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SUMMARY
The World Health Organization has declared SARS-CoV-2 virus outbreak a worldwide pandemic. However,
there is very limited understanding on the immune responses, especially adaptive immune responses to
SARS-CoV-2 infection. Here, we collected blood from COVID-19 patients who have recently become virus-
free, and therefore were discharged, and detected SARS-CoV-2-specific humoral and cellular immunity in
eight newly discharged patients. Follow-up analysis on another cohort of six patients 2 weeks post discharge
also revealed high titers of immunoglobulin G (IgG) antibodies. In all 14 patients tested, 13 displayed serum-
neutralizing activities in a pseudotype entry assay. Notably, there was a strong correlation between neutral-
ization antibody titers and the numbers of virus-specific T cells. Our work provides a basis for further analysis
of protective immunity to SARS-CoV-2, and understanding the pathogenesis of COVID-19, especially in the
severe cases. It also has implications in developing an effective vaccine to SARS-CoV-2 infection.
INTRODUCTION

At the end of 2019, patients with coronavirus disease 2019

(COVID-19) were identified in Wuhan, China (Wang et al., 2020),

infected by a novel coronavirus, now named as severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2). The World

Health Organization (WHO) first declared this outbreak a public

health emergency of international concern (Phelan et al., 2020)

and subsequently a worldwide pandemic (Di Pierro et al., 2020) .

The genome sequence of SARS-CoV-2 bears 96% (Zhou

et al., 2020) and 79.5% identity to that of a bat coronavirus

and SARS-CoV, respectively (Zhu et al., 2020). Like SARS-CoV

and MERS-CoV, SARS-CoV-2 belongs to the beta genus Coro-

navirus in the Corornaviridae family (Lu et al., 2020). Clinically,

several papers showed that most COVID-19 patients developed

lymphopenia as well as pneumonia with higher plasma levels of

pro-inflammatory cytokines in severe cases (Chan et al., 2020;

Huang et al., 2020; Wu et al., 2020), suggesting that the host im-

mune system is involved in the pathogenesis (Mahallawi et al.,
2018; Nicholls et al., 2003). Patients infected by SARS-CoV or

MERS-CoV were previously reported to have antibody re-

sponses (Ko et al., 2017; Shi et al., 2004; Wang et al., 2016;

Woo et al., 2004) but exhibited defective expression of types I

and II interferons (IFNs), indicative of poor protective immune re-

sponses (Cameron et al., 2008; Thiel and Weber, 2008; Vijay and

Perlman, 2016). However, to date, there were few studies in

characterizing the immune responses (Wolfel et al., 2020; Zhou

et al., 2020), especially adaptive immune responses to SARS-

CoV-2 infection. Zhou et al. showed that COVID-19 patients ex-

hibited nucleocapsid protein (NP)-specific antibody response,

and in one patient, immunoglobulin M (IgM) peaked at day 9 after

disease onset and then switched to IgG by week 2 (Zhou et al.,

2020). They also reported that sera from several patients could

inhibit SARS-CoV-2 entry in target cells, indicating involvement

of humoral immunity. Krammer and colleagues detected anti-S

antibodies in three COVID-19 patients as early as 3 days

post symptom onset (https://doi.org/10.1101/2020.03.17.

20037713). A case report recently published showed the kinetics
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Table 1. Clinical and Pathological Characteristics of the COVID-19 Patients

Pt# Sex Age

Travel in

Wuhan Fever Fatigue

Lymphocyte

Count

Days

in hospital BT CT Scan

BT NA

Test

Discharge CT

Scan

Discharge NA

Test

1 F 51 yes yes yes 1.1 3 109/L 33 patchy ground glass shadows

on both lungs

P improvement N

2 F 42 no no no 2.5 3 109/L 27 multiple patchy ground glass

and high-density shadows in

both lungs

P improvement N

3 M 32 no yes no 1.7 3 109/L 36 exudative lesion of the right

lower lung

P improvement N

4 M 49 no yes no 1.5 3 109/L 32 patchy ground glass shadows

on both lungs

P significant

improvement

N

5 F 62 no yes yes 0.8 3 109/L 37 patchy ground glass shadows

on both lungs

P significant

improvement

N

6 M 32 no yes yes 2.1 3 109/L 17 multiple ground glass shadows

in both lungs

P significant

improvement

N

7 M 32 no yes yes 1.7 3 109/L 34 multiple ground glass lesions

in the lower lobe of the

right lung

P significant

improvement

N

8 F 57 yes yes yes 1.3 3 109/L 45 multiple flaky ground glass

shadows in the subpleural

areas of both lungs, some

accompanied by consolidation

P significant

improvement

N

9 F 26 no yes no 2.9 3 109/L 12 right lung inflammation P normal N

10 M 68 no yes no 0.7 3 109/L 14 multiple patchy ground glass

shadows are seen in the left

lung, and the upper lobe of

the left lung is obvious

P significant

improvement

N

11 F 37 no no yes 1.9 3 109/L 12 double lung veins thickened P normal N

12 F 29 no yes yes 1.9 3 109/L 13 ground glass in the pleura of

the lower lobe of both lungs

P normal N

13 F 31 yes yes no 1.1 3 109/L 19 patchy ground glass shadows

on both lungs

P significant

improvement

N

14 M 35 no yes yes 2.3 3 109/L 11 multiple ground glass shadows

in both lungs

P normal N

Pt, patient; F, female; M, male; P, positive; N, negative; BT, before treatment; NA, nucleic acid.
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of T cell subpopulations (TFH, CD4 and CD8) and SARS-CoV-2-

specific antibody responses in one COVID-19 patient (Thevara-

jan et al., 2020). One COVID-19 patient in Finland was shown

to possess a low level of neutralizing antibody titer (Haveri

et al., 2020). However, virus-specific T lymphocytes and their re-

lationships with neutralizing antibody titers in COVID-19 patients

remains uncharacterized.

In this study, we collected blood from COVID-19 patients who

have recently become virus-free and therefore were discharged

and analyzed their SARS-CoV-2-specific antibody and T cell

responses.

RESULTS

Detection of SARS-CoV-2-Specific Antibodies in COVID-
19 Convalescent Subjects
To understand immune responses toCOVID-19, we assessed 14

patients who recently recovered from the infection. Their clinical

and pathological characteristics were shown in Table 1. All the

patients initially showed mild symptoms via computed tomogra-
972 Immunity 52, 971–977, June 16, 2020
phy (CT) scan and were positive with SARS-CoV-2 nucleic acid

testing. Of them, eight (patients 1–8) were newly discharged,

whereas the remaining six were 2 weeks post discharge

(follow-up patients, patients 9–14). Only three traveled to Wuhan

city within the past 3 months. In line with the previous reports

(Wang et al., 2016), two patients (5 and 10) showed lymphopenia

(normal range is 1.1/3.2 3 10e9 cells per L). Sera from three

healthy donors (Wang et al., 2016) were obtained before the

SARS-CoV-2 outbreak (healthy donors 1–3). Three additional

healthy donors (4–6) who had been in close contacts with the pa-

tients were recruited in this study. Human AB serum collected

from healthy male AB donors in the United States (GemCell,

CA) was used as a negative control.

In order to detect anti-viral immune responses, we first con-

structed recombinant pET28-N-6XHis by linking six copies of

His tag to the C terminus of NP in the pET28-N vector (Biomed,

cat. number BM2640). Escherichia coli transformed with pET28-

N-6xHis was lysed and tested by Coomassie blue staining to

confirm NP expression at 45.51 kDa. NP was further purified

by Ni-NTA affinity chromatography and gel filtration. The purity
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Figure 1. SARS-CoV-2 NP- and S-RBD-Specific Antibodies in COVID-19 Convalescent Individuals

(A) Titration of individual serum samples.

(B) Serological responses of 14 COVID-19 patients to recombinant NP (top) and S-RBD (bottom). Dilution of 1:50 was used for IgM and 1:450 for IgG.

(C) Data from the same experiments with (A) were presented as AUC.

(D) IgG isotypes of 14 COVID-19 patients to recombinant NP and S-RBD.

NP, nucleocapsid protein; S-RBD, receptor binding domain of spike protein; HD, healthy donor; Pt, patient; AUC, area under curve. The experiment was per-

formed in duplicates. Date are presented as mean ± SEM. For HD 1–3, the sera were collected in 2018. For HD 4–6, the sera were from close contacts and

collected in 2020. *p < 0.05, 0.05 < **p < 0.001, ***p < 0.001.
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of NP was approximately 90% (Figure S1A). The presence of NP

was subsequently confirmed by anti-FLAG antibody (Fig-

ure S1B). The receptor-binding domain (RBD) of S protein

(S-RBD) and main protease (Lan et al., 2020) were produced

by a Baculovirus insect expression system and purified to a pu-

rity of 90% (Figure S1A).

Using sera from patients and healthy donors, IgG and IgM

against SARS-CoV-2 NP, main protease and S-RBD antigens

were analyzed. There was no significant antibody response to

main protease in sera from several patients (data not shown),

suggesting that it may not serve as an antigen for humoral immu-

nity. We thus focused on NP and S-RBD. The individual serum

samples were then performed by serial dilutions to get optimal

dilutions (Figure 1A). Dilution of 1:50 was used for IgM and

1:450 for IgG. NP- and S-RBD-specific IgM and IgG antibodies

were both detected in the sera of newly discharged patients,

compared with healthy donor groups. Anti-SARS-CoV-2 IgG an-

tibodies were also more obviously observed than IgM in the

follow-up patients (9–14) when compared with healthy donors

(Figure 1B). In addition, values from the serum dilution curves

were calculated to determine the area under the curve (AUC)

values. Compared to control sera, COVID-19 patient sera

showed significantly higher AUC for NP- and S-RBD-specific

IgG antibodies (Figure 1C). Taken together, these findings indi-

cate that COVID-19 patients mounted IgG and IgM responses

to SARS-CoV-2 proteins, especially NP and S-RBD, and also
suggest that infected patients could maintain their IgG amounts,

at least for 2 weeks after discharge.

In addition, IgG isotypeswas further tested in 14 patients and 6

controls. As shown in Figure 1D, anti-NP and S-RBD IgG was

mainly IgG1 isotype, and the newly discharged and follow-up pa-

tients showed similarly amounts of anti-NP IgG1. Of interest, one

patient (5) showed higher amounts of anti-NP IgG3, whereas

anti-S-RBD IgG3 was detected in two patients (4 and 5). How-

ever, we did not detect IgG2 to either NP or S-RBD proteins

(data not shown).

Measurement of Neutralizing Antibody Titers from
COVID-19 Convalescent Subjects
Since the RBD of the S protein has been shown to bind to human

angiotensin converting enzyme 2 (ACE2) (Zhou et al., 2020), the

existence of antibodies against it may suggest neutralization of

SARS-CoV-2 infection. To assess this, we performed a pseudo-

virus particle-based neutralization assay, since there was a

significantly positive correlation in the neutralizing antibody titers

between pseudovirus and SARS-CoV-2 (Figure 2A). As shown in

Figures 2B and 2C, patients 1, 2, 4, 5, and 8, all within the newly

discharged group, had high neutralizing antibody titers. These

results demonstrate that most recently discharged patients

had strong humoral immunity to SARS-CoV-2. Among the

follow-up patients, all had neutralizing antibody titers, with the

exception of patient 9 being negative. As expected, there was
Immunity 52, 971–977, June 16, 2020 973
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Figure 2. Measurement of Neutralizing Antibody Titers in COVID-19 Convalescent Individuals

(A) Correlation analysis of neutralizing antibody titers in COV1D-19 patients measured by pseudovirus and live SARS-CoV-2 (n = 20).

(B) Neutralizing curves of 14 COVID-19 patients measured by pseudovirus-based assay. The experiment with patients was performed in triplicates. The

experiment with healthy donors was performed in duplicates.

(C) Measurement of neutralizing antibody titers of 14 COVID-19 patients by pseudovirus-based assay.

(D) Correlation between NAT50 and AUC of anti-S-RBD (left) and anti-NP (right) IgG (n = 14).

HD, healthy donor; Pt, patient; AUC, area under curve; NAT50, neutralizing antibody titers. Date are presented as mean ± SEM. *p < 0.05, 0.05 < **p < 0.001,

***p < 0.001.
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a significant correlation between neutralizing antibody titers and

AUC of anti-S-RBD IgG, but not of anti-NP IgG (Figure 2D), sug-

gesting that anti-S-RBD IgG might be predictive of serum

neutralization capabilities in COVID-19 patients. These findings

suggest that most patients post discharge have serum neutral-

izing SARS-CoV-2 infection.

Cellular Immune Responses to SARS-CoV-2 in COVID-
19 Convalescent Subjects
To explore cellular immune responses to SARS-CoV-2, we

isolated peripheral blood monocytic cells (PBMCs) from

the whole blood and phenotypically analyzed them by flow cy-

tometry (Figure 3A). We found that compared to newly dis-

charged patients, there was a trend toward an increased fre-

quency of NK cells in the follow-up patients (Figure 3B).

However, there was no significant difference in terms of the

percentages of T cells among those two groups and the

healthy donors.

To assess virus-specific cellular immunity, we then treated

PBMCs with recombinant NP, main protease, and S-RBD, fol-

lowed by IFN-g ELISpot analysis. The results were considered

positive if there was at least a 2-fold increase in the numbers

of IFN-g-secreting T cells in the subject than in the healthy

donors. As shown in Figure 3C, compared with healthy

donors, the numbers of IFN-g-secreting NP-specific T cells

in patients 1, 2, 4, 5, and 8 were much higher than other pa-

tients, suggesting that they had developed SARS-CoV-2-spe-
974 Immunity 52, 971–977, June 16, 2020
cific T cell responses. Of note, patients 1, 2, 4, 5, and 8 devel-

oped both strong humoral and cellular immune responses.

Main protease-specific T cells were detected in patients 1, 2,

and 5, while patients 1, 2, 4, 5, 6, 7, and 8 showed S-RBD-

specific T cells. Although the numbers of IFN-g-secreting

S-RBD specific T cells were much lower than those of NP-spe-

cific T cells, they could be detected in more patients than

those for other viral proteins. In the follow-up patients, only pa-

tient 10, who showed lymphopenia before treatment, still had a

high number of IFN-g-secreting T cells in response to NP, main

protease, and S-RBD (Figure 3C), which suggests that anti-

viral T cells may not be maintained at high numbers in the

PBMCs in the recovered patients. More interestingly, when

combining all 14 patients in our analysis, there was a signifi-

cant correlation between the neutralizing antibody titers and

the numbers of NP-specific T cells (Figure 3D), indicating

that the development of neutralizing antibodies may be corre-

lated with the activation of anti-viral T cells. Thus, effective

clearance of virus may need collaborative humoral and cellular

immune responses.

DISCUSSION

In this study, we characterized SARS-CoV-2-specific humoral

and cellular immunity in recovered patients. Both were detected

in newly discharged patients. In addition, the neutralizing

antibody titers significantly correlated with the numbers of



Figure 3. T cell Responses to Recombinant SARS-CoV-2 Proteins in COVID-19 Convalescent Individuals

(A) Phenotypic analysis of PBMCs from representative COVID-19 patients.

(B) Summarized data on the frequencies of different immune cell subsets in COVID-19 patients. HD, healthy donors (n = 2); D-Pt, discharged patients (n = 3); F-Pt,

follow-up patients (n = 5).

(C) IFN-g ELISpot analysis of COVID-19 patients to recombinant proteins. The experiments were performed in duplicates.

(D) Correlation analysis of the NAT50 and the numbers of NP-specific T cells (n = 14).

M protease, main protease; NP, nucleocapsid protein; S-RBD, receptor binding domain of spike protein; NAT50, neutralizing antibody titers. Date are presented

as mean ± SEM.
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NP-specific T cells. These findings suggest both B and T cells

participate in immune-mediated protection to viral infection.

Our work has thus provided a basis for further analysis of protec-

tive immunity to SARS-CoV-2 and understanding the pathogen-

esis of COVID-19, especially in the severe cases. It has also im-

plications in designing an effective vaccine to protect and treat

SARS-CoV-2 infection.

In our study, production of S-RBD-specific antibodies were

readily detected in recovered patients. Moreover, we observed

virus-neutralization activities in these recovered patients. Not

surprisingly, a significant correlation between neutralizing anti-

body titers and AUC of anti-S-RBD IgG, but not anti-NP IgG,

was observed. Anti-S-RBD IgG might be useful in analyzing

serum neutralization capabilities in COVID-19 patients. Our

data are consistent with the work from other investigators

(Zhou et al., 2020), in keeping with the role of humoral immunity

in blockade of receptor binding during viral entry in host cells.

Interestingly, S-RBD-specific T cell production of IFN-g was

also noted, suggesting that S-RBD also induced broader T cell

immune responses. S-RBD, thus, is a promising target for

SARS-CoV-2 vaccines.

Similar to a recent preprint (https://doi.org/10.1101/2020.03.

30.20047365) published online after ours, the titers of neutral-

izing antibodies were variable in recovered patients, ranging

from below detection (<30) to 1,936. Patient 9 did not exhibit
significant serum virus-neutralizing activities. This patient,

though with anti-NP and S-RBD IgM, did not have significant

IgG or IgG1 production. Interestingly, this patient had detect-

able virus-specific T cell function. The basis for the neutraliza-

tion deficiency in this patient and whether the patient

can generate neutralizing antibodies thereafter needs further

investigation. Nonetheless, in our study and the one

mentioned above, most patients developed measurable

neutralization antibodies after infection, suggesting that the

viral infection does not curtail adaptive immunity. However, un-

like the above-mentioned study, we did not find any correla-

tion between neutralizing antibody titers and patients’ age,

which could be due to our small sample size. Our results

thus need further confirmation in a large cohort of COVID-19

patients. In addition, our analysis could not differentiate

CD4+ and CD8+ T cell responses, due to the limitation in

the amounts of PBMCs obtained and availability of

instrumentation.
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Anti-CD45 (clone H130) BioLegend Cat# 304028; RRID:AB_893338

Anti-CD3 (clone OKT3) BioLegend Cat# 317334; RRID:AB_2561452

Anti-CD8 (clone SK1) BD Biosciences Cat# 557834; RRID:AB_396892
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HRP Mcab mouse anti-human IgG3 BaiaoTong Cat# C030246

TMB substrate Invitrogen Cat# 00-4201-56

Mouse anti-His monoclonal antibody Proteintech Cat# HRP-66005
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

COVID-19 patient blood samples
The blood samples of COVID-19 patients and healthy donors were obtained from Chui Yang Liu Hospital affiliated to Tsinghua Uni-

versity in Beijing. All procedures followed were in accordance with the ethical standards of the responsible committee on human

experimentation (the institutional review board at Tsinghua University) and with the Helsinki Declaration of 1975, as revised in

2000. All studies were approved by the Medical Ethical Committee at Tsinghua University. Informed consent was obtained from

all subjects for being included in the study. All patient data were anonymized before study inclusion. See Table 1 for full patient in-

formation, including age, sex, and health status.

Cell Lines
HuH-7 cells originally taken from a liver tumor in a Japanese male were cultured in DMEM supplemented with 10% FBS. Cells were

grown at 37�C in a 5% CO2 setting.

METHOD DETAILS

Expression and Purification of recombinant proteins
The recombinant His-tagged NP of SARS-CoV-2 was expressed in E. coli by a T7 expression system, with 1 mM IPTG induction at

37�C for 4 h. The recombinant His-tagged S-RBD (amino acids 319-541) was expressed by a Baculovirus system in insect cells (Lan

et al., 2020). Purified proteins were identified by SDS-PAGE gels and stained with Coomassie blue. Western blot was performed to

confirm their antigenicity by mouse anti-His monoclonal antibody (Proteintech, HRP-66005).

Isolation of PBMC
PBMCs were isolated from anti-coagulant blood using Ficoll-Hypaque gradients (GE Healthcare Life Sciences, Philadelphia, PA) as

previously described (Xie et al., 2018) under the biosafety level 3 facility in AMMS. To isolate PBMCs, blood diluted with PBS, was

gently layered over an equal volume of Ficoll in a Falcon tube and centrifuged for 30-40 min at 400-500 g without brake. Four layers

formed, each containing different cell types. The second layer contained PBMCs. These cells could be gently removed using a Pas-

teur pipette and added to warm medium or PBS to wash off any remaining platelets. The pelleted cells were then counted and the

percentage viability was estimated using Trypan blue staining. Cells were used immediately.

Anti-SARS-CoV-2 IgG/IgM ELISA
For IgM/IgG testing, 96-well ELISA plates were coated overnight with recombinant NP and S-RBD (100 ng/well). The sera from

COVID-19 patients were incubated for 1 h at 37�C. An anti-Human IgG-biotin conjugated monoclonal antibody (Cat. SSA009,

Sino Biological Inc., Wayne, PA) and streptavidin-HRP were used at a dilution of 1: 5000 and 1:250, respectively, and anti-human

IgM-HRP conjugated monoclonal antibody (Cat. bs-0345G-HRP, Biosynthesis Biotechnology Inc. Beijing, China) was used. The

OD value at 450 nm was calculated. The area under the curve (AUC) was calculated by Prism 7 (Graphpad).

Anti-SARS-CoV-2 IgG1/IgG2/IgG3 ELISA
For IgG1/IgG2/IgG3 test, 96 well ELISA plates were coated (80 ng/well) overnight with recombinant NP and S-RBD. Plates were

washed and the sera from COVID-19 patients were incubated for 1 h at 37�C. After washing, an anti-Human IgG1-HRP conjugated

monoclonal antibody (Cat. C030248, BaiaoTong Experiment Center, LY), an anti-human IgG2-HRP conjugatedmonoclonal antibody

(Cat. C030245, BaiaoTong Experiment Center, LY) and an anti-human IgG3-HRP conjugated monoclonal antibody (Cat.C030246,

BaiaoTong Experiment Center, LY), all validated by the company for their specificity, were used at a dilution of 1:4000 for 1 h at

RT. After washing, TMB substrate solution was added. The OD value at 450 nm was calculated.

Neutralizing antibody assay
Pseudovirus expressing the SARS-CoV-2 S protein was produced as described previously (Deng et al., 1997). pNL43Luci and GP-

pCAGGSwere co-transfected into 293T cells. 48 h later, SARS-CoV-2 pseudovirus-containing supernatants weremixed with at least

6 serially diluted serum samples from the COVID-19 patients at 37�C for 1 h. Then the mixtures were transferred to 96-well plates

containing monolayers of Huh-7 cells (Nie et al., 2020). 3 h later, the medium was replaced. After incubation for 48 h, the cells

were washed, harvested in lysis buffer and analyzed for luciferase activity by the addition of luciferase substrate. Inhibition rate =

[1-(the sample group- the cell control group) / (the virus control group- the cell control group)] x 100%. The neutralizing antibody titer

(NAT50) were calculated by performing S-fit analysis via Graphpad Prism 7 software.

Interferon Gamma (IFN-g) ELISpot
IFN-g-secreting T cells were detected by Human IFN-g ELISpotpro kits (MABTECH AB, Sweden) according to the manufacture pro-

tocol. Fresh PBMCs were plated in duplicate at 150k per well and then incubated 48 h with 1uM of recombinant proteins. Spots were

then counted using an ELIspot Reader System (AT-Spot2100, atyx). The number of spots was converted into the number of spots per

million cells and the mean of duplicate wells plotted.
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FACS staining
PBMCswerewashedwith PBS plus 2%FBS (GIBCO, Grand Island, NY), and then Fc blocking reagent (Meltenyi Biotec, Inc., Auburn,

CA) was added followed by a wash with PBS plus 2% FBS. Cells were then incubated for 30 min on ice with anti-CD45 (H130)

(BioLegend), anti-CD3 (OKT3) (BioLegend), anti-CD8 (SK1) (BD), anti-CD56 (HCD56) (BioLegend), anti-CD38 (HIT2) (BioLegend)

and live/dead fixable aqua dye (eF660, eBioscience), washed twice with PBS plus 2% FBS and then stored at 4�C until

acquired by FACS Verse (BD Biosciences, San Jose, CA). Data were analyzed using FlowJo software (Version 10.0.8, Tree Star

Inc., Ashland, Or).

QUANTIFICATION AND STATISTICAL ANALYSIS

Prism 7 software is used for statistical analysis. Student’s t test was performed for two-group analysis. Pearson’s correlation coef-

ficients were calculated. P values less than 0.05 were considered to be statistically significant.
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