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A new Approach to El Niño 
Prediction beyond the Spring 
Season
Shuhei Masuda1, John Philip Matthews2,3, Yoichi Ishikawa4, Takashi Mochizuki5, 
Yuusuke Tanaka4 & Toshiyuki Awaji6

The enormous societal importance of accurate El Niño forecasts has long been recognized. 
Nonetheless, our predictive capabilities were once more shown to be inadequate in 2014 when an El 
Nino event was widely predicted by international climate centers but failed to materialize. This result 
highlighted the problem of the opaque spring persistence barrier, which severely restricts longer-
term, accurate forecasting beyond boreal spring. Here we show that the role played by tropical 
seasonality in the evolution of the El Niño is changing on pentadal (five-year) to decadal timescales 
and thus that El Niño predictions beyond boreal spring will inevitably be uncertain if this change is 
neglected. To address this problem, our new coupled climate simulation incorporates these long-term 
influences directly and generates accurate hindcasts for the 7 major historical El Niños. The error 
value between predicted and observed sea surface temperature (SST) in a specific tropical region 
(5°N–5°S and 170°–120°W) can consequently be reduced by 0.6 Kelvin for one-year predictions. This 
correction is substantial since an “El Niño” is confirmed when the SST anomaly becomes greater than 
+0.5 Kelvin. Our 2014 forecast is in line with the observed development of the tropical climate.

El Niño represents the dominant year-to-year climate variability in the tropical Pacific and exerts a 
wide range of influences over much of the globe1. It can trigger abnormal weather conditions, such 
as drought, in regions far from the tropics2,3 and it impacts greatly on marine ecosystems, including 
those associated with productive fisheries1. The largest recorded El Niño event of 1997/98 was indi-
rectly responsible for the deaths of over 20,000 people and caused 34–45 billion US dollars’ worth of 
damage4. Climate-forecasting centers worldwide have therefore been making great efforts to enhance 
the accuracy of El Niño–Southern Oscillation (ENSO) predictions (see, for example, http://www.ecmwf.
int/products/forecasts/d/charts, http://www.elnino.noaa.gov/forecast.html, http://ds.data.jma.go.jp/gmd/
tcc/tcc/products/elnino/index.html)5,6. Although this work has largely been based on state-of-the-art 
atmosphere-ocean models and data assimilation approaches7, prediction success has been mixed. Most 
recently, climate forecasters heralded 2014 as a special year, since they anticipated the development of a 
major El Niño8,9. Several signs of onset were detected in both ocean surface and subsurface parameters10, 
though by northern winter the 2014 El Niño had still not arrived. Although there are a range of views 
as to the cause of this mis-prediction, the climate-research community has yet to reach a consensus on 
what went wrong. Uncertainty will thus still remain in future predictions.

Much of the difficulty stems from an intractable problem termed the “spring persistence barrier” 
(SPB), which tends to cause forecast skill to drop abruptly when projections are made through boreal 
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spring11,12. The seasonal dependence of forecast skill has therefore been the subject of many studies13–15 
and thorough review16.

Some of this work investigates the possible mechanisms causing abrupt reductions in skill by using a 
coupled model and reveals the influence of initial Sea Surface Temperature (SST) errors on the predic-
tions17,18, and the possible role of assimilation of wind observations in enhancement of the forecast skill 
through more accurate initialization19. The lack of semi-stochastic, relatively short-term wind variations 
in coupled model systems is another cause of degradation in relatively short-term ENSO forecasts20. 
Recent work shows that the seasonal dependence of ENSO growth rate can cause a seasonal dependence 
in forecast skill21. Nevertheless, the factors causing loss in predictive capability have not been thoroughly 
uncovered, partly because these model results are difficult to validate with limited observations. Given 
this background, we have focused on a data assimilation approach to analyze the temporal changes of 
climate state and reduce the abrupt drop in forecast skill that develops as a result of the SPB22.

Results
Modulated Seasonal Variability in Tropical Climate System.  As its name suggests, the SPB stems 
from interactions between the El Niño and seasonal cycles of tropical climate system. In addition, pre-
vious literature showing that the dominance of the SPB evolves on a decadal timescale is quite sugges-
tive23. Typically, forecast skill drops in spring for predictions made in the 1970s, while such seasonal 
dependence is rather small for 1980 s predictions. This decadal change is related to long-term varia-
tions found in the timing of sea surface temperature evolution at the development phase of El Niño 
events and implies that the state of the ocean-atmosphere coupling is central to revealing the cause of 
the diminution in forecast skill associated with the SPB. Here, we assess the temporal evolution of an 
important variable in the energetics of the El Niño and La Niña on the basis of a reconstructed tropical 
climate state covering the past 47 years (Methods). This climate state is reconstructed from a coupled 
data assimilation system based on a 4-dimensional variational approach, in which the adjoint form of 
the atmospheric and oceanic general circulation models are applied to seek the best temporal trajectory 
of the model variables consistent with the observational data22. The obtained temporal evolution of the 
ocean-atmosphere climate state is realistic and dynamically-self consistent, and thus ideally suited to 
analyze El Niño dynamics.

Figure  1A exhibits the time series of the Sea Surface Temperature anomaly (SSTa) in the NINO3.4 
region (5°N–5°S and 170°–120°W) of the reconstructed ocean-atmosphere coupled climate state for the 
period 1960–2006, which has often been used to generate an index for classifying ENSO conditions. A 
major El Niño is here defined as an event during which the five-month running mean of the NINO3 
(5°N–5°S and 150°–90°W) SSTa exceeds + 0.5 °C for 6 consecutive months (e.g., Japan Meteorological 
Agency; gray dashed lines). Figure  1B shows the time series of the mean perturbation wind power 
Wmp as defined by Goddard and Philander24 (Wmp ∝  u′ <τ>  +  τ′< u>  where τ is the zonal wind stress, 
u surface zonal oceanic velocity, < x>  denotes mean component of x, x′  its perturbation component; 
Supplementary Information (SI), S1), which represents the anomalous component of the work deliv-
ered by the atmosphere to the ocean in the tropical ocean (5°N–5°S and 150°E–100°W). An increase 
(decrease) of this parameter implies a steepening (flattening) in the zonal thermocline gradient, which 
in turn leads to greater likelihood of low (high) SSTa in the eastern tropical Pacific as La Niña (El Niño) 
events after approximately 3 months (Fig. 1A,B).

Figure 1C shows the amplitude of the wavelet transform for the time series of Wmp (Fig. 1B). Spectral 
peaks above the significance level (within white curve) are apparent at roughly seasonal (period of 12 
month), interannual (period of 24–48 month), and longer timescales. The amplitudes of the variabilities 
within each waveband change dramatically from year to year. The power of pentadal and interannual 
variability is relatively large after the 1980 s when large ENSO events repeatedly occur. This is consistent 
with long-term modulation of ENSO phenomena25. The power of the seasonal variability is not constant 
and is likely modulated by variations on pentadal to decadal timescales (Fig. 1D), despite the regularity 
of insolation. The variation of the power shows positive anomaly phase in the 1970s, where the values 
are above a long-term mean value for the period of 1960–2006, and negative phase in the period 1980–
2005, but with some short-term positive anomaly periods (e.g., the beginning of 1990 s). The relevant 
phases for the major El Niños are here assumed to be determined by the anomalous sign (red or blue 
color) of Fig. 1D at the start of the spring time through which each El Niño develops. These features are 
basically consistent with the decadal and seasonal dependence of ENSO prediction skill in 1970 s and 
1980 s, as reported in the previous literature23, where the conventional analysis of NINO3.4 SST shows 
that its variance of seasonality changes on a decadal timescale. Recent work26 shows that such decadal 
modulation in seasonality is also found in the relationship between thermocline depth and SSTa in the 
eastern equatorial Pacific and that the linkage between surface and subsurface ocean variables around 
springtime becomes weak during the 1970 s and late 1990 s, which seemingly results in a robust SPB in 
these decades. This decadal dependency can be closely related to the variations in the annual exchange 
of kinetic energy between the atmosphere and ocean (Fig. 1D).

The interaction among seasonal, interannual, and longer-term variabilities is not obvious from this 
plot although some linkage seems to exist, for instance, the 1997–1998 El Niño is boosted by seasonal 
variability at the initial phase, possibly in conjunction with westerly wind-burst events.
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Figure 1.  Reconstructed time series of the tropical climate state for the period 1960–2006. (A) Sea surface 
temperature anomaly averaged in the NINO3.4 region (170o-120oW, 5oS-5oN). Gray shade denotes 10-daily 
mean time series. Violet curve shows 3-month running mean. Units are degrees Celsius. Gray dashed line 
shows the periods of major El Niño events (see text). (B) Mean perturbation wind power (Wmp)24 averaged in 
150oE-100oW, 5oS-5oN. Units are mWm−2. Gray shade denotes 10-daily mean time series. Violet curve shows 
1-year running mean. (C) Magnitude of wavelet transform of Wmp. (D) Decomposed Wmp spectrum on 
seasonal timescale. Red and blue dashed lines show the periods of major El Niño events occurring in positive 
and negative decadal phase of seasonal variablity, respectively (see text).

Figure 2.  Magnitude of the wavelet transform of each component of the mean perturbation wind power. 
(A) Adjustment wind power UWmp (u′ <τ> ). (B) Mature event wind power WWmp τ′ <u>24.
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Note that the seasonal variablity is statistically independent from interannual variations since the cor-
relation coefficient between decomposed Wmp spectra on seasonal (Fig. 1D) and interannual timescales 
is − 0.13, and thus has an absolute value that is lower than the critical r-value (0.27) with 41 degrees of 
freedom for 1965–2005.

The above results imply that the annual exchange of kinetic energy between the atmosphere and ocean 
responsible for ENSO genesis (Fig. 1B) is modulated on pentadal to decadal timescales largely independ-
ent of the inherent ENSO variability. This modulation could influence the seasonal dependence of ENSO 
prediction skill through mechanisms such as nonlinear interaction or dynamical combination27–30.

Which Mechanisms are Responsible for the Modulation?  The mean perturbation wind power, 
Wmp is composed of two elements with different physical origins. The first term is related to surface 
zonal velocity change in conjunction with oceanic adjustments made mainly by radiating long oce-
anic waves (UWmp =  u′<τ> )24, implying that it is related to the cyclic evolution of ENSO, similar in 
nature to the operation of a delayed oscillator31. The other term is related to the anomalous wind forcing 
(WWmp =  τ ′ < u> ) and is associated ENSO genesis resulting from atmospheric perturbations32. Figure 2 
shows the results of wavelet analysis for each component of Wmp. Consistent with the previous litera-
ture24, UWmp dominates the Wmp for almost all wavelengths (Figs 2A and 1C). This implies that oceanic 
adjustment plays an essential role in ENSO evolution. In this regime, the relatively long oceanic memory 
for climate change leads to high predictability. On the other hand, although WWmp is negligible when 
compared with UWmp, it is apparently visible at times of seasonal variability (Fig.  2B). The long-term 
modulation of the seasonality in Wmp thus stems from the interplay of variations in UWmp and WWmp 
and, in particular, the pentadal/decadal change in the WWmp term. Hence, long-term modulation of the 
annual anomalous wind stress in the tropical regions plays an important role in determining the trend 
in Wmp. This implies that the representation of wind stress variability during ENSO genesis is vital factor 
for an accurate ENSO prediction19.

One possible causative mechanism of long-term modulation in the wind field can be found in the 
non-linear dynamics of tropical climate system27,28. Conceptual model experiments show the possibility 
that atmospheric nonlinear interactions can take place between the mechanisms causing seasonal and 
inter-annual variation and lead to long-term modulation of the tropical seasonality (SI, S2; Fig. S1). A 
further possible cause is the influence of long-term climate change in the tropical ocean, for instance, 
known as Tropical Pacific Decadal Variability33,34. Although the phase of this decadal variability, which 
changed once around 1980 during 1965–199733, does not exactly match the phase of long-term mod-
ulation of the seasonality of WWmp (or Wmp), the fact that negative phases of modulation appear more 
frequently after 1982 is suggestive of a link.

These possible mechanisms can interact to produce subtle modulations. Nevertheless, the history of 
systematic ocean observations is still too short to determine which of these mechanisms is responsible 
for the long-term modulation. Sustained monitoring in the tropical ocean will be required to resolve 
this issue.

New El Niño Forecasting through Control of the Atmosphere-Ocean Coupling Parameters.  
None of the prediction models currently in use explicitly incorporate long-term changes in the annual 
surface energy exchange associated with El Niño evolution. They are, however, included implicitly, in part 
because their influences on the genesis of El Niño are poorly understood. We consider this omission to 
represent a fundamental weakness in efforts to make more accurate predictions beyond boreal spring.

Our state-of-the-art ocean-atmosphere coupled data assimilation system generates time series of the 
optimal “adjustment factors” required for empirical correction of the coupling intensity assumed in the 
model22. The adjustment factors are essential for the correct regulation of heat, fresh water, and momen-
tum exchange through the sea surface. We make use of these values in order to incorporate the mod-
ulation effects shown in Fig. 3, where the spatial distribution is largely similar to that presented in the 
thorough investigation of Sugiura et al.22 (Fig. 3A). The temporal change shows that the adjustment factor 
works to relatively enhance energy exchange from January to May for the equatorial region (Fig.  3B), 
which is again consistent with the results of Sugiura et al.

We start by constructing a set of seasonal adjustment factors from the climatology by simply averag-
ing the historical values of the optimal adjustment factor which are calculated over the 27-year period 
from 1980 to 2006. There is no loss of generality in choosing the averaging decades. Then, we identify 
which phase of the pentadal to decadal cycle in the tropical seasonal state is appropriate on the basis of 
the estimated time series of Wmp (Fig. 1D). Under the assumption that long-term modulations continue 
along their recent trend within a few years of prediction, we determine the values of the appropriate 
adjustment factor for the future projection. For practical use, we simply apply the adjustment factor as 
either a “0” or a “1”, depending on the negative or positive sign of the anomaly of the Wmp seasonality 
relative to the long-term mean value. Factors of 0 are relevant to periods with relatively weak seasonal 
variations in energy exchange, such as frequently appeared from the 1980 s onward (negative anomaly 
periods; blue shade in Fig.  1D), and in which the modeled coupling intensity agrees with the conven-
tional bulk formulae without seasonal control. This means that no adjustment to the modeled coupling 
intensity is required for these periods. On the other hand, a factor of 1 should be applied to periods 
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with strong seasonality such as in the 1970 s (positive anomaly periods; red shade in Fig.  1D), so that 
the modeled coupling intensities are boosted by their respective seasonal adjustment factor. Thus, we 
explicitly adjust forecasts covering periods of high seasonal variability, whereas forecasts for periods of 
weak seasonal variability are left unadjusted.

Predictability of Recent Historical El Niño’s.  To examine the effectiveness of our new scheme, we 
have executed 2.5-year ensemble hindcast experiments (Methods) for all the past major El Niño epi-
sodes after 1970 (Fig. 1A). Figure 4 shows the time series of predicted SST averaged over the NINO3.4 
area for the periods of major El Niño events, firstly for 1972–1973, which covers a period of relatively 
strong seasonal variations (Fig. 1D), and then for 2002–2003 (Fig. 4B), covering a period with relatively 
weak seasonal variations (Fig. 1D). The forecast for the 1972–1973 El Niño using an adjustment factor 
of value 1 produces more accurate results (red curve in Fig. 4A) than the forecast with this factor set to 
0 (blue curve). In particular, the latter shows an unrealistic temperature drop immediately after spring 
1972 (after gray shaded region in Fig.  4A). This result demonstrates that control of the annual energy 
exchange in accordance with long-term modulation in the real climate system is a vital factor, albeit one 
missing from conventional ENSO prediction schemes. In short, the decay in forecast skill associated with 
the SPB cannot be resolved if such long-term influences are neglected.

In contrast, the 2002–2003 El Niño event occurred during a period with relatively weak seasonal vari-
ations. Our results show better forecast skill for this event when used with an adjustment factor of 0 (blue 
curve in Fig. 4B). The time series derived with the factor set to 1 exhibits a different temporal evolution 
in SST after the SPB period (red curve). These results are again consistent with the adopted scenario of 
a long-term modulation in seasonal variability. Further, confirmation was derived from other hindcast 
experiments for all the major El Niño events from 1975 to 1998 (SI, Fig. S2), although the 1991–1992 El 
Niño is a marginal case for which the phase likely changes during 2.5-year hindcast (Fig. S2D).

We have also calculated the root mean square difference (rmsd) in NINO3.4 SST between forecast 
results and observations for all hindcast experiments (7 cases after 1970) in order to reveal the broader 
advantages of controlling the annual coupling intensity to reflect the phase of the long-term modulation 
(Fig. 1D). Figure 4C shows differences between the rmsd for cases when the adjustment factors are well 
chosen and for the conventional cases without seasonal control. The minus values indicate error reduc-
tion and hence larger minus values mean more effective error reduction and eventually better El Niño 
predictions. Minus values continue after the SPB period. The value after 1 year (Oct1) from the start of 
the forecast (Oct0) is − 0.6 kelvin (red curve). When we focus solely on 3 cases, each of relatively strong 
seasonal variation (i.e., 1972–1973, 1976–1977, and 1991–1992), the error reduction for the one-year 
prediction reaches 1.3 kelvin (green curve). These improvements in El Niño prediction capability after 
the SPB period are therefore significant since the “El Niño” is often confirmed when the SST anomaly 
becomes greater than + 0.5 Kelvin.

It is well known that the initialization procedure can sometimes have a determining influence on El 
Niño predictions over timescales of several months13,35. However, the establishment of optimized initial 
conditions alone cannot resolve the decay in forecast skill associated with the SPB in cases when the 
energy exchange at the development phase is not properly resolved, as is particularly the case in and 
after boreal spring. Our El Niño prediction scheme should then be used since it greatly advances the 
control of the modeled seasonal variability when external information on the long-term modulation is 
properly determined. In this study, we have considered 7 major El Niño events. These in fact represent 
the sum total of cases presently available for analysis as coupled data assimilation products. More events 

Figure 3.  The optimized bulk adjustment factor for wind stress. (A) The spatial distribution of the annual 
average in logarithmic scale22. (B) The temporal change averaged in NINO3.4 region. The map is generated 
by Grid Analysis and Display System (GrADS) version 2.0 (http://iges.org/grads/).

http://iges.org/grads/
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and case studies are of course required - not only in terms of data acquisition for future/past El Niños 
but also through analyses based on other model architectures. However, our approach to stemming the 
diminution in forecast skill in boreal spring is new in that it incorporates a time-dependent adjustment 
factor whose influence can lead to more realistic forecasts as a result of better representation of dynam-
ical interactions taking place on multiple timescales.

Near-term Fate of the Tropical Climate System.  Finally we consider the forecast for 2014–2015 
on the basis of our new scheme (SI, S3). The present phase of the decadal modulation, which is required 
in order to select the relevant adjustment factor, can be determined from the amplitude of the seasonal 
variability in the recent Wmp. After 2007 the phase most likely entered a period corresponding to strong 

Figure 4.  Predicted NINO 3.4 SST anomaly (red and blue curve) as compared with observed SST 
anomaly (black)46 and the accuracy of prediction. (A) The 10-daily values are for hindcast experiments 
during 1971–1973 derived from the case without seasonal control (Factor =  0: blue) and the optimized case 
using a seasonal adjustment factor (Factor =  1: red). Bars show errors estimated from standard deviation 
values of the ensemble forecasts. Grey shaded regions denote the boreal spring periods. (B) The same as (A) 
but for hindcast experiments during 2001–2003. Units are degrees Celsius. (C) Prediction error estimated by 
difference in root mean square differences for hindcasted NINO3.4 SSTs between conventional and advanced 
predictions for 7 El Nino events (red) and 3 events in a period of strong seasonality (green). Units are in 
kelvin.
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seasonal variations (SI, Fig. S3) and thus a factor of 1 can be assumed to be relevant for the 2014–2015 
prediction. In contrast to most published reports based on a conventional mean (for instance, the blue 
curve in Fig. 5A), our system predicts no strong El Niño during 2014 (red curve), consistent with the 
tropical climate state in the winter season of 2014 (black line), and in stark contrast to the mis-predictions 
of other national climate centers8,9. Note that these projections start before the period of the SPB.

On longer timescales our system shows that the probability of a major El Niño event developing in the 
period up to winter 2015 is very low. Our projection initiated from July 1st 2014 (red curve in Fig. 5B) 
also shows that the probability that a neutral condition will last from April to winter 2015 is above 60%. 
If the current decadal phase abruptly switches at some point during 2015, our system indicates that the 
possibility of a major El Niño event during this year becomes high (blue curves in Fig. 5B).

It is noteworthy that the accuracy of our new prediction scheme depends on the accuracy with which 
we can detect the phase of pentadal/decadal modulation of seasonal variation in which the tropical cli-
mate system evolves. Recent climate research in the area of decadal phase detection/prediction has been 
successful, particularly for mid-latitude climate change36,37.

Although decadal phase prediction in the tropical regions remains uncertain, with a number of issues 
still to be overcome38, including the possible link to the other basins39–41, recent advances have been 
encouraging. For instance, improvement of the initialization schemes employed in atmosphere-ocean 
coupled systems can lead to more accurate phase transitions for the Pacific region42.

In line with these achievements, the diagnosis and short-term prediction of the intensity of the annual 
cycle, the key factor required for our El Niño prediction scheme, must be improved. Though work to date 
in this area is promising, further efforts are now necessary.

Conclusions
We have argued that the influence of pentadal to decadal modulations on the annual surface-energy 
exchange responsible for El Niño genesis is a key factor in resolving the decay in forecast skill associated 
with the SPB, although it is not directly considered in any of the standard ENSO forecast models pres-
ently in use. By incorporating this important aspect our approach therefore provides a new, improved 
forecast capability in which the energetics of the climate cycle are represented in a realistic fashion. 
Clearly, in the light of these results, the unfolding of El Niño activity during the 2015 will provide 
a crucial test of current understanding of the phenomenon and will further challenge our predictive 

Figure 5.  Predicted NINO 3.4 SST anomaly (red and blue curve) as compared with observed SST 
(black) for the period of 2014–2016. The same as Fig. 4A,B but for forecast results starting from (A) April 
2014 and (B) October 2014.
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capabilities. A similar approach involving phase-related adjustment factors may in principle be applica-
ble to La Niña predictions. Further work along these lines will lead to more reliable forecasts of ENSO 
including warm and cool events.

Methods
Data.  A 47-year reconstructed climate state estimation was deduced from a coupled ocean-atmos-
phere data assimilation experiment. The data assimilation system was originally constructed within the 
JAMSTEC K7 consortium22 for use in climate research studies43,44.

The assimilation is based on a 4-dimensional variational adjoint approach, in which adjoint codes of 
the AGCM and OGCM are applied to seek the best possible temporal trajectory of the model variables 
on the basis of observational data. As a result, high-quality analysis fields are produced. The temporal 
evolution of the ocean-atmosphere coupled state is partly controlled by some of the coupling parameters 
in this system.

The parameters are determined through statistical optimization on the basis of model dynamics and 
observational data. These data are freely available in part, from the following web site, http://k7-dbase2.
yes.jamstec.go.jp/las/servlets/dataset? catitem =  100.

In this paper, we use 10-daily data from this system. The mean value in our main analyses is deter-
mined by a 47-year 10-daily mean for each variable.

Simulations.  The 2.5-year ensemble hindcast experiments were executed on the Earth Simulator by 
using the K7 coupled ocean-atmosphere model22. The applied ocean general circulation model used a 
horizontal resolution of 1° in both latitude and longitude, with 45 vertical levels. The atmospheric general 
circulation models the commonly used T42 spectral model and has 24 layers in vertical σ  coordinates.

The initial conditions for each forecast year were deduced from a coupled data assimilation experi-
ment for the first nine months from January to September. The prediction therefore started in October 
of the first year. The initialization of oceanic variables is done for the 1st January. The optimization of 
the coupling parameters are done for January-September every 10 days. Model runs are not explicitly 
bias-corrected as a result of fully coupled data assimilation approach22.

An ensemble experiment with five coupled model runs was performed, each of which used different 
atmospheric initial conditions determined by the Lagged Average Forecasting method45. The latter was 
applied separately using a time interval of 2 days, but with the same optimized oceanic initial conditions22.
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