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A B S T R A C T

Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) is responsible for recent ongoing public health
emergency in the world. Sharing structural and behavioral similarities with its ancestors [SARS and Middle East
Respiratory Syndrome (MERS)], SARS-CoV-2 has lower fatality but faster transmission. We have gone through a
long path to recognize SARS and MERS, therefore our knowledge regarding SARS-CoV-2 is not raw. Various
responses of the immune system account for the wide spectrum of clinical manifestations in Coronavirus disease-
2019 (COVID-19). Given the innate immune response as the front line of defense, it is immediately activated
after the virus entry. Consequently, adaptive immune response is activated to eradicate the virus. However, this
does not occur in every case and immune response is the main culprit causing the pathological manifestations of
COVID-19. Lethal forms of the disease are correlated with inefficient and/or insufficient immune responses
associated with cytokine storm. Current therapeutic approach for COVID-19 is in favor of suppressing extreme
inflammatory responses, while maintaining the immune system alert and responsive against the virus. This could
be contributing along with administration of antiviral drugs in such patients. Furthermore, supplementation
with different compounds, such as vitamin D, has been tested to modulate the immune system responses. A
thorough understanding of chronological events in COVID-19 contributing to the development of a highly ef-
ficient treatment has not figured out yet. This review focuses on the virus-immune system interaction as well as
currently available and potential therapeutic approaches targeting immune system in the treatment of COVID-19
patients.

1. Introduction

The 2019 outbreak of Severe acute respiratory syndrome
Coronavirus 2 (SARS-CoV-2) causing Coronavirus disease-2019
(COVID-19) all around the globe has become a universal concern due to
its rapid transmission rate and related complications, such as Acute
respiratory distress syndrome (ARDS), pneumonitis, shock, respiratory

failure, and death. There is a wide range for the severity of clinical
manifestations from asymptomatic disease to severe respiratory failure
and even death [1] (this article is a preprint and has not been certified
by peer review). COVID-19 clinical signs are categorized under three
types. Type I includes asymptomatic carriers with or without detectable
virus. Non-severe symptomatic infection with the presence of virus is
regarded as type II. Type III is represented by severe respiratory
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disorder with high viral load [2] (this article is a preprint and has not
been certified by peer review). The three clinical types of the disease
show different behavior of the virus in terms of the host’s immune
system. Regardless of the disease type, immune system responds via
initial innate and later adaptive responses. The resolving cases of the
disease are representative of orchestrated innate and adaptive immune
response. However, the damages in the non-resolving lethal cases are
presumed to be due to inefficient and/or insufficient immune response.
It follows to a higher viral load in the host cells and an upregulated
response is the major cause of lung injury or even multiple organ failure
as a result of “cytokine storm”, which will be discussed further in the
next sections [3–5].

COVID-19 has a typical framework of cellular profile for patients;
for instance, reduced numbers of CD4+ T cells, CD8+ T cells, B cells,
and natural killer (NK) cells are common in most of the mild and severe
cases [6,7] (the article by Shi et al. is a preprint and has not been peer-
reviewed). An increase in T helper (Th) 17 cells, neutrophil count, and
neutrophil to lymphocyte ratio correlates with the severity of the dis-
ease [8].

Despite the current knowledge, there is no definitive cure for
COVID-19 and many people die every day throughout the world.
Having a deep comprehensive perspective of virus-immune system in-
teraction helps us to devise effective therapeutic strategy. Accordingly,
this article attempts to clarify the mechanisms of virus entry to target
cells, the challenge of the immune system with the virus, and current
and potential immunotherapeutic approaches in the treatment of
COVID-19.

2. Risk factors associated with COVID-19 pathogenesis

According to the studies, the SARS-CoV-2 infected persons who died
were mostly males, older than 70 years, diabetics, hypertensive. In
addition, comorbidities, including renal diseases, heart failure, and
chronic obstructive pulmonary diseases (COPD) have been reported in
the infected individuals [9–11]. Patients older than 70 years, com-
paring to individuals with less than 50 years old, indicated a 5- to 10-
fold higher risk of severe COVID-19 [12–14]. A 2-fold increase in the
severe forms of disease or mortality rate have been seen in males,
diabetics, hypertensive, COPD, or cases with cardiovascular diseases
[12,13] (both articles are preprints and have not been peer-reviewed).
High body mass index (BMI) and obesity have also been attributing to
severe/lethal disease form [9]. The severity of COVID-19 was also as-
sociated with abdominal adipose tissue distribution, implying to the
potential pathogenic involvement of visceral adiposity in the acute form
of the disease [15]. However, evidence do not support the increased
risk of severe disease or mortality due to tobacco smoking [13,16].
Interestingly, studies do not endorse the association of taking angio-
tensin II receptor blockers or angiotensin converting enzyme (ACE)
inhibitors with COVID-19 progression [14,17].

3. Virus entry as the initial stage of the disease

The ability of an infectious agent to enter the body is a critical stage
as it determines the transmission rate of the agent. Higher entering
facility is associated with the higher transmission rate. The novel
Coronavirus uses its envelope spike proteins to bind the human ACE2
receptor and invade the host cells, particularly in organs with high
expression of ACE2, such as kidney and intestine [18]. The process of
viral entry into target cells via ACE2 has been reported with varying
mechanism. One study demonstrated that the viral entry is based on
ACE2 shedding and involvement of Transmembrane serine protease 2
(TMPRSS2) [19] (this article is a preprint and has not been certified by
peer review), while another research reported that ACE2 shedding is
not a prerequisite for SARS-CoV-2 entry into the target cells [18].
Sungnak et al. indicated that SARS-CoV-2 entry receptor ACE2 and viral
entry-associated protease TMPRSS2 are overexpressed in nasal

epithelial goblet and ciliated cells, evidencing the preferential entry
route by SARS-Cov-2 [20]. The receptor-binding domain (RBD) of the S
protein is extremely immunogenic and antibodies binding to RBD can
neutralize the virus interaction with ACE2 [21] (this article is a preprint
and has not been certified by peer review). ACE2-bearing cells appear
to be the most vulnerable cells against SARS-CoV-2. Alveolar epithelial
type II cells constitute 83% of the lung ACE2-bearing cells. Other ex-
trapulmonary tissues expressing ACE2 include kidneys, heart, en-
dothelium, intestine, and also tongue [1]. The mucosa of the oral cavity
is also a potential site of virus entry. Chen et al. reported that the spleen-
and lymph nodes-associated CD169+ macrophages of COVID-19 pa-
tients express ACE2 and SARS-CoV-2N protein and produce interleukin
(IL)-6. Elevated level of IL-6 has been suggested to correlate with the
disease severity [22] (this article is a preprint and has not been certified
by peer review).

In a recent study based on bioinformatics methods, Li et al. [23]
reported that human dipeptidyl peptidase 4 (DPP4 or CD26) can also
play a role as a potential binding target for SARS-CoV-2 RBD. DPP4 is a
serine protease that is mainly expressed in several human tissues, in-
cluding lung fibroblasts, muscle, central nervous system (CNS), pla-
centa, and immune cells like B cells, NK cells, T cells, macrophages, and
dendritic cells (DCs) [24,25]. Additionally, in a mice model of ARDS
(the major SARS-CoV-2 associated mortality cause), inhibition of DPP4
using sitagliptin resulted in amelioration of histological outcomes of
lung injury through suppressing the inflammatory mediators tumor
necrosis factor (TNF)-α, IL-1β, and IL-6 [26]. Nonetheless, experimental
data revealed that SARS-CoV-2 RBD was able to bind to 293T-cells
expressing human ACE2 but not to 293T-cells expressing human DPP4
[27,28]. Despite lacking of direct implications regarding the involve-
ment of DPP4 in SARS-CoV-2 infection, data imply to the beneficial
effects of DPP4 inhibitors, by modulating the inflammation and in-
hibiting the fibrotic function, in interrupting the progression to the
hyperinflammatory condition associated with severe forms COVID-19
[29].

Major histocompatibility complex (MHC) or human leukocyte an-
tigen (HLA) is another molecule involved in viral entry. Former studies
demonstrated that there was a correlation between HLA polymorphism
and susceptibility or protection against the virus [30–32]. Wang et al.
reported that two categories of HLA alleles are associated with pro-
tectivity or susceptibility to SARS-CoV infection. To name, protective
alleles include HLA-A0201, HLA-Cw1502, and HLA-DR0301, and sus-
ceptibility ones include HLA-B4601, HLA-B0703, HLA-Cw0801, and
HLA-DR B11202 [32].

The third molecule involved in viral entry is CD147, which is a
transmembrane glycoprotein belonging to the immunoglobulin super-
family. This molecule is also known to participate in the plasmodium
invasion and tumor progression. Virus replication can partially be
limited by shutting down the expression of CD147 [1].

Among the above-mentioned binding molecules, SARS-CoV-2 has
the most affinity to human ACE2, making lung as the primary target
tissue and the most common entry route. Sharing ACE2 as binding re-
ceptor, SARS-CoV-2 has more affinity to ACE2 than SARS-CoV. Such a
high affinity accounts for rapid transmission rate of SARS-CoV-2 [33].
Overexpression of ACE2 is associated with the severity of the disease in
mouse model [34]. Given the alleviating role of ACE2 in lung injury by
blocking the renin-angiotensin pathway, administration of human re-
combinant soluble ACE2 as a competitive inhibitor and/or monoclonal
antibodies against spike proteins is expected to be more beneficial in-
stead of downregulating ACE2 [35].

To sum up, viral entry is the critical stage since the infection can be
restricted at this stage with the least clinical complications. In addition,
it helps us to accurately monitor and follow up the course of the disease.
The impact of ACE2-virus attachment on immune response would be
discussed later in this article.
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4. Innate immunity as the front line of defense against the virus

Innate immune cells along with physical barriers are early innate
immune response to lung viral infections. Innate immune cells include
macrophages, DCs, neutrophils, and parenchymal cells, such as fibro-
blasts and epithelial cells. Several receptors of innate immune cells
referred to as pattern recognition receptors are responsible for detecting
antigens related to the virus. Toll-like receptors (TLRs) recognizing
pathogen-associated molecular patterns (PAMPs), RIG-I-Like receptors
recognizing nucleic acids, C type Lectin like receptors (CLRs), and NOD-
like receptors (NLRs) are pattern recognition receptors (PRRs) re-
sponsible for identifying the viral antigens [36].

A sufficiently intense innate response is required to lighten the
burden of the battle for adaptive immunity. The more efficient clear up
actions at the early stages of the disease, the less harmful inflammatory
consequences occur. Stimulation of innate immune cells leads to se-
cretion of inflammatory mediators, such as IL-6 and type I/III inter-
ferons (IFNs) that along with complement system play role against the
viral progression in early phases [37]. However, viruses develop eva-
sion mechanisms from the innate immunity. For example, viruses can
evade the complement system wisely by removing antibody-antigen
complexes from cell surfaces, decreasing Fc receptors expression, or by
mimicking the complement regulatory components [38–40]. The virus-
innate immune interaction crucially affects adaptive immune response
against the virus and, thereby, the virus clearance and clinical outcome.
Accordingly, due to complicated virus-innate immunity interactions,
the immune system may sometimes delay recovery, progress the dis-
ease, or even cause death.

Upon virus entry, cytokine network is formed, among which IL-6
and IFN-I have attracted more attentions. The cytokine network is
highly complicated and should be tightly regulated, and cytokine im-
balance can cause severe ARDS. Inflammatory cytokines, including IL-

1, IL-6, IFN-I, and TNF-α, have widely been addressed.
TNF-α and IL-1β are known as main activators of IL-6 production.

IL-6 is a pleotropic cytokine that induces B cell proliferation, assists
Cytotoxic T lymphocyte (CTL) activation, and involved in triggering
hepatocytes to synthesize acute phase reactive proteins, such as serum
amyloid A (SAA) and C reactive protein (CRP) [41]. IL-6 plays role both
in pro-inflammatory and anti-inflammatory reactions. In cooperation
with transforming growth factor (TGF)-β, it induces Th17 lineage and
inhibits regulatory T (Treg) cell proliferation [42,43]. Having broad
interactions and functions, these characteristics makes IL-6 worth fo-
cusing. Nearly all types of stromal and immune cells (B cells, T cells
[44], monocytes, DCs, mast cells, fibroblasts, endothelial cells, and
keratinocytes) produce IL-6 (48). Overproduction of IL-6 extends the
duration of Th17 responses, leading to inhibition of immune response
deviation towards Th1 response, which are required for virus clearance
(described below) [45]. On this basis, IL-6 has been taken into account
as a therapeutic target. Tocilizumab, an IL-6 receptor (IL-6R) antagonist
(monoclonal antibody) can be used in patients with severe pneumonia
and notably high levels of IL-6 [46,47]. Additionally, blocking of IL-1
and Janus kinase (JAK) appears to increase survival rate in patients
with hyperinflammation during sepsis [48], also conferring the possi-
bility of positive effects in patients with COVID-19.

IFN-I is another important cytokine in viral infections that is pro-
duced by most cells following virus entry. However, cellular sources can
vary depending on the type of viral infection. Plasmacytoid and mye-
loid DCs are major IFN-I-producing cells [49]. IFN-I gene is activated
through two main categories of detectors, including TLRs and Caspase
activation and recruitment domain (CARD) proteins, including Retinoic
acid-inducible gene-I (RIG-I)-like receptors (RLRs) and melanoma dif-
ferentiation-associated protein 5 (MDA5). TLR-3, TLR-7, TLR-8, and
TLR-9 detect viral components in endosomes, while CARDs track
viruses in the cytoplasm. Both types of receptors interact with PAMPs,

Fig. 1. Immunopathology of COVID-19. Numerous cells and molecules are involved in viral response during the infection by SARS-CoV-2. Neutrophils and mac-
rophages are the first cellular members to start responses. Alveolar damage is caused primarily by crowded cell trafficking and hyaline membrane formation, leading
to hypoxia. As the figure depicts briefly, clotting dysregulation has been detected in severe COVID-19 patients. Several mechanisms may contribute to im-
munothrombosis (e.g. elevated levels of pro-inflammatory cytokines). An interconnected and complex network of cells is activated during the acute phase. The most
significant cytokines released by these members are illustrated. During the acute phase in alveoli, histological changes occur. Increase in the collagen synthesis and
fibrin deposition is associated with hypoxic environments and makes tissues vulnerable to further injuries.
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leading to IFN-I secretion as the initial stage of antiviral immune re-
sponse [50]. Viruses are able to avoid interferon antiviral effects that in
some cases make the situation more vulnerable [51]. The key role of
IFN-I on the fate of infection is evidenced by a report demonstrating
that IFN-I responses in the severe cases of COVID-19 patients are mainly
impaired compared to the mild or moderate cases [52]. Development of
evasion mechanisms by virus against IFNs response justifies the need
for more specific defense mechanisms. Apart from direct antiviral ac-
tivity, IFN-I also synchronizes the cellular components of innate and
adaptive immunity, such as NK cells and T cell responses. The circuits
among cells and cytokines become more intricate and begin deviation
from normal state as more compartments of the immune system are
involved.

Other cytokines and chemokine profile in COVID-19 patients have
also been studied, including IL-2, IL-4, IL-8, IL-10, IL-13, IL-18, IFN-γ,
TGF-β, IP-10, Monocyte chemoattractant protein-1 (MCP-1), and
monokine induced by gamma interferon (MIG), which were notably
elevated in acute phase of the disease, resulting in a fatal uncontrolled
systemic inflammatory response (Fig. 1) [53,54]. IL-37 and IL-38 have
shown immunomodulatory effects during COVID-19. IL-37 acts on
mammalian target of rapamycin (mTOR), elevates Adenosine mono-
phosphate (AMP)-activated protein kinase (AMPK), and inhibits the
expression of MHC-II molecules, IL-1β, C-C motif chemokine ligand 2
(CCL2), and TNF [55]. Released by B cells, IL-38 presents similar
manifestations and might be considered as a therapeutic cytokine [56].

As an arm of innate immunity, the complement system starts to act
in the acute phase of the disease. Various strategies evolved in viruses
to evade the complement system indicated that the complement pro-
teins play a significant role in anti-viral defense [57]. The complement
plays as a “double-edged sword” in innate immunity against pathogens.
On the one hand, anaphylatoxins, such as C3a and C5a, can activate
immune cells and, thereby, induce the release of various proin-
flammatory cytokines. Activated complement fragments, such as
Membrane attack complex (MAC), C3b, and C5b induce the synthesis of
arachidonic acid metabolites, including prostaglandins and leuko-
trienes, promoting inflammatory processes and directing the innate
immunity against the virus. On the other hand, complement-mediated
innate immunity activation must be fine-tuned because uncontrolled
complement activation exacerbate inflammation, promotes dis-
seminated intravascular coagulation (DIC), and finally leads to multiple
organ failure and death [58,59]. A study on SARS-CoV, which can be
extended and attributed to SARS-CoV-2, indicated that activation of C3,
the most important and abundant protein in the complement system,
deteriorates the lung dysfunction and can cause multi-organ failure
[60]. In spite of having an equivalent amount of viral load, mice with
C3 deficiency had fewer complications in comparison to normal mice.
Gao et al. [61] (this article is a preprint and has not been certified by
peer review) reported that lung biopsy samples from patients with
highly pathogenic Coronaviruses such as SARS-CoV, MERS-CoV, and
SARS-CoV-2 exhibited excessive complement activity, characterized by
the enhanced C4 cleavage and complement deposition. Also, in this
study elevated serum levels of C5a was observed. Blocking of C3 clea-
vage and its derivative products dropped the release of IL-6 from al-
veolar macrophages, allowing lung and affected organs to recover from
the injuries. Inhibition of key components of the complement system,
such as C3 and C5a, could potentially restrict the ARDS and systemic
inflammation. On the other hand, complement pathway activates the
coagulation pathway, resulting in thrombosis along with inflammation.
In this context, cytokine storm in combination with thrombotic storm
can worsen moderate cases and/or cause death in severe cases of
COVID-19 [62,63].

Phagocytes (neutrophils and monocytes) and NK cells are innate
immune cells. Accumulation of neutrophils producing inflammatory
mediators is a threat to the host’s health [64] and higher neutrophil/
lymphocyte ratio is an indicator of the severe stages of COVID-19 [65].
Additionally, NK cell frequency was reported to be significantly lower

in the severe cases than that of the mild cases. Moreover, there was a
functional exhaustion of NK cells as typified by upregulation of NKG2A
on the NK cells [66].

5. Adaptive immunity as the final hit to clear SARS-CoV-2

The impact of innate immune system on the adaptive immune
system to execute protective antiviral immunity is crucial. In some
cases that the innate response may be inefficient to limit a large-scale
infection, adaptive immune response is required. Recognition of viruses
by innate immune cells, mainly DCs, activates adaptive immune re-
sponses. The cross-talk between innate and adaptive immune cells af-
fects the fate of infection. Affecting the type of adaptive immune re-
sponse, IL-6 and IFN-I cytokines produced by innate immune cells have
also been regarded as important biomarkers in SARS-CoV, which pre-
sumably can be extended to SARS-CoV-2 [67]. The cell-mediated re-
sponse performed by specific cytotoxic T lymphocytes that kill infected
cells, the humoral response synthesizing antibodies by B cells, and the
long-lived “memory cells” are components of the adaptive immune
system fighting with the infection [68].

The initial step in the development of the adaptive immune re-
sponse against viral infections is antigen presentation on the MHC II
molecules to the naïve CD4+ T cells thereby differentiation to effector/
helper CD4+ T cells, including Th17, Th1, or Th2 cells. Subsequently, B
cells and/or CD8+ T cells are activated by helper CD4+ cell through
expression of surface molecules and secretion of cytokines. Activated B
cells secrete antiviral antibodies, acting against virus via several dif-
ferent mechanisms, including neutralization, opsonization, and activa-
tion of complement proteins. The activated CD8+ T cells termed as
“CD8 + CTLs” can lyse virus-infected cells [68,69].

CD4+ T cells provide license to CD8+ T cells, contributing them to
differentiate to CTLs. Additionally, they are capable of producing cy-
tokines, including IFN-γ, TNF, and IL-2 indicating that the response
during SARS-CoV infection is inclined toward Th1 profile [70,71]. The
formulated vaccine against SARS-CoV tested on animal models revealed
that responses pertaining to Th2 profile (such as eosinophil infiltration)
are associated with a spectrum of immunopathology [72,73]. In the
early stages of viral replication, IFN-γ and IL-4 downregulate the ACE2
receptor [74]. Downregulation of ACE2 naturally after virus entry or by
immunomodulatory molecules affects blood pressure and fluid/elec-
trolyte balance [75]. This finding is recommended to be taken into
consideration in the projects designing vaccine for SARS-CoV-2. Fur-
thermore, the importance of CD8+ T cells in the acute phase is irre-
futable, since T cell suppression either by corticosteroid or naturally
leads to T cells exhaustion, which is correlated with the deterioration of
the disease. Exhaustion markers of T cells, such as Programmed cell
death protein 1 (PD1) and T cell immunoglobulin and mucin domain-
containing protein 3 (TIM3), and NK cells (NKG2A) directly correlate
with the levels of inflammatory cytokines and, consequently, the dis-
ease severity [76]. Exhaustion and later depletion of T and NK cells
impede antiviral immunity and contribute to the infection resistance
and lethal stage [77]. NKG2A, expressed on NK cells and CD8+ cells, is
an inhibitory receptor and is capable of sensing MHC-I on the target
cells. NKG2A blocks the cytotoxic activity of immune cells and con-
tributes to further spreading of the viral infection [78]. NKG2A ex-
pression is amplified by IL-6 and IL-10. This heterodimeric inhibitory
receptor prevents NK cells from releasing IFN-γ. On this basis, targeting
this receptor by Monalizumab, a humanized IgG4, may boost the body’s
anti-viral immunity [79]. Reduction in IFN-γ leads to the infiltration of
neutrophils in alveoli, and the higher neutrophil/lymphocyte ratio is an
indicator of the more serious stages of COVID-19 [65].

Apart from CD8+ T cells, the involvement of CD4+ T cells coin-
cides with B cell response appearance within the first week following
the onset of symptoms. The initial antibody responses are against nu-
cleocapsid (N protein) and continue with antibody production against S
proteins within 4–8 days [80]. In this context, blockade of IL-6 may
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impose a defect to the humoral immunity that can be resolved by
convalescent serum therapy [81]. As reported by previous studies on
SARS-CoV, neutralizing antibodies for S protein are raised during the
second or third week. However, in case of SARS-CoV-2, antibody re-
sponse may emerge earlier. It appears that the time for neutralizing IgG
to reach the peak is correlated with the severity of the disease. Based on
the reports, it took about 20 days in recovered patients while it took less
(about 14 days) in the expired patients [82], suggesting that the in-
tensity of antibody response is a major drawback and cause an in-
efficient immunity. Comparing the mild and severe cases, it was ob-
served that IgG and IgA levels had not significant differences, while
there was a slight reduction at IgM levels in the severe cases [83]. The
target of recombinant ACE2 neutralizing monoclonal antibodies is the
RBD region (present in the S protein of SARS-CoV that binds to the
ACE2 receptor) [84]. RBD region for SARS-CoV-2 seems to be distinct
or have limited similarities to that of SARS-CoV. This finding suggests
that a few monoclonal antibodies directed toward the previous subtype
of Coronavirus might act against recently introduced SARS-CoV-2
[85,86]. As the virus transmits and mutates, S protein undergoes al-
terations which might lead to the emergence of a resistant mutant virus
[87].

Polyclonal antibody therapy with the convalescent sera from re-
covered patients is being applied in many hospitals all around the world
with promising results [88]. In utilizing antibodies as a therapeutic
option, unwanted complications, such as antibody-dependent en-
hancement (ADE) and lung injury worsening are essential to be con-
sidered. Complications may result from imbalanced amounts of anti-
bodies and cross-reaction. Cross-reactive antibodies may arise during
previous infections reacting with another similar antigen later in an-
other infection [89]. These antibodies following SARS-CoV-2 infection
mostly target non-RBD regions of spike proteins. Results from sparse
studies demonstrated that cross-reactivity was common between
plasma from SARS-CoV and SARS-CoV-2, but cross-neutralization was
rare [90]. Apart from neutralizing activity, antibodies interact with the
innate immune system via the mechanism known as antibody-depen-
dent cell-mediated cytotoxicity (ADCC). Binding of immune complexes
to the Fc receptors of macrophages in infected regions causes further
pro-inflammatory cytokine release. IL-6 and IL-1β released in this phase
recruit cytotoxic T cells and neutrophils, which release leukotrienes and
reactive oxygen species (ROS) that result in acute injury in the re-
spiratory system [91]. Therefore, the major aim in designing mono-
clonal antibodies is suggested to be least inflammatory activity and the
highest neutralizing capacity [92].

Consistent with inefficient and insufficient immune response, lym-
phopenia has been reported in many COVID-19 cases. This finding can
be explained by the accumulation of lymphocytes in virally infected
sites rather than circulating in the blood. The number of reduced cell
subtypes seems to be reached in normal levels in patients recovered
from the disease [93]. Although adaptive immunity is controlled pre-
cisely, management of innate immunity is difficult due to complicated
interactions among innate components and infected tissues as well as its
fewer specific responses. Hyperactive T cell immunity has similar
consequences because of extreme innate immunity, hence immune
checkpoints limit T cell responses. Immune responses against a viral
infection in the lung should be developed in a way so that inhibit the
infection and repair the lung tissue. In this context, regulation of anti-
inflammatory mechanism, such as Treg cells and IL-10, is performed by
innate and adaptive immune cells that establish immune homeostasis
[94]. Efficient feedback mechanisms clear the infection as well as
apoptosis immune cells that take place afterward [91]. As mentioned
earlier in this paper, lymphocyte count in peripheral blood starts to
restore immediately after virus clearance.

6. Histological and cellular profile in COVID-19

Severe COVID-19 is characterized by lymphocytopenia, in which

levels of T cells and NK cells are below the normal range. Several hy-
potheses have been proposed to discuss the underlying reasons for the
reduction in the total T cell population, including attraction of lym-
phocytes from circulating blood toward infected areas [95], direct in-
fection of lymphocytes by the virus due to ACE2 expression [96], direct
damage to secondary lymphatic organs like lymph nodes and spleen
(this hypothesis requires further investigations to be approved) [22,97]
(the article by Diao et al. is a preprint and has not been peer-reviewed),
lymphocyte apoptosis due to discordant production of pro-in-
flammatory cytokines known as cytokine storm [98], and suppression
of the lymphocyte proliferation as a result of elevated levels of acid
lactic in the blood [99].

Studies reported the increase in neutrophil to lymphocyte ratio,
CD4 + CCR4 + CCR6 + Th17 cells, and the higher expression of HLA-
DR on the CD4+ and CD8+ T cells [100]. Chen and Qin et al. [93,101]
reported that numbers of CD4+CD25+CD127low Treg cells and
CD45RA+ Treg cells were reduced in approximately all of the moderate
and severe COVID-19 patients. Also flow cytometric investigation from
symptomatic COVID-19 patients has shown an important infiltration of
CD14+HLA-DRlow inflammatory monocytes and Granulocyte-macro-
phage colony-stimulating factor (GM-CSF)-producing cells [102] (this
article is a preprint and has not been peer-reviewed). The cytotoxic
granulysin and perforin proteins were also highly expressed in CD8+ T
cells [103]. An increase in neutrophil to lymphocyte ratio and a de-
crease in lymphocyte to CRP ratio are indicators of poor prognosis
[104]. A bulk of studies have reported diminished frequency of NK cells
in the peripheral blood of COVID-19 patients, which correlates with the
disease severity [66,101,105] (the article by Song et al. is a preprint and
has not been peer-reviewed). Ex vivo studies of peripheral blood NK
cells from COVID-19 patients have reported diminished intracellular
markers expression, including Ksp37, CD107a, granulysin, and gran-
zyme B, proposing an impairment of cytotoxicity and production of
cytokines like IFN-γ and TNF-α [66,106]. Additionally, exhaustion
markers, such as Lymphocyte activating 3 (LAG3), NKG2A, and TIM3
are increased in NK cells of COVID-19 patients, suggesting that immune
checkpoints on the NK cells might contribute to SARS-CoV-2 escape
[66,106]. Moreover, a number of studies reported that various co-sti-
mulatory molecules, such as CD137, Tumor necrosis factor receptor
superfamily, member 4 (TNFRSF4; also known as CD134 and OX40
receptor), and exhaustion markers, such as NKG2A, Cytotoxic T-lym-
phocyte-associated protein 4 (CTLA-4), and T cell immunoreceptor with
Ig and ITIM domains (TIGIT) are upregulated on the T cells from
COVID-19 patients [66,107]. Jouan et al. reported that numbers of in-
variant natural killer T (iNKT) cells and mucosal-associated invariant T
(MAIT) cells were decreased in peripheral blood of patients with
COVID-19 related ARDS [108] (this article is a preprint and has not
been peer-reviewed). Also, this study indicated that innate T cells ex-
hibited an altered functional profile in COVID-19 patients [108]. That
notwithstanding, more studies are needed to clarify the key roles of
innate T cells in COVID-19.

Atrophic and necrotic lymph nodes (secondary lymphoid tissues in
general) are associated with decreased numbers of lymphocytes and
notable cell degeneration are considerable in lung autopsy tissues.
Immunohistochemical studies exhibited decreased levels of CD4+ and
CD8+ T cells in spleen and lymph nodes. Damage in alveoli was cor-
related with the infiltrated cells mostly constituted by monocytes,
macrophages, and very few CD4+ lymphocytes [109]. Infiltration of the
cells around blood vessels of alveoli could be resulted from endothelium
damage and vasculitis [110]. The biochemical, immunological and
hematological prognostic biomarkers in COVID-19 patients has shown
in Table 1. Histopathology of COVID-19 could be anticipated by eval-
uating specific markers, including plasma D-dimer (a fibrin degradation
product), ferritin, brain natriuretic peptide, creatine kinase and tro-
ponin T. Elevated levels of these markers as indicators of tissue damage
are associated with poor prognosis of the disease [111]. Micro-coagu-
lopathy and DIC are evoked by excessive cytokine response and also

N. Ebrahimi, et al. International Immunopharmacology 89 (2020) 107082

5



hypoxemia [112]. Despite marked elevation of D-dimer levels in severe
cases, DIC contributes to late stages in rare cases of COVID-19. Antic-
oagulant treatment appears to be associated with the ameliorating
course of the disease in these cases [113]. Recently, several studies
represented that COVID-19 could result in autoinflammatory and au-
toimmune disorders, such as pediatric inflammatory multisystemic
syndrome like Kawasaki disease, Kawasaki-like disease, shock syn-
drome, toxic shock syndrome, macrophage activation syndrome, and
myocarditis in children [114–117] (the article by Toubiana et al. is a
preprint and has not been peer-reviewed). Future studies should aim to
disclose the fundamental molecular mechanisms that result in the
mentioned disorders following COVID-19.

7. Gut microbiota and COVID-19

Even though alveolar epithelial cells have been known to be the
major target for SARS-Cov-2, studies revealed the presence of SARS-
CoV-2 RNA in the stool samples of COVID-19 patients [118,119]. The
intestinal epithelial cells have also been indicated to express ACE2 re-
ceptors [120], implying to the possible implication of gut microbiota in
the lung-gut axis during the pathogenesis of COVID-19. Gut microbiota
has been shown to be impaired during respiratory viral infections
[121]. Moreover, aging has been associated with diminished diversity
in the gut microbiome [122], and since higher mortality rate has been
reported in old age patients with COVID-19 [123], there might be a
connection between SARS-CoV-2 related mortality and gut microbiota.

Commensal microorganisms in the gut play an essential role in
balancing the pro-inflammatory responses (like those by Th17 cells)
versus anti-inflammatory responses (such as Treg cells) [124]. A
healthy gut microbiome in patients with SARS-CoV-2 infection might

modulate the immune responses toward a protective state and avoid
adverse reactions against lung tissue. Dietary composition is involved in
determining the gut microbiota profile and hence impresses the health
status. In addition, probiotics have been associated with beneficial ef-
fects in modulating inflammatory settings and controlling the innate
immune responses through TLRs signaling pathways [125]. Moreover,
administration of probiotic bacteria, such as Bifidobacterium lactis,
Lactobacillus rhamnosus, and Bifidobacterium breve in mice resulted in
development of Treg cells [126].

Therefore, providing probiotics by diet might be beneficial in es-
tablishing a proper state of gut microbiota profile and probably lung
microbiota, leading to orchestrating immunity. Improving gut micro-
biome composition through personalized nutrition and supplementa-
tion might provide prophylactic approach to reduce the detrimental
manifestations of the COVID-19.

8. Current immunotherapeutic prospective for COVID-19

Devise of therapeutic approaches requires a comprehensive per-
ception of the pathological mechanism and chronological stages of the
disease. In addition, determining the stage of the disease is necessary
prior to applying a treatment. Administration of a medication early in
the symptom onset might not be beneficial and even could be deleter-
ious later in the acute phase. The immunotherapeutic approaches can
hinder virus entry, replication, and/or the immune system behavior.

Chloroquine (CQ) and hydroxychloroquine (HCQ) are medications
used as prophylaxis and also treatment objectives in patients with
malaria, rheumatoid arthritis (RA), and systemic lupus erythematosus
(SLE). CQ and HCQ possess antiviral activity on a wide spectrum of
viruses, importantly on SARS-CoV-1, which share common features

Table 1
Biochemical, immunological and hematological prognostic biomarkers in COVID-19 patients.

Biomarker type Biomarker Result Reference

Biochemical LDH Increased in severe phase [173]*
D-dimer Increased risk for acute cardiac injury and DIC [174,175]*
NT-proBNP Risk factor in severe phase [176]
CRP The CRP levels were correlated with disease progression, and a predicted biomarker risk acute cardiac injury [68,175]
SAA Increased in 80% of the patients as a diagnostic index [69]
Acid lactic The suppression in lymphocyte proliferation as a result of elevated acid lactic in blood [99]
Troponin T Elevated levels of troponin T as indicative of tissue damage are associated with poor prognosis of the disease [111]

Hematological Lymphocyte count Severe COVID-19 is characterized by lymphocytopenia as prognostic value [21,177]*
NLR Patients with NLR ≥ 3.13 were reported to be more likely to develop severe phase [100]
LCR Decrease in LCR is indicator of poor prognosis [104]
PLR High PLR was associated with poor prognosis [178]
Treg cells count The Treg cells frequency was reduced in approximately all the moderate and severe COVID-19 [83,111]
CD4+, CD8+, and NK cell
counts

Levels of CD4+, CD8+, and NK cells are below the normal range and correlated with severity of COVID-19 [66,179]*

Immunological Anti-COVID-19 antibody
levels

Prolonged anti-COVID-19 IgM positivity could be used as a predictive biomarker for poor recovery. Higher anti-
COVID-19 IgG levels was more found in severe phase

[93,180,181]*

IL-6 Increased risk for respiratory failure, Correlated with severe phase of the disease and poor prognosis [182,183]
IL-8 Correlated with severe phase of the disease [184]*
IL-10 Increased in severe phase of the disease [184]
IP-10, MCP-3 Correlated with severe phase of the disease [185]
GM-CSF The high frequency of CD14 + CD16 + GM-CSF + monocytes are found in COVID-19 patients as compared to

healthy controls
[102]

IFN-γ and IL-2 Correlated with severe phase of the disease [186]
IL-37 and IL-38 Immunomodulatory agents in novel corona virus infection [55,56]
NKG2A, CTLA-4, and
TIGIT

Upregulated in T cells from COVID-19 patients [66,107]

CD137 and OX-40 Upregulated in T cells from COVID-19 patients [66,107]
PD-1, LAG3 and Tim-3 Upregulated in NK cells of COVID-19 patients [106]

LDH; lactate dehydrogenase, NT-proBNP; N-terminal-pro brain natriuretic peptide, CRP; C-reactive protein, SAA; Serum amyloid A, NLR; Neutrophil to Lymphocyte
Ratio, LCR; Lymphocyte to C-reactive protein Ratio, PLR; Platelet to Lymphocyte Ratio, Treg; T Regulatory, NK; Natural killer, IL; Interleukin, MCP-3; Monocyte
chemotactic protein-3, GM-CSF; Granulocyte-macrophage colony-stimulating factor, INF; Interferon, CTLA-4; cytotoxic T-lymphocyte-associated protein 4, TIGIT; T
cell Immunoreceptor with Ig and ITIM Domains, PD1; Programmed cell death protein 1, LAG-3; Lymphocyte-activation gene 3, TIM-3; T-cell immunoglobulin
mucin-3.
* Articles are preprints and have not been peer-reviewed.
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with SARS-CoV-2. QC and HCQ interfere with viruses in the stages of
entry, viral replication cycle, and post-translational modification of
viral proteins [127,128]. These two medicines can also affect cell sig-
naling and the production of pro-inflammatory cytokines [110]. How-
ever, clinical trials have yielded no beneficial effects of HCQ in the
treatment of COVID-19.

In the single arm protocol from early March to March 16th trial by
Gautret et al., 20 French COVID-19 patients received 600 mg of HCQ
daily and their viral load in nasopharyngeal swabs was tested each day.
This trial revealed that there was a significant reduction of the viral
carriage at day 6 compared to controls. Additionally, a treatment re-
gimen of HCQ and azithromycin was observed to be more efficient for
virus elimination [129]. Nonetheless, this trial suffered from a number
of limitations, including small sample size, dropout of six patients from
the study, non-randomized and open-label design, and follow-up of
small number of outcomes in a long-term period. Molina et al. re-
plicated the trial in 11 French COVID-19 patients in another hospital,
and the patients received 600 mg/day HCQ for 10 days along with
500 mg day 1 and 250 mg days 2 to 5 of azithromycin. Quite conversely
compared to the trial by Gautret et al., Molina et al. observed that
combination of HCQ and azithromycin did not have strong antiviral
activity or clinical benefits in severe COVID-19 patients [130]. Fur-
thermore, the trial of 30 treatment-naïve patients with COVID-19 at
Shanghai Public Health Clinical Center also was not able to report
beneficial effects of HCQ. The viral clearance and clinical outcomes,
including temperature normalization, duration of hospitalization, and
radiological progression had no difference on day 7 in patients after
receiving 400 mg/day HCQ for 5 days plus conventional treatments
compared to the control group receiving only the conventional

treatments [131]. In another trial in China, 75 COVID-19 patients re-
ceived a loading dose of 1200 mg/day HCQ for three days followed by a
maintenance dose of 800 mg/day HCQ for two weeks in patients with
mild to moderate disease and three weeks in patients with severe dis-
ease. The trial reveled that HCQ not only was inefficient, but also was
associate with higher rate of adverse events [132]. A randomized,
double-blind, placebo-controlled trial across the United States and Ca-
nada evaluated the efficacy of HCQ as prophylaxis after exposure to
SARS-CoV-2. The subjects were those that had exposure to someone
with confirmed COVID-19 at a distance of less than 6 ft for more than
10 min. The results revealed HCQ was not able to prevent COVID-19
development in the viral-exposed individuals [133]. The post-exposure
prophylactic effect of HCQ is also under consideration in COVID-19
patients from Sri Lanka [134]. Overall, other than one study in French
with small sample size, resting trials do not support the therapeutic
effect of HCQ in the COVID-19 patients or prophylactic effects in the
post-exposure individuals. However, a number of trials are currently
under implementation to disclose the bona fide effect of HCQ in the
COVID-19 patients and we need to wait for the results to come up with
a valid conclusion on the efficacy of HCQ.

Pfaender et al. reported that Lymphocyte antigen 6 complex locus E
(LY6E) interfere with COVID-19 spike protein-mediated membrane fu-
sion [135]. Soluble ACE2 has also been suggested as a neutralizing
agent to interrupt virus entry [136]. Apart from targeting virus by
plasma therapy and inhibitors of the virus replication (such as re-
mdesivir that inhibits viral RNA synthesis, and the trials reported that it
might be efficient [137] and inefficient [138] in treating COVID-19
patients), most of the treatments are based on alleviating symptoms of
the cytokine release that continues with multiple organ failure in severe

Fig. 2. Currently proposed methods to prevent or cure COVID-19. The first stage of a viral infection is the entry phase. SARS-CoV-2 infects the ACE2 and TMPRSS2
expressing cells. ACE2 and TMPRSS2 have been demonstrated to play a major role in opening the gates for this virus. The figure illustrates the proposed strategies in
restricting virus entry. Blocking spike proteins by the means of monoclonal antibodies, employing soluble ACE2 as a competitive agent for normally expressed ACE2
on cells, hindering ACE2 itself or suppressing the TMPRSS2 from activating the spike protein are theoretically efficient strategies. Promoting immune response in the
protective phase and downregulating it in the acute phase are established as the most effective approaches to minimize the complications caused by divergent
immune responses. In addition, vaccination can boost the cytotoxic activity exerted by CD8+ T cells, which in turn prevents the body from manifesting advanced
symptoms. Occluding the viral replication cycle in several phases is the basis for developing many anti-viral drugs. The normal process of vesicle formation, RNA
polymerization, proteolysis, and assembly of viral compartments are crucial stages that have been targeted by anti-viral drugs.
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case. As we mentioned earlier, cytokine storm is caused by excessive
release of inflammatory cytokines like IL-6. Patients with severe man-
ifestations exhibit higher levels of IL-2, IL-7, IL-10, Granulocyte colony-
stimulating factor (G-CSF), IP-10, MCP-1, Macrophage inflammatory
protein-1α (MIP-1α), and TNF [101]. Damages caused by inflammatory
responses could be attenuated by inhibitors of proinflammatory cyto-
kines, related receptors, and the complement system. These approaches
appear to be beneficial as shown in numerous clinical trials
[56,71,139]. While administering anti-inflammatory agents, the bal-
ance between pros and cons should be taken into consideration.

One of the important questions that should be addressed is that
whether anti-inflammatory regimen can potentially reduce the capacity
of the immune system to fight with the virus, whose answer is not
definite. The issue can be explained by an example; JAK inhibitors are a
group of anti-inflammatory agents that inhibit the production of IFN-α,
which is an important factor in combating the virus, while other
modulatory agents such as anakinra (IL-1 receptor antagonist), tocili-
zumab (IL-6 inhibitor) and intravenous immunoglobulin seems to be
less deviated from their main function (Fig. 2) [140,141]. Additionally,
a meta-analysis of trials revealed that there was a significant difference
in mortality rate between COVID-19 patients receiving tocilizumab
(132/675, 19.5%) and the control group (283/1000, 28.3%) [142],
implying to the positive effects of tocilizumab over its adverse side
effects regarding suppressing the immune system in the receiving
COVID-19 patients.

Glucocorticoids can also alleviate fever and pneumonia, however by
affecting the lymphocyte population. They exhibit some adverse effects
and delay the recovery process during SARS [143–145]. If glucocorti-
coid should be used in infectious conditions like sepsis, it is suggested to
be in low dosage and short term [146]. Given the interconnection be-
tween inflammation and coagulation, to resolve the thrombotic storm
as mentioned before, anticoagulant therapy, which also have anti-in-
flammatory effects, can be performed in COVID-19 patients [147].

As mentioned before, production of pro-inflammatory cytokines,
such as IL-1β, IL-6, IL-8, IP-10, MCP-1, MIP-1α, G-CSF, and GM-CSF has
been considered as a major mechanism involved in severe cases of
COVID-19 [5,148]. On this basis, induction of trained immunity as
prophylactic strategy has also been proposed. A prominent approach of
such strategy could be achieved by Bacillus Calmette–Guérin (BCG)
vaccine that develops a non-specified partial immunity against SARS-
CoV-2 [149]. Trained immunity is associated with metabolic and epi-
genetic changes that promote innate response. This was based on initial
observation indicating that BCG has shown some protection against
experimental viral infection [150]. Moreover, epidemiological in-
vestigations have suggested that countries and regions with mandatory
BCG vaccination for the population have lower cases of infections and
mortality rate due to COVID-19, presumably based on trained innate
immunity [151–153]. This view has not been restricted to BCG and the
issue regarding oral polio vaccine has also been proposed [150].

In patients with impairment in the epithelium of the respiratory
system, mesenchymal stem cell (MSC) therapy has been tested that
exhibited promising results [154]. MSCs need to be activated by in-
terferon (IFN)-γ to exhibit their anti-inflammatory properties [155].

Administration of hyaluronidase-2 has also been considered in order
to clear the lungs from the thick jelly layer and alleviate the respiratory
symptoms [156]. IL-1 and TNF-α are important inflammatory cytokines
that induce hyaluronan synthase-2 (HAS2) in fibroblasts, CD31 ex-
pressing endothelium, and Epithelial cell adhesion molecule (EpCAM)-
expressing alveolar cells [156]. Hyaluronan absorbs water in the al-
veolar epithelium and exacerbates the lung damage, and reduces the
functional capacity of the respiratory system [5].

To sum up, cells and other compartments taking part in virus
clearance must be kept intact or boosted on its best condition. On this
basis, the cells and molecules involved in the acute inflammatory phase
should be put under control to the levels so that they can continue their
antiviral activity and act against other opportunistic infections.

Targeting IL-17A, for instance, facilitates the infection by candida
species. Furthermore, bacterial infections are more probable in patients
treated with IL-6 and TNF inhibitors. JAK1 and JAK3 inhibitors reduce
the potency to combat against viral infections due to interference with
type I IFNs, IL-2, IL-15, IL-21, and IFN-γ. Roschewski et al. reported that
targeting extreme host inflammation with a Bruton tyrosine kinase
(BTK) inhibitor is a treatment strategy in severe COVID-19 patients
[157]. The IL-15 immunotherapy may be a potential strategy for
COVID-19 via upregulating of innate immune responses, such as the
activation and induction of CD8+ T cells, NK cells and Treg cells to
neutralize Th2 cytokine storms [158].

9. Vitamins modulating immune system during COVID-19

The activity of the immune system is affected by the elements
present in the microenvironment, among which nutrient and more
specifically vitamins play outstanding roles. Vitamin A and D influence
the immune system directly [159].

Vitamin D (1,25(OH)2VD3) exerts its immunomodulatory effects by
inhibiting T cell proliferation [160], expression of IL-2 [161], and IFN-γ
[161]. 1,25(OH)2VD3 directs differentiation of Th cells toward the Th2
responses by inducing of IL-4 production [162] and blocking differ-
entiation to Th1 responses by suppressing the IL-12 production [163].
Given the downregulatory effects on IL-6 and IL-23, 1,25(OH)2VD3
inhibits the differentiation of naïve T cells to Th17 cells. Vitamin D also
raises the production of IL-10 along with downregulation of IL-12
synthesis, leading to deviation of Th1 response to IL-10-producing Treg
cells [162]. In addition to its modulatory effects on T cells, 1,25(OH)
2VD3 also downregulates B cell proliferation and consequently IgG
production by indirect affecting on the immunologic synapse in the
antigen presenting cells (APCs)-Th cells interface [160]. Although vi-
tamin D exhibits inhibitory function on adaptive immunity, it has sti-
mulatory effects on the innate immune responses [164].

In contrast to vitamin D, vitamin A (Retinoic acid) promotes cyto-
toxic capability of the immune system and also T cells expansion that
may be beneficial responses in case of COVID-19. It assists signal
transduction in T cells and enhances the secretions of IL-2. The definite
effect of retinoic acid on B cells is not clear, however, it presumably
inhibits B cells apoptosis [165]. Similar to vitamin D, retinoic acid also
aids differentiation of T cells towards Th2 response. In addition, vi-
tamin A stimulates the production of type I interferon, thereby, exerting
antiviral activities [166]. In addition, vitamin A confers a therapeutic
potential in autoimmunity by modulating the Th17/Treg balance
[167,168]. Taking together, vitamin A might be beneficial in COVID-19
patients by modulating immune system toward an anti-inflammatory
setting during remission phase of the disease and by stimulation of anti-
viral state.

Other vitamins including C, E, and B complex have also been re-
ported to be involved in some nonspecific reactions. For instance, vi-
tamin C exhibits antioxidant activity and vitamin E acts as a scavenger
or key cellular regulator. There are scattered studies reporting that vi-
tamin C and E perform anti-inflammatory activities. Furthermore, vi-
tamin E has been reported to stimulate the production of type I IFN in
the cells [169,170].

Briefly, vitamins are necessary for the normal function of immune
system. Vitamin deficiency in patients with chronic infections, such as
Hepatitis B virus (HBV), Hepatitis C virus (HCV), and Human im-
munodeficiency viruses (HIV) have reported to be associated with a
higher viral replication rate and dysregulated cytokine response.
Additionally, insufficient levels of serum 25(OH)D has been associated
with respiratory disorders and promoted proneness to acute respiratory
infections [171], which have been attributed to main death cause in
COVID-19 patients. Therefore, vitamins, particularly vitamin D sup-
plementation may potentially have beneficial effects in soothing the
manifestations of respiratory syndrome in COVID-19 patients [172].
However, no direct evidence is currently available on the efficacy of
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vitamins in COVID-19 patients and anti-viral effects of vitamins on
SARS-CoV-2 infection require further investigations.

10. Conclusion

This review briefly presented the interaction among SARS-CoV-2
and various compartments of the immune system. We discussed the
mechanism of infection in different stages of the disease and proposed
the most applicable and favorable strategies in order to restrict the virus
and its following complications. Primarily prophylactic strategies and
further regulating host immune response, monitoring the function of
several organs (for instance lungs, kidneys, and heart) and systems (for
instance coagulation system) may be as important as targeting the virus
itself. Ongoing studies regarding treatment procedures have some
contradictory result; we considered the findings that there were most
consensuses on. However, it should be noted that a number of studies
referenced in this review article are currently in the pre-print step and
not completely peer-reviewed, subjecting some considerations before
reaching the final point. The most devastating response to viral infec-
tion was mentioned to be excessive inflammation and cytokine release
syndrome. The framework to control these immoderate reactions seems
to be constant, however, capable of being progressed. In scheming
treatment protocols, several factors regarding virus (mutations, viral
load, viral titer, and evading mechanisms) and host (age, gender, nu-
trition, HLA genes, the efficiency of the immune response) are sug-
gested to be considered. In designing a proper vaccine, researchers are
being contributed by previous studies on SARS and MERS and take
advantage of studying evolved and properly transformed immune cells
and their related responses, such as B cells and their related neu-
tralizing antibodies. Further investigations are required in order to
reach precise and the most efficient ways to combat this global health
issue.
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