). One 
postulate is that pairwise SNPs are unlikely to have large interac-
tion effects. However, as sample sizes and SNP density improve 
(to better tag causal variants while avoiding spurious interactions 
due to LD), then ML methods that incorporate SNP interactions 
with low or no marginal/main effects may begin to uncover 
replicable interaction effects (138, 147–149).

Two-stage methods are a promising approach that combines 
the strength of fast, approximate interaction tests with a subse-
quent thorough model (77). Such methods take advantage of 
the strength of statistical tests for detecting polygenic low signal, 
linear interactions with the ability of ML to train cross-validated 
models of non-linear interactions (150, 151). Regularization 
within two-stage methods is an area of interest (90). Wu et  al. 
adapted lasso to LR for use in dichotomous traits in GWAS (152). 
Wasserman and Roeder developed a similar procedure called 
“screen and clean” that also controls for type I error by combin-
ing lasso linear regression, cross-validated model selection, and 
hypothesis testing (153). Like traditional two-stage GWAS, the 

data are split between the stages. Wu et al. adopted this model to 
model interaction effects in addition to main effects (154).

As further discussed in Section “Random Forest,” ensemble 
tree-based methods are very popular for detection of epistatic 
interactions (148, 155, 156). While it is difficult to assess statisti-
cal significance in ensemble black box techniques, permutation 
re-sampling methods can be used to determine a null distribution 
and associated p-values (80, 138, 141) (see CV Relationship With 
Statistical Inference). Other popular methods for interaction 
that have continued to receive updates include a cross-validated 
dimensionality reduction method called multifactor dimension-
ality reduction (157) and a Markov Chain Monte Carlo sampling 
method to maximize posterior probability called Bayesian 
Epistasis Association Mapping (158).

3.3.3. Using ML to Increase Power
Overfitting and false discoveries (type I errors) represent similar 
concepts in ML and statistical inference, respectively, in that both 
falsely ascribe importance. Like the bias-variance tradeoff, statis-
tical inference seeks to balance type I and type II errors. As each 
hypothesis test represents an additional penalty to genome-wide 
significance, one way to decrease type II error is to decrease the 
number of hypothesis tests. While decreasing testable hypotheses 
may appear to decrease power, Skol et al. demonstrate that being 
more stringent in selecting SNPs in stage 1 may paradoxically 
increase power as the multiple testing penalty is subsequently 
reduced in stage 2 (137).

Combination of ML and statistical methods can simultane-
ously be designed to detect epistasis and increase power (138). In 
“screen and clean” (see Using ML to Detect Epistasis), Wasserman 
and Roeder perform L1-regularization in the “clean” phases to 
improve power in the “screen” phases. Meinshausen et al. extend 
the method by Wasserman and Roeder by performing multiple 
random splits (instead of one static split) to decrease false positives 
and increase power (159). Mieth et al. similarly combined SVM 
with hypothesis testing (160), but instead of splitting, they re-
sample data using an FWER correction (161). While re-sampling 
for feature selection and parameter tuning may bias toward more 
optimistic results (see Freedman’s Paradox), Mieth et al. report 
higher power compared with Meinshausen and Wasserman and 
Roeder, with 80% of the discovered SNPs validated by prior stud-
ies. Nguyen et al. took a similar approach except with RF instead 
of SVM (162).

Combined ML and statistical methods can either have the ML 
stage first or second. When ML is used first, it usually acts as a 
feature selection filter to reduce the multiple hypothesis penalty 
and increase power for hypothesis testing in the second stage. 
When the ML step is second, it acts to validate candidate SNPs 
that passed the first stage filter. The order of ML and hypothesis 
testing may not affect power. Mieth et al. report similar results 
compared with Roshan et al. (163), who performed chi-square 
testing followed by RF or SVM [supplement in Ref. (160)]. 
Similarly, Shi et  al. proposed single SNP hypothesis testing 
followed by lasso regression, which was the reverse order of 
Wasserman and Roeder (164).

Oh et al. used a multi-stage approach to uncover novel SNPs 
and improve prostate radiotherapy toxicity prediction (165, 166). 
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Method Pre-process Complexity control Reference

Support vector machine 
(SVM)

 – Encode features as binary
 – Normalize to uniform distribution
 – Imputation for balancing data

 – Recursive feature elimination for linear SVM
 – Soft margin width (C-parameter)
 – Kernel hyperparameters

(76, 160)

Bayesian networks  – Feature discretization
 – Variable selection to reduce graph search space
 – Imputation not necessary when using expectation 

maximization

 – Constraints to a graph search space based on prior knowledge
 – Graph scoring functions that penalize complexity

(167–171)

Random forest  – No discretization or normalization necessary
 – Imputation required

 – Number of features to sample at each node split (mtry)
 – Minimum number of samples in a terminal node

(172, 173)
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The first step is to create latent (indirectly observed) variables 
through PCA. These “pre-conditioned” variables are fit using LR 
to the original outcomes. This serves to create “pre-conditioned” 
outcomes that are continuous in nature and provides estimate of 
radiotoxicity probability. These pre-conditioned outcomes are 
then modeled using RF regression and validated on holdouts of 
the original samples.

4. CURReNT ML APPROACHeS TO 
RADiOGeNOMiCS

Machine learning models are particularly attractive when dealing 
with genetic information, as they can consider SNP–SNP interac-
tions, which are suspected to be important, but are often missed 
by classical association tests because their marginal effects are too 
small to pass stringent genome-wide significance thresholds.

However, ML models also come with constitutional pitfalls, 
namely, increased computational complexity and risk for over-
fitting, which must be acknowledged and understood to avoid 
reporting impractical models or over-optimistic results.

Current use of ML techniques in radiogenomics usually fol-
lows the top-down approach, where radiotherapy outcomes are 
modeled through complex statistical analysis, without consider-
ing a  priori knowledge of interactions of radiation with tissue 
and biological systems. In this field, supervised learning is widely 
preferred, i.e., models aim at constructing a genotype–phenotype 
relationship by learning such genetic patterns from a labeled set 
of training examples. Supervised learning can provide pheno-
typic predictions in new cases with similar genetic background. 
Nevertheless, an unsupervised approach (e.g., PCA or clustering)  
is sometimes used to reduce the dimensionality of datasets, 
extract a subset of relevant features, or construct features to be 
later included in the chosen learning method. Feature selection 
is of extreme importance (see Feature Selection), as it leads to 
the reduction of the dimensionality of the genetic search space, 
excluding correlated variants without independent contribution 
to the classification, and helping the translation of the model to 
the clinical setting.

Even if most ML techniques can act both as regression and 
classification methods, the classification or discriminative aspect 
has been most investigated in recent years, with main inter-
est in separation between patients with/without the selected 
study outcome (e.g., presence/absence of radiotherapy-induced 

toxicity, tumor control/failure, and presence/absence of distant 
metastasis).

There is also increasing interest in overcoming the “black box” 
characteristics of some ML methods, favoring use of techniques 
that allow ready interpretation of their output (see Occam 
Dilemma), making apparent to the final user the relationships 
between variables and the size and directionality of their effect, 
i.e., if the variables are increasing or decreasing the probability of 
the outcome and the magnitude of their impact.

In this frame, RF, SVMs, and Bayesian networks (BNs) received 
great attention and they constitute the main topic of this section 
(Table  1). The presented ML algorithms can accommodate 
GWAS-level data. When considering the emerging sequencing 
domain (e.g., whole-exome and genome profiling), new technical 
challenges are posed that might be addressed by new algorithmic 
advances or by parallelization and cloud technologies for distrib-
uted memory and high-performance computing.

4.1. Random Forest
Random forest is a regression and classification method based 
on an ensemble of decision trees (172). The ensemble approach 
averages the predicted values from individual trees to make a 
final prediction, thus sacrificing the interpretability of standard 
decision trees for increased prediction accuracy (74). Each tree 
is trained on bootstrapped training samples (i.e., sampling with 
replacement), while a random subset of features is used at each 
node split. When applied to a problem of predicting a disease 
state using SNPs, for example, each tree in the forest grows with a 
set of rules to divide the training samples based on discrete values 
of the genotypes (e.g., homozygous vs. heterozygous). Here, we 
list the characteristics of RF that make it an attractive choice for 
GWAS, both for outcome prediction and hypothesis generation.

4.1.1. Robustness at High-Dimensional Data
Given high-dimensional data, training predictive models likely 
faces risk of overfitting. The ensemble approach utilized by RF 
mitigates this risk by reducing model variance due to aggregation 
of trees with low correlation. Examples of studies emphasizing 
predictive performance of RF include work by Cosgun et al. (174), 
Nguyen et al. (162), Oh et al. (165) (SNP based), Wu et al. (175), 
Díaz-Uriarte and Alvarez de Andrés (176), and Boulesteix et al. 
(177) (microarray based). While RF was initially thought not to 
overfit based on datasets from the UCI ML repository (65), this 
was ultimately found to be incorrect when noisier datasets were 
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introduced (178). When training RF models, some parameters 
need to be optimized, which can affect predictive power. Among 
those, the number of variables that are randomly selected from 
the original set of variables at each node split (mtry) governs 
model complexity. Many studies opt for default configurations 
as originally recommended by Breiman (172) (classification:  

p, regression: p/3 where p: number of predictors), and predic-
tive performance was shown to be stable around these values  
(176, 179). However, a larger mtry is recommended when there 
are many weak predictors (172), which might be the case for 
GWAS of complex diseases. Goldstein et al. (173) conducted a 
search for optimal parameters in GWAS of multiple sclerosis, 
comprising about 300K SNPs, and recommended mtry = 0.1 after 
initial pruning of the SNPs under high LD.

4.1.2. Biomarker Prioritization
Random forest can provide a variable importance measure (VIM), 
which quantifies the influence of an individual predictor on the 
purity of the node split (purity based) or prediction accuracy in 
unseen samples (permutation based). VIM can be used for select-
ing a smaller subset of genes or SNPs from GWAS, which can 
be further used for achieving higher predictive performance or 
biological validation. Lunetta et al. (180) proposed to use RF VIM 
for SNP prioritization as an alternative to Fisher’s p-value under 
the presence of SNP–SNP interactions. Nguyen et al. (162) used 
VIM as a feature selection process for a subsequent RF training 
to enhance predictive performance. However, reliability of VIM, 
especially under LD, has been questioned and investigated by 
simulation studies: Tolosi and Lengauer (181) and Nicodemus 
et al. (182) suggested that VIM may not correctly measure the 
importance of a large group of correlated SNPs due to dilution 
of VIM. Also, Strobl et al. (183) showed potential bias in VIM 
toward the predictors with more categories; they proposed the 
conditional inference tree as an alternative where each node split 
is performed based on a conditional independence test instead of  
the conventional Gini index (184).

4.1.3. Ability to Account for SNP–SNP Interactions
Epistasis describes the non-linear combination of SNPs (or SNP 
and environment) that may correlate with a phenotype. Epistasis 
is thus important for understanding complex diseases (77). By 
construction, RF can indirectly account for epistasis through 
successive node splits in a tree where one node split is condi-
tional upon the split from the previous node. Lunetta et al. (180) 
claimed that RF VIM has a higher power of detecting interacting 
SNPs than univariate tests. Thus, RF has been used as a screening 
step to identify much smaller number of SNPs that are more likely 
to demonstrate epistasis, which can be further tested in a pairwise 
fashion (150, 151). However, Winham et  al. (156) warned that 
ability of RF VIM to detect interactions might decrease with an 
increasing number of SNPs and large MAF of SNPs.

4.1.4. Hybrid Methods
Random forest is occasionally used in conjunction with other 
ML methods. Boulesteix et al. (177) used partial least squares to 
reduce dimensionality of gene microarray data prior to training 
a RF classifier. Stephan et al. (185) used RF as a fixed component 

of a mixed-effect model to handle population structure. Oh et al. 
(165) introduced a pre-conditioning step prior to RF training 
where a binary outcome of radiotherapy toxicity was converted to 
a continuous pre-conditioned target, which helps reduce the noise 
level that may be present in the outcome measurements (186).

4.2. Support vector Machines
Support vector machines are usually used to solve the problem 
of supervised binary classification. In the field of oncologic mod-
eling, SVMs are used to classify new patients into two separate 
classes (with/without the outcome of interest) based on their 
characteristics (76). The first step is to find an efficient bound-
ary between patients with/without the outcome in the training 
set. This boundary is called a “soft margin” and is a function of 
the known d features of the patients included in the training set. 
To determine this boundary, non-linear SVMs use a technique 
called the kernel trick to transform data into a higher dimension, 
whereby they can then be separated by a d-dimensional surface 
in a non-linear fashion. Based on these transformations, SVM 
finds an optimal boundary between the possible outcomes. In 
technical terms, a linear SVM models the feature space (the space 
of possible support vectors, which is a finite-dimensional vector 
space where each dimension represents a feature) and creates a 
linear partition of the feature space by establishing a hyperplane 
separating the two possible outcomes. Of note, the created parti-
tion is linear in the vector space, but it can use the kernel trick to 
solve non-linear partition problems in the original space. Based 
on the characteristics of a new patient, the SVM model places the 
new subject above or below the separation hyperplane, leading 
to his/her categorization (with/without the clinical outcome). 
SVMs maximize the distance between the two outcome classes 
and allow for a defined number of cases to be on the “wrong 
side” of the boundary (i.e., a soft margin). Due to this, despite the 
complexity of the problem, the SVM boundary is only minimally 
influenced by outliers that are difficult to separate.

Support vector machines are a non-probabilistic classifier: the 
characteristics of the new patients fully control their location in 
the feature space, without involvement of stochastic elements. If a 
probabilistic interpretation for group classification is needed, the 
measure of the distance between the new patient and the decision 
boundary can be suggested as a potential metric to measure the 
effectiveness of the classification (187).

4.2.1. Robustness in High-Dimensional Data and 
Possibility to Handle for Variable Interaction
Support vector machines are particularly suited to model datasets 
including genomic information, as they are tailored to predict 
the target outcome (the phenotype) from high-dimensional data 
(the genotype) with a possible complex and unknown correlation 
structure by means of adaptable non-linear classification bounda-
ries. The framework of SVMs implicitly includes higher-order 
interactions between variables without having to predefine what 
they are. Examples of studies highlighting good performance of 
SVMs in this area are (188–190).

The main pitfall presents when the number of variables for 
each patient exceeds the number of patients in the training 
dataset. For this reason, in such case, the combination of SVMs 
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with techniques aimed at reduction of the number of features is 
suggested.

Support vector machines can be used to approach analysis of 
GWAS data even in combination steps. Mieth et al. (160) proposed 
a two-step SVM procedure with SVMs first adopted for testing 
SNPs by taking their correlation structure into account and for 
determining a subset of relevant candidate SNPs (see Combining 
ML and Hypothesis Testing). Subsequently, statistical hypothesis 
testing is performed with an adequate threshold correction. As 
complexity reduction is performed prior to hypothesis testing, 
the strict multiple correction threshold can thus be relaxed.

4.2.2. Tuning Parameters
Considering practical challenges in SVM modeling, a key issue 
is tuning the parameters identifying the separation hyperplane 
and determining how many support vectors must be used for 
classification. There are also kernel-specific parameters to tune. 
Grid search is traditionally used to find the best set, with choice 
of initial conditions and search strategy highly influencing the 
quality of the result (191, 192).

4.2.3. Unbalanced Datasets
Attention must also be paid when SVMs are applied to unbal-
anced data, i.e., one outcome class contains considerably more 
cases than the other. This scenario is common in radiotherapy 
modeling where toxicity and local failure rates can be low. 
Unbalanced datasets present a challenge when training every type 
of classifier, but particularly is true for maximum-margin classifi-
ers such as SVM. A satisfactory choice for having a high-accuracy 
classifier on a very imbalanced dataset could be to classify every 
patient as belonging to the majority class. Nevertheless, such a 
classifier is not very useful. The central issue is that, in such a 
case, the standard notion of accuracy is a bad measure of the 
success of a classifier, and a balanced success rate should be used 
in training the model, which assigns different costs for misclas-
sification in each class (170, 193, 194). These methods can include 
showing a full confusion matrix; reporting F1-score and positive/
negative predictive values, which incorporate relative imbalances 
(195–197); or synthetic balancing through undersampling and/
or oversampling (198).

4.2.4. Interpretation of SVMs
Interpreting SVM models is far from obvious. Consequently, 
work is being done in providing methods to visualize SMV results 
as nomograms to support interpretability (199, 200).

The absence of a direct probabilistic interpretation also makes 
SVM inference difficult, with the aforementioned work by Platt 
being one solution (187).

4.3. Bayesian Networks
Bayesian network is a graphical method to model joint probabil-
istic relationships among a set of random variables, meaning that 
the variables vary in some random or unexplained manner (201). 
Based on the analysis of input data or from expert opinion, the 
BN assigns probability factors to the various results. Once trained 
on a suitable dataset, the BN can be used to make predictions on 
new data not included in the training dataset.

A key feature of BN is graphical representation of the relation-
ships via a directed acyclic graph (DAG). Although visualizing 
the structure of a BN is optional, it is a helpful way to understand 
the model. A DAG is made up of nodes (representing variables) 
and directed links between them, i.e., links originate from a par-
ent variable and are pointed to child variables without backwards 
looping or two-way interactions. Parent variables influence 
the probability of child variables and the probability of each 
random variable is established to be conditional upon its parent 
variable(s). In this way, the DAG encodes the presence and direc-
tion of influence between variables, which makes BN attractive 
for users needing intuitive interpretation of results (169) (see 
Occam Dilemma). This directionality of links is important as it 
defines a unique representation for the multiplicative partitioning 
of the joint probability: the absence of an edge between two nodes 
indicates conditional independence of involved variables.

4.3.1. Interpretation of BNs
Bayesian networks can integrate different data types into 
analysis. Despite accounting for high-order variable interactions  
(e.g., genetic environment), BNs maintain high interpretability via 
graphical outputs. As an example, Figure 4 demonstrates a possible 
BN for prediction of radiotherapy-induced rectal bleeding follow-
ing different clinical, genetic, and treatment-related variables.

4.3.2. Using Knowledge and Data in a  
Synergistic Way
A DAG can be built starting from previous knowledge, or com-
pletely trained on available data. For example, BN was used to 
incorporate expert knowledge along with experimental assay data 
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to assign functional labels to yeast genes (202). The optimized 
DAG is the one which maximizes a predefined scoring function 
over all possible DAG configurations. When multiple DAGs score 
at the same level, an approach embracing an ensemble of models 
can be followed (169).

4.3.3. Robustness at High-Dimensional Data
Since the number of possible DAGs grows super-exponentially 
with the number of available features, it is unrealistic to compre-
hensively search for the highest-scoring DAG over all graph 
possibilities. This is especially true when considering high-
dimensionality problems encountered in GWAS. Various appro-
aches could be suggested to confront the burden (169, 170):

 (a) Use a causality prior that considers the already available 
knowledge to impose restrictions on the presence/direction 
of links between nodes to reduce the search space.

 (b) Structure features into systems of different hierarchical levels 
with connections established by combining data and prior 
knowledge.

 (c) Reduce input dimension by appropriate variable selection 
techniques with the aim of removing highly correlated features.

 (d) Use of graph scoring functions that penalize complex graph 
structures, such as Bayesian information criteria (167).

An interesting approach is also the use of a forest of hierar-
chical latent class models (171) to reduce the dimension of the 
data to be further submitted to BN to discover genetic factors 
potentially involved in oncologic outcomes. Latent variables are 
thought to capture the information coming from a combination 
of SNP, genetic, and molecular markers. Latent variables can 
also be clustered into groups and, if relevant, such groups can 
be subsequently incorporated into additional latent variables. 
This process can be repeated to produce a hierarchical structure  
(a forest of latent variables) and BN analyses can be primarily 
completed on latent variables coupled to a largely reduced num-
ber of clinical and dosimetric features.

4.3.4. Handling Missing Values
The probabilistic approach of BNs makes them suitable to effi-
ciently handle missing values, without removal of cases or impu-
tation. A BN can be trained even using non-complete cases and it 
can be queried even if a full observation of relevant features is not 
available. This is an advantage in clinical oncology where missing 
data are the norm and not the exception.

Bayesian networks were successfully applied in many onco-
logic/radiotherapy studies, including modeling of radiation-
induced toxicity, tumor control after radiotherapy, and cancer 
diagnosis (169, 170, 203–207).

5. iMPROviNG ML iNTeGRATiON iN 
RADiOGeNOMiCS

Machine learning holds significant promise for advancing 
radiogenomics knowledge through uncovering epistatic interac-
tions and increasing power. In this section, we will discuss general 
lessons learned and potential barriers.

5.1. Lessons From Statistics
For ML models to focus on predictive performance alone while 
not taking lessons from statistical theory would be a mistake. 
Statistical genetics learned through many iterations that it is nec-
essary to take into account multiple hypothesis testing to decrease 
type I error (127). While ML models are often framed to be 
hypothesis-free, they can fall into a trap of cherry picking results 
that show good performance, which may end up being spurious. 
This practice of trawling for results that appear statistically sig-
nificant has been called data dredging or p-hacking and has been 
cautioned against by the American Statistical Association (131). 
However, this practice can occur surreptitiously, such as when a 
pharmaceutical drug is tested in many highly correlated trials (i.e., 
asking similar questions) over many years, but without correcting 
for multiple testing. This phenomenon is particularly common 
in oncology where there is vested interest to find an application 
for a “blockbuster” therapeutic (208, 209). One solution for this 
is to create drug development portfolios to apply meta-analysis 
principles to drug trials instead of considering them as individu-
als (210). A similar approach could be used in radiogenomics to 
avoid publication bias and report negative results.

Notably, in their same report, the American Statistical Society 
emphasizes a distinction between statistical significance and 
clinical significance. Whether a p-value does or does not meet an 
α cutoff does not preclude it from being validated. ML provides 
an excellent tool for validation when used in the two-step models.

5.2. Reusable Hold-Out Set
Due to the nature of model building, it is often desirable to repeat-
edly refine one’s model due to suboptimal performance on the 
independent “holdout” set. Unfortunately, as discussed earlier 
(see Common Errors in CV), re-testing presents a significant 
problem as the refined model is now biased by newly obtained 
knowledge. For example, one might manually curate variables 
or alter hyperparameters to try to improve test set performance 
repeatedly, leading to overfitting on a true external dataset. 
However, reserving multiple test sets is not practical in most pro-
jects. One intriguing solution arose from university–industry col-
laborations with technology companies such as IBM, Microsoft, 
Google, and Samsung (211). These companies are interested 
in differential privacy, which is the concept of preserving the 
privacy of an individual while still collecting aggregate group 
statistics (212). This is not a trivial problem as knowledge about 
an aggregate sample over time can precisely identify supposedly 
“anonymous” individuals. For example, measuring the mean of 
a sample before and after removing one data point would allow 
one to precisely determine the value of that one data point if one 
knew the sample size. A prominent example in 2008 involved 
de-anonymizing publicly released Netflix data using another 
website (the Internet Movie Database) to ascertain apparent 
political affiliations and other potentially sensitive details (213). 
Differential privacy concepts are directly related to the necessity 
of maintaining independence—in essence, the “anonymity”—of 
the holdout set. These concepts have been adapted to a reusable 
holdout, whereby the holdout can be resampled many times 
through a separate algorithm (211, 214, 215). The number of 
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times that the holdout can be reused grows roughly with the 
square of its size, thus potentially providing near-unrestricted 
access for large datasets such as GWAS.

5.3. incorporate Clinical variables
Many complex disease phenotypes are likely confounded by 
environmental effects. When genetic and environmental deter-
minants are combined, there is increased accuracy in heritability 
prediction (216). This contribution from an environmental, non-
genetic source suggests that multi-domain models incorporating 
both genetic and clinical factors should create a superior predictor 
compared with genetic predictors alone. Current radiotherapy 
prediction models focus on clinical and dosimetric variables but 
do not incorporate genetic factors (217). Both the ASTRO and 
the European Society of Radiation Oncology recognize a need 
for improved radiation toxicity models—including through ML 
(218)—and have pushed for utilization of big data toward “preci-
sion” radiation oncology (219, 220).

5.4. Replication and Regulatory Concerns
When applying ML to radiogenomics for eventual human 
applications, one must also consider practical concerns about the 
current regulatory environment. In the mid-late 2000s, a wave of 
multi-biomarker laboratory-developed tests (LDTs) in oncology 
emerged that made several bold, highly publicized promises. 
Some were met (see Precision Medicine and Multigene Panels) 
but many ultimately went unfulfilled. These included two prot-
eomics-based diagnostic tests for ovarian cancer. OvaCheck (221, 
222) was debunked due to data artifacts (223) and batch effects 
(224). OvaSure (225, 226) was pulled from market in 4 months 
after FDA intervention due to concerns for inadequate validation 
(227). Both tests reported overly optimistic positive predictive 
values due to being trained on unrealistic data of approximately 
50% cancer positivity, whereas true ovarian cancer incidence is 
closer to 1 per 2,500 post-menopausal women (195–197, 227) 
(see Unbalanced Datasets). Certainly, the most high-profile 
and drawn-out case (85) involved lung cancer genomics-based 
chemotherapy response prediction that was pre-maturely rushed 
to clinical trial (228–230). Investigations into these and other 
controversies surrounding poor understanding of statistics and 
independent validation in biomarker studies (see Rashomon 
Effect) led to an extensive report by the Institute of Medicine 
which suggested corrective measures (84). Controversy continues 
regarding whether and how the FDA should regulate LDTs while 
still promoting innovation (231). One potential direction is pre-
certifying laboratories instead of individual LDTs. Regardless, 
understanding modeling principles in a scientific environment 
increasingly reliant on big data analysis is necessary to avoid 
repeating the same mistakes of a decade ago.

5.5. Promoting Research
An executive summary from the ASTRO Cancer Biology/
Radiation Biology Task Force (232) and a report from the 
ASTRO/AAPM/NCI 2016 precision medicine symposium 
(6) both recognized the large relative disparity between the 
utilization of therapeutic radiation (between 50 and 66% of 
cancers) and its investigative research effort. In the US, there 

are approximately 5,000 radiation oncologists and 15,000 medi-
cal oncologists, but a 2013 review of US National Institutes of 
Health (NIH) funding in radiation oncology found that <50% of 
all accredited departments had an active research program with 
at least 1 NIH grant, which is at odds with radiation oncology 
attracting the highest percentage of MD/PhD residents for a 
number of years (233). Only 3% of successfully awarded grants 
by the NIH Radiation Therapeutics and Biology study section are 
for biomarkers or radiogenomics (232). These numbers suggest 
that radiogenomics research continues to be underfunded. While 
the field moves toward improved support of young investigators 
through opportunities like the Holman Pathway (234, 235) and 
more is discovered in radiobiology and radiogenomics, there will 
also be a need to support methods development to ensure that 
radiation oncology does not lag behind in the era of precision 
medicine.

6. CONCLUSiON

Oncology is a field enriched by multidisciplinary study. Like 
cancer, genetics has eluded a complete understanding due to its 
surprising level of complexity. The focus on ML in the technol-
ogy industry is quickly moving into medicine, with a prime 
example being IBM Watson’s ability to understand game show 
questions becoming adapted for tumor board recommenda-
tions (114). These translational research efforts are not easy and 
require teamwork from stakeholders of varying backgrounds to 
avoid repeating mistakes made in one field in another field. In 
a radiogenomics era, radiation oncology will require multidis-
ciplinary integration of not just radiation biologists, physicists, 
and oncologists but also insight from computational biologists, 
statistical geneticists, and ML researchers to best treat patients 
using precision oncology.
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