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Abstract. Feature extraction is a crucial step in most cytometry studies. In this paper a systematic approach to feature extraction
is presented. The feature sets that have been developed and used for quantitative cytology at the Laboratory for Biomedical Image
Analysis of the GSF as well as at the Center for Image Analysis in Uppsala over the last 25 years are described and illustrated.
The feature sets described are divided into morphometric, densitometric, textural and structural features. The latter group is used
to describe the eu- and hetero-chromatin in a way complementing the textural methods. The main goal of the paper is to bring
attention to the need of a common and well defined description of features used in cyto- and histometrical studies. The application
of the sets of features is shown in an overview of projects from different fields. Finally some rules of thumb for the design of
studies in this field are proposed.

Colour figures can be viewed on http://www.esacp.org/acp/2003/25-1/rodenacker.htm.
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1. Introduction

The visual interpretation of the appearance of cells
and tissue parts through a light microscope is at the
heart of medical diagnosis as carried out in cytology
and histopathology. The human visual system is excel-
lent at recognizing qualitative aspects of patterns. Even
small deviations from normality can be recognized and
interpreted. Humans are, however, not at all as good
at quantitative interpretations. Even the trivial task of
counting the number of objects quickly becomes te-
dious and difficult to carry out accurately when the
numbers become large. And estimating size, shape and
texture quantitatively is very difficult and usually leads
to substantial subjectivity. The digital computer on
the other hand is excellent at counting and measuring
things as soon as a clear definition of what is to be mea-
sured can be given. Ever since the first digital comput-
ers became available there has therefore been efforts at
applying them to the task of quantitatively analyzing
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images. An additional motivation for the use of com-
puters in this field has been to automate tedious mass
analysis tasks such as screening for precursors of gyne-
cological cancer on appropriately prepared cell speci-
mens, so called Pap smears [17].

At the heart of all these quantification and automa-
tion attempts are the definition of what is to be mea-
sured and how these measurements should take place.
Unfortunately in spite of more then 30 years of intense
efforts in this field there still does not exist any gen-
erally accepted and applied set of feature definitions
and measurement standards. The most typical paper
in cytometry selects a few dozen cases (or less) from
each of a couple of different cell populations, mea-
sures some features and then reports how well the pop-
ulations could be separated based on these features.
Thousands of such papers have been published over
the years. Most of the publications are problem andnot
method oriented. Many times the exact definition of
the features are not even presented in sufficient detail
to allow the reader to repeat the experiment or to try
the same method on other applications. This is proba-
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bly mostly ruled by limited space and perhaps by lim-
ited awareness of the importance of the exact defini-
tion of the used features. The exact definition is per-
haps less important as long as the features used are
directly related to observable or visually readily com-
prehensible properties like size or length [57]. How-
ever, for more complex features derived from statisti-
cal properties, either from histograms (1st order statis-
tics) or from two-dimensional distributions (2nd order
statistics) like most of the texture features, this is not
acceptable. Statistical features are strongly dependent
on parameters and configuration decisions. These fea-
tures have to be described exactly or referenced in pub-
lications with an exact description. Even worse some
times black box machinesare used for the measure-
ments where the implemented algorithms are not even
known by the author.

This lack of commonly accepted standards for how
different features should be defined and studies docu-
mented in such a way that different results can be read-
ily reproduced and compared is probably one of the
main reasons why quantitative image analysis based
methods have not yet fully penetrated mainline pathol-
ogy practices. Another reason for the slow penetration
may be the relatively frequent over-optimistic findings
from experiments with too limited data sets [110].

This paper is written in recognition of the problem
outlined in the previous paragraphs and can be seen as
an attempt to contribute to the method oriented discus-
sion about feature extraction in cytometry. It is based
on more than 25 years of experience at each of the au-
thors laboratory. The proposed feature sets have been
used, at various stages of their development, by the au-
thors in some 80 studies in various applications.

The paper is organized in the following way. In Sec-
tion 2 some general concepts are discussed and the dif-
ferent stages in the feature extraction process is out-
lined. In Section 3 a taxonomy for feature classes is
proposed and the various kinds of features are de-
scribed somewhat in detail. In Section 4 some brief
details about an implementation of the outlined fea-
ture set are given. In Section 5 we give a list of appli-
cations to which the proposed feature sets have been
applied. And finally the paper concludes with a brief
summary, including a set of rules of thumb that tries
to summarize the experiences from the various studies
discussed in the paper. The paper is supplemented by
a rather extensive set of appendices in which the exact
mathematical definitions of the proposed feature sets
are given as well as a description of the parameters and
data structures involved. Additional information and il-

lustrations can be found under the web-pages of the
authors http://www.gsf.de/ILIAD/.

2. Feature extraction methods

2.1. From image to feature (andvice versa)

There are two typical situations in which a patholo-
gist, cell biologist or other similar researcher is inter-
ested in applying cytometry methods: For automation
and for decision support [19].

(i) For automationwe have a situation where the
pathologist is trained to recognize by observa-
tion deviations from normality. He can classify
classes, states etc. To make these finding objec-
tive, reproducible or to construct automata to de-
crease the workload amachineshould be de-
signed to fulfill this classification task.

(ii) In the decision supportscenario we typically
have different groups of patients defined by dif-
ferent development of diseases, either by survival
time, re-occurrence of metastases etc. There is
no explicitly known image representation for this
functionalbehavior of cells. However, the pathol-
ogist is interested in differentiating these groups
of patients for an eventual possible treatment.

Common for these two scenarios are the image
sets grouped into certain classes. Different is that for
scenario (i) verbal descriptions and possibly action-
reaction relationships exist and that for scenario
(ii) only information about future behavior of cells
or organs exist. These scenarios lead either to mimic
recognition abilities of the pathologist or to design
some sort ofusefulquantitative descriptions. The latter
is an endless task, however, the structuring of the de-
scriptive methods in visual classes, as well as the struc-
turing of the feature extraction methods, thetaxonomy,
as described in the following, should hopefully help
make the task more manageable.

2.2. The dimensions of the image to be measured

A digital image is a regular, usually rectangular, ar-
ray of measurement values of some property of inter-
est from the area under study. The array elements are
called pixels, short for picture elements. Each pixel
represent the integrated intensity of light measured
over the spatial extent of the pixel as defined by the
optical and spectral properties of the measurement de-
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vice. This measured intensity may in light microscopy
either be proportional to the amount of transmitted
light, or intensities of fluorescence. Other modes such
as reflection and phase contrast are also possible but far
less common in quantitative biomedical microscopy.

The image array is at least two dimensional, rep-
resenting the two spatial dimensions of a normal flat
image. Since all objects intrinsically are three dimen-
sional it is becoming increasingly common to capture
3D images by e.g., confocal, deconvolution or multi-
photon fluorescence microscopy.

The spectral domain offers an additional data dimen-
sion. By limiting the spectral range over which a sensor
registers light more or less well resolved spectra of the
images may be obtained. The by far most common case
is to create normal RGB color images by having three
spectral channels, red, green and blue. Another com-
mon case is to have narrow bandwidth limiting filters
that match some spectral property of the used stains.
Thus a number of specific spectral channels can be ob-
tained. Recently devices that can register whole spec-
tra in each pixel have become available and found ap-
plication also in biomedical microscopy [38].

Still another dimension is represented by time. If the
specimen is subject to some process under which it
changes with time this process may be monitored by
successive images taken at suitably spaced time inter-
vals. These images sequences can be seen as a multi-
dimensional image with one temporal dimension.

A digital image may thus be up to five-dimensional
(three spatial, spectral and temporal dimensions).
There are a number of feature extraction aspects that
need to be considered in order to take all these di-
mensions into account. We will in this paper, however,
limit our discussion to the common monochrome two
dimensional case. In the following it is thus assumed
that the images only haveoneintensity value per pixel
calledgray value. This value has been obtained by suit-
able limitations in the other spatial, spectral and tem-
poral domains through filtering, focusing and exposure
time control.

When the image is analyzed the spatial arrangement
and the measured values are assessed and some numer-
ical values or features that hopefully carry some infor-
mation of interest about the imaged object are com-
puted. We thus have two closely linked aspects of the
properties of the pixels: The actual measured gray val-
ues and their spatial arrangements. We have some fea-
tures that expresses only the spatial arrangements, they
are called morphometric features. Other features ex-
press the overall gray values without considering the

spatial distributions, they are called densitometric. Fi-
nally we have the more complex and interesting fea-
tures that expresses the combined aspects, the spatial
distribution of the gray values. Those are called tex-
tural or structural features.

All area and size features are represented in man-
ifolds of pixels. They are not normalized to absolute
quantities of [µm] or [µm2]. Knowing and document-
ing the actual pixel size in a particular study is, how-
ever, essential for the interpretation and reproducibility
of the obtained results. Typically the pixel size may be
anything in the range 0.5 to 0.05µm per pixel squared.
Larger values may be found in some studies but then
the resolution of chromatin texture will be very limited.

2.3. The selection of appropriate features

The main objective when designing the feature ex-
traction approach for a particular study in cytometry
or histometry is usually to find a set of features that
can discriminate between the different relevant popula-
tions of cells/specimens/cases/patients as well as pos-
sible. An additional requirement is robustness so that
the results can be reproduced for new independently
collected material. Usually the researcher has some no-
tion about what features should be useful. This may be
based on experience from visual image analysis, i.e.,
one tries to define features that expresses the properties
of the cells that is used for the visual discrimination
between the cell populations. It may be based on per-
sonal experiences from previous similar studies with
quantitative methods. Or it may be based on studies of
the relevant literature.

All features calculated can be grouped into shape
features (Section 3.1), intensity features (Section 3.2),
texture features (Section 3.3) and structure features
(Section 3.4). In many applications the features of the
two last groups are the most useful ones. They are at
the same time the most difficult to define in a unique,
robust and reproducible way and the ones most diffi-
cult to understand intuitively. We will thus devote most
of this paper to features of those categories.

If the features that are expected to be useful are sim-
ple aspects such as size or global shape the definition
of what to measure may be straightforward. It is much
harder to express coarseness of the chromatin distribu-
tion or other features related to the textural appearance
of the cells. But many studies have shown that these
latter features may be more efficient in discriminating
between various cell types of interest. The problems
with the textural features are (i) the difficulty or even



4 K. Rodenacker and E. Bengtsson / A feature set for cytometry on digitized microscopic images

impossibility to comprehend and visualize texture fea-
tures, (ii) the relative variability of selected (textural)
features for different problems (cells, organs, treat-
ments) and (iii) the missing relation of specific feature
values e.g., found by a feature selection, to appearance
and function of cells or nuclei. Parallel to the advances
in molecular biology, morpho- and photometric related
approaches using texture measures were less used in
the early nineties. However, recently new and inter-
esting methods and applications were published e.g.,
[14,45,110,132].

Sometimes authors give names for texture appear-
ance of certain features, most probably since review-
ers have requested this. However, these are often mis-
leading hints. The necessary (and very time consum-
ing) step to build a correspondence system of visual
and functional terms to features (type and value) is up
to now largely not done. In this publication we will
avoid any verbal descriptions of texture features pre-
tending a possible visual insight into possible represen-
tations. Instead we will concentrate on defining the dif-
ferent features in an exact mathematical way and sort-
ing them into systematic groupings, hopefully improv-
ing the understanding and overview as well as making
the features comparable and reproducible.

Since the selection of the best, or even a useful set
of features, by intuitive methods may be quite diffi-
cult in many cases, a powerful supplement may be to
perform a systematic evaluation of potentially useful
features with statistical methods. As far as the authors
knows, there exist no realistic methodology to auto-
matically construct feature extraction methods on the
base of a given material grouped by certain attributes.
The methods proposed are strongly heuristic and com-
bine learning and/or training capabilities with algo-
rithmic knowledge [91] in combination with classical
methods of statistical data evaluation.

The classical statistical approach, to evaluate a cer-
tain set of features per object of interest, is based on the

construction of correlation functions between object
feature values and object attributes or diagnoses. Or in
the common case with multiple classes of objects the
features with the greatest discriminating power may be
found. This is straightforward when the features are
taken one at a time. But combinations of features will
in most cases give stronger separations of objects in
the respective classes. So it is often desired to find the
best combination of two or more features. If many fea-
tures are calculated the number of possible combina-
tions of several features may be very large. This makes
the risk of over-fitting of the discriminating function
to the training data substantial, unless the number of
cases in the data set is very large [110]. It is thus of in-
terest to initially limit the number of features used for
the statistical evaluation to a number as small as possi-
ble without limiting it to the point where essential in-
formation is missed. Finding this tradeoff is an impor-
tant reason for learning to understand what the differ-
ent features express and how they should be combined
to have the best chance of doing the desired discrimi-
nation or recognition job.

2.4. The feature extraction process

It is easy to invent many different features that can
be extracted from an image. Thousands of features can
be found in the literature that has accumulated over the
decades. In order to be able to compare different stud-
ies and understand what the different features actually
are expressing it is worth while to try to consider the
feature definition process in a systematic way.

The feature extraction can be expressed in terms of
(a) the definition of the zone of measurement, (b) an
image transformation with a non-scalar result and (c) a
measurement on the latter (see Figs 1, 2). This sep-
aration is heuristic and is a method to describe for-
mally the algorithms applied [91,111]. An added ad-

Fig. 1. Featuring methodology.
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vantage of this division of the feature extraction into
three stages is implementational convenience. A few
image transformations combined with a few measure-
ment routines can generate hundreds of useful features
for each zone of measurement.

The zone of measurementdelimits the region to be
quantified i.e., it describes where to measure. It may be
the nucleus, the cytoplasm or the whole cell. But it may
also be sub-regions that are helpful for quantization of
semantically meaningful entities of the object e.g., the
nuclear margin or the eu- and hetero-chromatin com-
partments of the cell nucleus, e.g., [78]. The feature ex-
traction methods described here are primarily designed
for digital images fromsingle, completecell nuclei,
however they are applicable also for sections of cell
nuclei and scenes, e.g., sets of nuclei. The definition
of the zone of measurement is called segmentation and
this is one of the crucial steps of any cytometry system
(see Section 2.7).

The transformationis used to bring out the aspect
of the distribution of the pixel values that is of inter-
est. The transformation reflects the aim of the feature
extraction method. If we are interested in the overall
amount of absorbing material in the cell the creation of
a simple 1D density distribution or histogram is an ap-
propriate transformation. If we are primarily interested
in the overall shape of the cell a thresholding trans-
form that creates a binary image of the cell is a nat-

ural transform step. If we want to express the local in-
tensity variations a 2D gray level co-occurrence ma-
trix may be an appropriate transform. The local inten-
sity variations may also be enhanced by some initial
image transform that e.g., removes the average gray
level and creates an image of local deviations from the
average. A large number of such transformations may
be defined and produce more or less useful results de-
pending on the particular application. The transforma-
tion results in a non-scalar value: a new image, a ma-
trix of statistical co-occurrence values or a frequency
distribution which are intermediate results used for the
subsequent calculation of a scalar feature value. The
transforms may very well be combined so that a his-
togram of some measurement from an initially trans-
formed image is created and used for the feature calcu-
lation. Several feature groups are calculated from such
frequency distributions. The calculation of a histogram
is the most frequent transformation throughout all fea-
ture extraction routines presented here.

The final measurementdelivers the feature value.
The measurements results for each feature in exactly
one(scalar) value. Measurements are usually acount,
an integrationor aselection. Since the transformation
in many cases result in a histogram the distribution ex-
pressed by this histogram can be characterized by a
moment. The first moment is the average, the second
the standard deviation, the third the skew and the fourth

Fig. 2. Overview on all feature groups:Shape, Intensity, Texture, Structures. This figure can be viewed on http://www.esacp.org/acp/2003/
25-1/rodenacker.htm.

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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the kurtosis. Similarly 2D moments may also be used
to express the shape of the object or the overall den-
sity distribution. The statistical estimators A (= M0),
M1, M2 and M3 are proportional to polynomial mo-
ments. The method of modelling a distribution or func-
tion via moments is a method commonly used in fea-
ture extraction and in other fields as well. Through a
normalization that will be described in Section 3.1.4
the measurements can be made robust against several
irrelevant variations such as orientation and position.
Sometimes more than one scalar value is needed to ex-
press some properties of interest. In such cases several
measurements are performed. On one transformation
several measurements can be performed and the same
type of measurement can be carried out for different
transformations.

We have tried to reflect the three steps in the feature
extraction process in the naming structure of the fea-
tures. Thus the kind of measurement is described with
short suffixes A, M1, M2, M3, MAX, MIN, MOD,
MED, ENT, etc. (see Fig. 7 and Appendix C.1). The
type of transformation and the zone of measurement
is shown by a prefix e.g., BG for background, L for
Laplace transformation or H for bright particles.

2.5. Concepts of texture and structure as descriptors
of chromatin arrangement

When discussing features describing microscopic
cell images much attention must be given to the
arrangement of chromatin in the cell nuclei. The rea-
son for this is twofold. The eu- and hetero-chromatin
has in many studies been proven as the most impor-
tant part to group cells in different states of malignancy
or functional classes. It is thus very important to de-
scribe these aspects well. But this is also very difficult
to do. Two main approaches have been developed. In
the first approach (i) the chromatin distribution is seen
as a local arrangement of more or less small objects of
varying intensities. We will call this thestructureap-
proach. In the other, (ii) the statistical ortextureap-
proach, the chromatin distribution is characterized by
2nd or higher order statistics.

The first way of describing texture is more or less
heuristic and is ruled by imagination and descriptive
force. It is reflected by intensity measures on sub-
regions ofdark and bright particles. Resulting fea-
tures try to mimic the visual diagnostic clues of a
cyto-technologists. The second approach models the
arrangement by more or less regular repetitions of
arrangement configurations. It is reflected by trans-

formations like Laplace, median and specially by co-
occurrence and run-length features. The latter two
appear nowadays under the term of GLDM (grey
level dependency matrices) and are widely used. Sev-
eral texture related publications use this concept, e.g.,
[109,129,132].

The large disadvantage of texture features, espe-
cially of the co-occurrence and run-length types is the
difficulty to relate them to visually perceived chro-
matin changes. Another difficulty is the sensitivity of
texture features for variations in specimen preparation
and image gathering setup. In Rodenacker [86] the sen-
sitivity on size and intensity changes was examined.
Several features showed large dependencies on those
influencesandon parameter settings during the feature
extraction process. Texture features are also very sen-
sitive to proper focus of the microscope, even to the
extent that the extraction of texture features has been
used as a focus criterion by some researchers [79], i.e.,
when the texture feature has its maximal value the cell
nucleus is in the best possible focus.

2.6. Intensity conversion

The feature extraction process will use several trans-
formed versions of the original image obtained from
the microscope. In addition to the original image, as
it was gathered, a shading image containing an empty
viewing field for bright field shading correction and
the region of interest as a mask image are frequently
used. Intensity values of the original image can rep-
resent transmitted light, inverted transmitted light, ex-
tinction values, reflection values, fluorescence intensi-
ties or whatever the image generating process was. In
case of color images the method for analyzing scalar
images discussed in this paper can be used if only a
method to extractoneintensity value per pixel is cho-
sen. This can be one channel (red, green or blue) or
a transformation according to a certain color system
(e.g., hue, saturation or luminance in the HLS color
system). The actual choice depends on the physical
properties of the stain used and on the image gath-
ering method used. It is generally assumed that for
one project the staining procedures and the gathering
method are unchanged. The parameter for feature ex-
traction controls the way original values are converted.
Values from transmitted light are typically transformed
and used also as extinction values.

In the first step from the input data the final inten-
sity image (one value per pixel) and the mask image
is produced. For classical cytometric purposes includ-
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Fig. 3. Display of images from a specimen consisting of single cell images. This figure can be viewed on http://www.esacp.org/acp/2003/
25-1/rodenacker.htm.

ing DNA content estimation the guidelines for stan-
dardization [55] are fulfilled including multiplicative
bright field correction, extinction standardization using
white value estimation from near background as well
as black shoulder correction.

In physical terms the amount of transmitted light
is the measurable quantity. Often the transformation
from transmissionT to extinctionE is performed in
the image gathering device. Our strategy is to gather
and store data as original as possible. This means in
most cases we store data with values in transmitted
light. The formula for intensity conversion is listed in
Appendix C. Figure 12(1 1) shows the original image
in transmission and Fig. 12(3 1) shows the transformed
extinction image. In the following text the resulting in-
put image used for feature extraction is referred to as
extinction image E.

2.7. Segmentation

Segmenting the image into the relevant objects and
background parts is a crucial step in almost all image
analysis tasks. It is also in many cases one of the more
difficult tasks. This paper will not go into the differ-
ent aspects of this important topic. We will only note
that in most of our applications on cytological material
the object segmentation is performed via thresholding
with an automatically estimated threshold [23,69] and
succeeding mask processing. Sometimes this thresh-
old is interactively controlled and corrected. Only the
threshold is stored together with the image. In more
complicated cases the automatic segmentation consists
of extraction of features per pixel and their classifica-
tion into different classes of sub-regions. For histomet-
ric purposes i.e., when objects in tissue sections have

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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Fig. 4. GUI for segmentation of images. This figure can be viewed on http://www.esacp.org/acp/2003/25-1/rodenacker.htm.

to be segmented, or the objects are not compact, auto-
matic segmentation is much harder to achieve and of-
ten the object mask itself has to be interactively cor-
rected [66,76,88] (see Fig. 4). In these cases a mask
image or label image accompanies the image. In most
applications the nucleus and the background are the
primary regions to be segmented but sometimes, de-
pending on staining and problem, additionally thecy-
toplasmregion is of interest.

The choice of features per pixel depend on the char-
acteristics of the sub-areas to be discriminated and it
is not fundamentally different from the statistical fea-
ture selection methods used for the discrimination of
objects [46,91].

Objects are considered as simply connected and
compact. The mask resulting from the initial threshold-
ing is thus filled, border touching objects are deleted
and cleaned by openings and closings [111]. In a first
step all objects are deleted which either disappear un-
der an erosion of minimum radius or do not disappear
under an erosion of maximum radius (Fig. 5). Erosion,
dilation, opening and closings are performed with an
octagon of given radius instead of a circle. The mask
of the object is displayed in Fig. 12(2 1). Equivalently
the elimination of too small and too big objects can
be achieved through a distance transform of the filled
mask followed by a selection of connected compo-
nents with a maximum distance value in the appropri-
ate range.

Fig. 5. Selection criteria for objects via erosion and dilation by neces-
sary inscribable circle (+) and deletion by erosion (∗). This figure can
be viewed on http://www.esacp.org/acp/2003/25-1/rodenacker.htm.

The result of the segmentation will for each object
be a mask which we will denoteO. It is the set of all
pixelsp = (x,y) of the objectO (p ∈ O). We also de-
fineC ⊂ O as the ordered set of pixels of the contour
or border and| · | the number of elements of a set· . In
other wordsO describes the mask or zone of measure-
ment andC its border e.g., as a list of coordinates. In
Fig. 3 some typical cell images with overlaid borders
are displayed. All further measurements are related to
those data.

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
http://www.esacp.org/acp/2003/25-1/rodenacker.htm


K. Rodenacker and E. Bengtsson / A feature set for cytometry on digitized microscopic images 9

2.8. Feature combinations and normalization

Features that are directly extracted from the images
can be combined to form new features that may express
the desired properties of the cells in a better way. As
a simple example, the area and the mean optical den-
sity of a cell nucleus are not biologically significant.
However, the product total extinction,TOTE= M1·A,
represents the total amount of stain or the total amount
of chromatin if a stoichiometric staining like Feulgen
was used. Sometimes it is not clear which feature is the
primary one and which is derived through a combina-
tion. Returning to our example of area, mean and total
extinction one can directly extract the total extinction
and obtain the mean optical density by dividing it with
area. The choice of what is primary and calculated fea-
tures is than mainly a question of implementation con-
venience.

One of the main reasons for calculating secondary
or combined features is to obtain normalization against
undesired factors (e.g., the number of particles is nor-
mally correlated with the area of the whole object) or
to increase the comprehensiveness. Examples of fea-
ture combinations are the well known shape factor P2A
(= P 2/(4πA), PerimeterP , AreaA), the already men-
tioned integrated optical density (TOTE, total extinc-
tion), any coefficients of variation or other ratios and
differences for normalization purposes. Some exam-
ples are given in Appendix F.

Depending on the classification scheme certain com-
binations are not necessary. E.g., in the case of step-
wise linear discrimination analysis it is not necessary
to define linear combinations of features separately.
However, the combination of base features normally
increases the comprehensiveness of the features.

It should also be pointed out that in case the im-
ages represent histological sections the third dimen-
sion need to be taken in to account. In that case sev-
eral estimates represent densities in a stereological
sense [35,128]. We will, however, not go into any de-
tailed discussion about stereological considerations.

3. Features

There are several possible ways of grouping the dif-
ferent kinds of features that can be extracted from mi-
croscopy images of cells. As outlined in the previ-
ous sections we proposesize and shape, intensity, tex-

ture andstructureas the main categories of features,
a grouping which is based on whether only the spa-
tial, only the densitometric or the combined spatial
and densitometric distributions are assessed. The Sec-
tions 3.1 to 3.4 correspond with the algorithmic de-
scriptions in Appendixes B to E.

3.1. Morphometric features, expressing size and
shape

The morphometric features expresses the overall
size and shape of the cell. They are distinguished from
the densitometric features in that they do not take the
density of the cell into account, except for the initial
segmentation step. For these features only the object
maskO and its borderC are needed, not the actual
gray scale image. They are listed in Appendix B and
illustrated in Fig. 12(2 1).

In our experience the shape of cells or nuclei respec-
tively were rarely decisive for the problem under re-
search. In fact the weak effects of early stages of dis-
eases are not well represented by cellular and nuclear
shape. However, they may be useful in distinguishing
between various types of cells or between cells and
other objects.

3.1.1. Position and orientation dependent features
A straightforward way of estimating the size of an

object in an image is to find the minimum and max-
imum coordinates in thex and y directions ((LOX,
LOY), (RUX, RUY)). These define the bounding box
of the object and the height, width and area of this
box will say something about the size and shape of
the object. The ratio of the area of the actual object to
the bounding box will provide a simple shape factor
(FO1). Unfortunately all these measures have the seri-
ous disadvantage that they are strongly orientation de-
pendent. If we have a narrow, elongated object these
measures will vary greatly as the object is rotated rela-
tive to the image grid. Since absolute orientation rarely
if ever neither is of interest nor can be controlled, these
kinds of features should be avoided.

Similarly the absolute coordinates of the object cen-
troid (KX, KY), are of no value for cytological spec-
imens except for administrative purposes, e.g., to be
able to relocate a cell in the cell image for future ref-
erence. In histological specimens they may be of use
also for studying tissue architecture since the spatial
distribution of the cells then is of interest [92].
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3.1.2. Geometric features
Geometric features independent of position and ori-

entation and thus more generally useful are areaA,
perimeterP , largest inscribable circle RAD, largest
extension EXT_MAX. The perimeterP is computed
as the length of the outer contour (8-connected neigh-
bored pixels assumed) [80] i.e., as a weighted sum of
steps around the border. The weight factors for hor-
izontal/vertical steps should be 0.948 and for diago-
nal steps 1.343 in order for the estimate to be unbi-
ased [70,71]. However, we have in our studies so far
used the weights 1 and

√
2. The largest extension is

computed as the longest straight distance between any
two points on the object border. This value is similar to
the smallest circumscribed circle, also called the min-
imum spanning circle [43], if the object has a reason-
ably regular shape.

3.1.3. Contour features: Curvature and Fourier
descriptors

Most of the shape information about an object is
contained in the contour of that object. A number of
different shape features can thus be based on analysis
of the contour. The contourC can be represented as
the ordered set of border pixels. For consideration of
the functional behavior of this border the contour func-
tion dependent on the perimeterc(p) has to be defined.
For several analysis methods this function has to be
regularized in terms ofp to lc(p). In words, this reg-
ularization means that the border is re-generated from
points with fixed equal distance between all neighbor-
ing points. In many cases it is useful to select this
distance in such a way that the total contour has the
same number of such border points for all objects. The
other way around means to fix the distance between all
neighboring points. We perform the regularization by
piecewise linear interpolation between the given bor-
der points.lc(p) is now a parametric representation of
the contour. It consists oflcx(p) andlcy(p). There is a
variety of transformations and measures based onc(p)
or lc(p) asshape representation. A thorough descrip-
tion would go beyond the scope of this presentation.
A fairly general and instructive description of shape
descriptor concepts can be found in [42].

Curvature and bending energy: The rate of change
in orientation of successive border elements is thecur-
vatureof the border. If the object is smooth we have
only small curvature values while an irregular object
also show a number of large such values. Represent-
ing the curvature values in a histogram is a transform
which expresses the object shape in a detailed way. If

we sum the square of all curvature values and normal-
ize by the length of the contour we obtain thebending
energy. The name comes from the fact that this mea-
sure is proportional to the energy it would take to bend
a straight elastic rod into the shape of the object.

Convex hull, deficiency and elliptic deviation: The
convex hullof an object is the smallest convex object
that completely encloses the object. The difference be-
tween the convex hull and the object is called thecon-
vex deficiency. Since a typical cell nucleus is elliptical,
and an ellipse is convex we will usually not have much
convex deficiency for cell nuclei. But the measure can
be quite useful in e.g., detecting overlaps, since those
will have a larger convex deficiency than single nu-
clei [39]. Another feature, theelliptic deviation, sim-
ilar to convex deficiency, calculated from the ellipse
of equal area using the two first Fourier spectral coef-
ficients, is likewise helpful for shape characterization
(Fig. 10).

The convex hull can be generated by several differ-
ent algorithms [22]. We construct it from the points in
c(p) by using the Delaunay triangulation, which deliv-
ers as a by-result the list of points of the convex hull.
The perimeter and area of the convex hull is calculated.
The convex hull and deficiency has the great advan-
tage of being visible and easily recognizable features
in contrast to the ones described next.

Fourier descriptors: The contour elementslc(p) can
be considered as a complex valued functionLC(p) =
lcx(p)+ i · lcy(p). Since it is a closed contour, it will be
a periodic function and can as such be transformed by
the Fourier transformation to its spectrum (see Fig. 9).
To illustrate the meaning of the Fourier spectrum some
low pass filtered contours are plotted in Fig. 9. The en-
ergy at different frequency intervals in this spectrum
will be an, in many cases, useful descriptor of the ob-
ject shape [60].

3.1.4. Invariant moment features
Geometric moments describing the extent of the ob-

ject are straightforward to define and are useful shape
descriptors. They are unfortunately sensitive to overall
size and orientation of the object. Invariant moments
which are normalized against those factors were pro-
posed by Hu [62] and later extended and improved
by Reiss [82]. Following the notation the five to six
invariant moments are derived from the central 2-
dimensional polynomial moments. Using the indica-
tor function (see Appendix A) for calculation, which
is in fact the function of the mask, the invariant mo-
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ments are pure and sensitive shape descriptors (see Ap-
pendix B.4). As an, in many applications, particularly
when dealing with tissue sections, useful, by-product
THETM (θM ) the angle of the principal axis of the ob-
ject is obtained (Fig. 12(2 1)). Moments may also be
weighted by intensity or other transformed images as
described in Section 3.2.2.

3.2. Densitometric features, expressing total intensity

For the densitometric features the absolute values of
the intensity measurements in the image play a crucial
role. It is thus important that those are as well con-
trolled and normalized as possible. As stated in Sec-
tion 2.6 we save the original image with transmitted
light values. It is thus always possible to return to im-
age data as close to the physical acquisition conditions
as possible. But for calculating intensity based features
the extinction pixel values are more directly useful.
We thus use the Extinction image E for this purpose.
This guarantees that no original pixel values of the con-
verted image are cut off (see Fig. 12(3 1)). Pixel val-
ues are strictly positive. Since that image is based on
a global white value estimate the extinction valuezero
it may be locally only approximately correct. A local
correction of this zero extinction estimate is performed
via the measurement of background mean (extinction)
BGM1 (see Appendix C). In Fig. 12(3 1), (4 1) the ex-
tinction image with the histograms of the whole image
(TO. . .) and of the object (. . . ) are outlined (see also
Fig. 7).

In a pure densitometric measurement the spatial po-
sitions of the pixels are not included. All the densit-
ometric information is thus retained in the histogram
of the image. By calculating moments for the distribu-
tion in the histogram the densitometric information can
be condensed into a few useful measures. Additionally
the largest and lowest density value may be of inter-
est. Since that is strongly influenced by noise thenth
largest or smallest value may be used instead. Here we
have usedn = 7, but in some of our studiesn = 3
has also been used. The median and mode values of
the distribution are other useful measures as well as the
grey level of the 10th and 90th percentile values of the
distribution.

3.2.1. Intensity features from different regions
Calculating the histogram for the whole image lim-

its the usefulness of the densitometric features. There-
for the image is subdivided into five different regions

and the histogram based densitometric features can be
extracted for each of these regions (Fig. 2):

(a) total imageTO. . .
(b) backgroundBG. . .
(c) object . . .
(d) inside border zoneBI. . .
(e) outside border zoneBO. . . .

Figure 6 exhibits the borders of the mask of the ob-
ject, the inner and outer border zone. Background
and total image photometric features ((BG. . . , TO. . . ,
Fig. 12(3 1)) are computed mostly for normaliza-
tion, quality estimation and quality ensuring purposes.
BGM1 expresses acquisition influences, BGM2 gives
an impression of how clean and even the background
is. M1 is also calledmean optical densityif the trans-
formation to extinction (see above) is performed. Be-
side the normal interpretation, M2 can be used to mea-
sure, to a certain extent, the contrast between eu- and
hetero-chromatin inside the cell nuclei [53].

The inside border zone (BI. . .) is defined as the
set difference between the original objectO and the
eroded [111] objectO�BBI . The outside border zone
(BO. . .) is defined as the set difference of originalO
and dilated objectO ⊕ BBO (Fig. 6). Features from
these regions are often used for normalization pur-
poses. They deliver either estimates of the mean ex-
tinction of the cytoplasm or in case of nuclear specific
stains a near background estimate. Zone featuresBI. . .
andBO. . . serve also for quantification of disparities in
the location of object extinction compared with inten-
sity features from the whole object (see also features
HU. . . andHL. . . in Section 3.4).Border located chro-
matinor koilocytosisof cells can nicely be represented
by combinations of these features [21].

Fig. 6. Inner and outer border regions for intensity features.
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Fig. 7. Some features outlined in real histograms of transmission values (black: whole image, red: cell nucleus, blue: smoothed cell nu-
cleus). Typically images have byte values with ranges of [0, 255] or [−128, 127]. This figure can be viewed on http://www.esacp.org/acp/2003/
25-1/rodenacker.htm.

3.2.2. Invariant moments from the extinction image
By combining information about the spatial loca-

tion and density of the pixels, features expressing com-
bined size, shape and texture can be extracted. A useful
tool for this are the density weighted moments. Formu-
las used for calculation of invariant moments are out-
lined in Appendix B.4. IM1–IM5 are the invariant mo-
ments, where the extinction image was used as weight
function. A crucial point of these features is the nor-
malization. Higher order polynomial moments cover a
large range of values so the normalization becomes im-
portant. The calculation of moments using as weight
function the extinction image E is similar to the pro-
posed de-noising of invariant features proposed by Bal-
slev [15].

3.3. Textural features

The goal for the extraction of the textural features
is the quantification of the overall local density vari-
ability inside the object of interest. Here the concepts
of building up the feature extraction process from de-
finition of zone of measurement, transformation and
measurement steps as outlined in Section 2.4 becomes
very useful. Usually the zone of measurement is the
whole cell nucleus, but it can also be some subpart of
the nucleus e.g., the peripheral zone, since several stud-
ies have shown that splitting the central and peripheral
parts of the nucleus into different zones may give better
results [78].

Several possible transformations are of interest. Ap-
plying local operators asgradient, Laplaceand theme-
dian transformation implies a concept of texture as de-
scribed in [72]. The application of global operators like
rice field reflects a model of texture where texture el-

ements are extracted applying a topology on gray im-
ages defined by monotonous increasing or decreasing
path connectivity [91,95,111].

Taken all together we have the following texture
transformations

(a) GradientG. . . ,
(b) LaplacianL. . . ,
(c) Flat textureF . . . ,
(d) Topological gradientRG. . . .

The absolute size of the local operations vary un-
der changes of magnification. For the Laplace and the
flat texture transformation, the size of the transforma-
tion window can be changed by parameters accord-
ingly. Depending on the size of the filter used the ob-
ject region is eroded accordingly to avoid border ef-
fects. Hence, measured areasLA, GA, FA, etc. are
slightly different from the full areaA of the objectO.
In Fig. 8 the mask of the object, the cell nucleus, is
outlined with the distance transformation in two differ-
ent representations. A threshold in the distance trans-
formation defines an eroded mask and its maximum is
the radius of the largest inscribable circle. This reduc-
tion of the zone of measurement becomes important
for complicated, non-compact and thin objects.

For each of the transformed images we can in prin-
ciple extract all the histogram based features and all
the invariant moments, using the transformed image
instead of the extinction image. This generates great
numbers of possible features. We will, however, give
some comments about which we have found most use-
ful.

3.3.1. Gradient image features
A 3×3 gradient approximation is used. The gradient

valueGRA(E(x,y)) is defined in Appendix D.1. This

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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Fig. 8. Mask of the cell, the object (2 2) and the distance transformation as intensity image (2 1) and as pseudo spatial representation (1 1). This
figure can be viewed on http://www.esacp.org/acp/2003/25-1/rodenacker.htm.

is an approximation of|(∂I(x,y)/∂x,∂I(x,y)/∂y)|.
The G . . . features can be considered as a quantifi-
cation of the velocity of changes of gray values (see
Fig. 12(2 2)). The measuring field is eroded by a 3× 3
square.

The skewness of the gradient value distribution was
of importance in several projects. It shows how far the
gradient distribution deviates from the random (trian-
gular) distribution. The product ofGA·GM1 = GTOTE
is a measure of energy for intensity changes.

3.3.2. Laplace image features
An approximation of the Laplace operator is used to

transform the image. The formula can be found in Ap-
pendix D.2. The distancer, in practice the size of the
convolutions matrix, can be selected. The measuring
field is eroded by an octagon of the sizer to eliminate
border effects (Fig. 12(3 2)).

The Laplace transformation is often used for seg-
mentation purposes. The so called zero-crossings [73]
define borders of objects via zeros of the sum of the
second partial derivatives. These are approximated by
the here applied convolution. From this point of view
the features or distributions of a Laplace transformed
image deliver a certain description of changes in pixel
neighborhoods defined by the size of the convolution
matrix used. An in-depth examination of this topic can
be found in the recent thesis from G. Smith [112].

The convolution can also be considered as a corre-
lation. The feature seen in this way reflects measure-
ments of the probability distribution of the existence

of pixel configurations described by the chosen convo-
lutions matrix. In some cases this matrix is called an
approximation of a Mexican hat. Mathematically spo-
ken, the Laplace transformation is an approximation of
∂2f (x,y)/∂x2+∂2f (x,y)/∂y2, the sum of the second
partial derivatives. The resulting featuresL . . .may be
roughly considered as quantification of the velocity of
changes of the gradient.

The most important feature from this transformation
is LM2, the standard deviation. Its magnitude reflects
the intensity of regular particles fitting into the sizer
of the convolution kernel (see Appendix D.2).

3.3.3. Flat texture image features
Image FT represents the difference between the

original image and a two-dimensional median filtered
one (see Appendix D.3). The median is a non-linear
smoothing operation with reduced edge effects. This
means that the shape of the transformation window
generates only very little artifacts in contrast to linear
operations like the Laplace transformation or the well-
known box car smoothing.

The size of the square median operator windowr
can be chosen arbitrarily [59]. Depending on the win-
dow size the median transformation will smooth away
all particles of the object up to an area of half the win-
dow area (r2/2, median). The flat texture image can
be considered as a peel or hull of the original object
containing just the interesting particles (and holes) on
a flat [93]. The transformation normalizes the global
variation of intensities (large and slow changes of

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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Fig. 9. Illustration of Fourier contour spectrum and its features. This figure can be viewed on http://www.esacp.org/acp/2003/25-1/
rodenacker.htm.

background intensity) (Fig. 12(4 2)). The median op-
erator is a special case of the rank order operators [59].
Erosion and dilation in gray images with a square win-
dow as structuring element are other rank order opera-
tors described in [111] and [93,94].

The measuring field is reduced by an erosion of an
octagon ofr/2. The local reach of the median trans-
formation is less compared to linear transformations
like Laplace. Deviations from zero of FM1 show a cer-
tain unbalanced ratio between dark and bright areas.
Positive values reflect the more frequent appearance of
bright areas in the original image. FM2 quantifies par-
ticle contrast.

The flat texture image has been found particularly
useful as a basis for extracting invariant moments.
NM1-NM5 are the invariant moment after Hu [62] and
Reiss [82] (Fig. 12(4 2), Appendix B.4).

3.3.4. Topological gradients and rice fields
The extension of the skeleton of binary images [111]

leads under an appropriate connectivity criterion in
gray images towatersheds[75] or in the resulting gray

image to the so called rice field [85,94]. The connec-
tivity chosen is the monotone decreasing or increas-
ing path connectivity [95]. Watershed has in the last
few years gained large acceptance since it is a parti-
tioning procedure withouta priori. Additionally an ef-
ficient algorithm [127] has made it usable for every-
body. By the watershed, the whole image is partitioned
into zones of influenceof local extreme values. The
borders of these zones arewatershedswhich directly
corresponds to the topographical term considering the
gray scale values as height values. Another watershed
can be obtained if the gray scale values instead are seen
as depth values.

Another way of expressing this is that there are wa-
tersheds for the local minima and watersheds for the
local maxima. The regions surrounded by watersheds
represent the set of pixels reachable by monotone de-
creasing or increasing paths from the local maximum
or minimum, respectively. Rice field is the transforma-
tion where each pixel of these regions is assigned to
the value of the corresponding local extreme value.

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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Features derived from the rice field difference
(RG. . ., see Appendix D.4), which represents a topo-
logical gradient, reflect the variation of the gray values
of particles in neighborhoods governed by this topol-
ogy. The transformation shows the distance between
the minimum and maximum hull (Fig. 13(3 1)) and
can be interpreted as themean peak distancebetween
neighboring bright and dark particles.

The so-called 2nd difference D2 between the origi-
nal image and the mean of upper and lower rice field
(RU and RL) is a transformation with very interest-
ing and helpful properties (Fig. 13(4 1)). The D2 im-
age can be considered as another flat texture image
(Fig. 12 (4 1)). However pixels with D2(v) > 0 deliver
a region containing and surrounding all eu-chromatin
particles. The complement is the surrounding of all
hetero-chromatin particles (Fig. 13(1 2) and (2 2)). It
is calledhalf-heightpartition since the border pixels of
this partition are located on any monotone path from a
dark particle to a bright one on half-height between the
related local minimum and maximum. Intensity fea-
tures of thesezones of influenceare calledHU . . . and
HL . . . (see Section 3.4.2).

3.3.5. Mayall/Young chromatin features
A special transform taking the global shape of

the object into account was proposed by Mayall and
Young in [133] together with a set of feature measure-
ments taken from this transform i.e., HETEROgeneity,
CLUMPness and MARGination (see Appendix D.5).
In addition to these features we also extract and store
the intermediate features NB, NG, NW, RM0, RM1,
RM2. For the calculation of the radial moments the
distance transformation is applied to the object mask
to obtain iso-distance lines (see Fig. 8). A by-result is
the maximum of this transformation delivering the ra-
dius RAD of the maximum inscribable circle already
listed under the general shape features (Appendix B.1
and Section 3.1).

Figure 12(3 4) shows the regionsONB , ONW and
ONW called black, grey and white pixels and the ra-
dial mean extinction distribution from border to center
is outlined. The latter is calculated for the radial ex-
tinction moments RMi used in the formula for MAR-
Gination.

3.3.6. Run-length and co-occurrence features
The most popular of all feature extraction meth-

ods in the literature are the Haralick [58] and Gal-
loway [49] run-length and co-occurrence features.
A recent example can be found in [132]. They are in
detail described and evaluated in [86]. These features

can be calculated for any of the previously described
transformed images as well as for the original extinc-
tion image. We have mainly used the extinction im-
age (CO1–CO15, RL1–RL5) and the flat texture image
(NC1–NC15, NR1–NR5). The derived feature set is
the original one proposed by Haralick. In Fig. 12(1 2)
and (1 4) and Fig. 12(1 3) and (2 4) the normalized im-
ages and the intermediate matrices (co-occurrence and
run-length) are displayed.

As shown in [86] the normalization of the gray
value distribution used is important. The histogram
equalization proposed from Haralick [58] and gener-
ally used is applied for the extinction value distribu-
tion (CO1–CO15, RL1–RL5, Fig. 12(1 2) and (1 4)).
For data from flat texture (NM1–NM15, NR1–NR5,
Fig. 12(1 3) and (2 4)) a linear spread function derived
from FM1 and FM2 is applied.

The parameters controlling the extraction of the co-
occurrence features are thedisplacement vectord (e.g.,
d = (1.5, 1.5)µm, corresponding to (6, 6)pixels), the
size of the co-occurrence matrixNG (the number of
gray values after normalization) and thenormalization
method(histogram equalization or linear spread).

Different displacement vectors will generate co-
occurrence matrixes for different sampling orientations
of the texture. If the texture is directionally homoge-
neous (as is usually the case with chromatin distribu-
tions) the sampling statistics can be improved and any
irrelevant directional dependencies can be reduced if
the displacement vector is also applied with a rotation
of 90◦ and accumulated to the co-occurrence matrix.
However, if the texture can be expected to be direc-
tionally dependent displacement vectors generating co-
occurrence matrices for a number of different orien-
tations should be used. The maximum, minimum and
range of feature values over the different directions can
then be used to express the directional inhomogeneity
of the texture. For a discussion of the choice of co-
occurrence matrix parameters see Rodenacker [86].

Parameters for run-length features are the direction
of run-length estimators (e.g., 45◦), the number of gray
values after normalizationNG, the maximum consid-
ered run lengthNR and the normalization method,
similar to co-occurrence feature evaluation.

The co-occurrence matrices has the disadvantage of
not directly expressing the size of the texture elements,
only the grey level contrast, while the run length fea-
tures only expresses the size, not the contrast. Albregt-
sen and Nielsen [3] recently proposed a combination,
the co-occurrence of grey level run lengths matrix.
This is a 4D matrix expressing the probability of co-
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occurrence of two runs of a given grey level and given
length. Instead of extracting predefined features from
these matrices they created adaptive features based on
a statistical analysis of the object populations under
study. They have also used this adaptive feature con-
cept for the regular co-occurrence and run length ma-
trices. It seems to be a promising new approach [4,77].

3.3.7. Miscellaneous transformations
Even though the described combinations of zones,

transformations and measurements can generate great
numbers of useful texture features it is likely that new
and better features will be discovered in the future. The
chosen software structure allows an easy extension of
the feature extraction procedure to other, newer or bet-
ter methods.

As an example the local fractal dimension [97] is
displayed in Fig. 12(2 3) and the local multi-fractal di-
mension at Fig. 12(3 3). From the corresponding his-
togram of the whole objectFR . . . andMF . . . fea-
tures are extracted (see Appendix C.1).

3.4. Structural or contextual features

If each chromatin particle is considered to be an ob-
ject a number of features can be extracted that describe
the relationships between those particles. This is the
structural or contextual way of describing texture. It re-
quires a way of defining particles followed by a way
of generating useful measures of the relative locations
and relations between the particles.

From the flat texture image dark and bright areas,
as well as from the rice field images upper and lower
half height areas, such particles can automatically be
segmented. The thus defined particles are used to ob-
tain statistical measurements from the extinction im-
ageE. Even though the measurements are the same
as those described in the Densitometry Section. (Sec-
tion 3.2) we will here consider them as contextual fea-
tures. With images fromhistological sectionsthe area
measurements are useful for volume density estimation
in nuclei [66,76,87,88].

Fig. 10. Illustration of the convex hull, deficiency, best fit ellipses and elliptic deviation. The original mask is bright gray or bright gray/black
resp., deficiency (left) is dark gray and elliptic deviation (right) is dark gray and black. This figure can be viewed on http://www.esacp.org/
acp/2003/25-1/rodenacker.htm.

Fig. 11. One dimensional rice field transformation for illustration of the topological properties of the rice field and watershed transformation.
This figure can be viewed on http://www.esacp.org/acp/2003/25-1/rodenacker.htm.

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
http://www.esacp.org/acp/2003/25-1/rodenacker.htm
http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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Fig. 12. Feature display during calculation. References are given by (column line) coordinates. (1 1) original image in transmission, (2 1) mask
with surrounding box, maximum extension, principal axes and maximum inscribable circle, (3 1) original in extinction (TO. . . , BG. . .), (4 1)
object in extinction (. . . , BO. . . , BI . . .), (1 2) histogram equalized object in extinction with co-occurrence matrix (CO. . .), (2 2) Laplace
transformation (L . . .), (3 2) gradient transformation (G . . .), (4 2) flat texture transformation (F . . .), (1 3) linear spread flat texture image
with co-occurrence matrix (NC . . .), (2 3) local fractal dimension (FR. . .), (3 3) local multi-fractal dimension (MF . . .) [97], (4 3) particle
segmentation from flat texture image (D . . . , H . . .), (1 4) histogram equalized object in extinction with run-length matrix (RL. . .), (2 4) linear
spreaded flat texture image with run-length matrix (NR. . .), (3 4) Mayall/Young chromatin areas and radial intensity distribution [133], (4 4)
original image before shading correction if any was done. This figure can be viewed on http://www.esacp.org/acp/2003/25-1/rodenacker.htm.

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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Fig. 13. Feature display during calculation (rice field). References are given by (column line) coordinates. (1 1) upper rice field [94], (2 1) lower
rice field, (3 1) difference of upper and lower rice field (RG. . .), (4 1) second differenceD2, (1 2) upper half height partition (HU . . .), (2 2)
lower half height partition (HL . . .), (3 2) upper watershed regions, (4 2) lower watershed regions, (1 3, 2 3) locations of the particle extrema, (3 3,
4 3) neighborhood graphs on bright and dark particles for structure analysis (Delaunay triangulation and minimum spanning tree graph) [85].
This figure can be viewed on http://www.esacp.org/acp/2003/25-1/rodenacker.htm.

These features deliver additional information about
the dispersion of eu- and hetero-chromatin. The pre-
fixes of the feature groups are D and H for dark and
bright particle areas from the flat texture transforma-
tion and HU and HL from the rice field.

3.4.1. Contextual features from the flat texture image
These features are derived (see Appendix D.3) via

automatic application of a thresholdTD andTH for
dark and bright particles to the flat texture imageFT
(Fig. 12(4 2)). E.g.,c3 = 0.0 results in a partition of the
nuclear area comparable with half height area (see Sec-
tion 3.4.2 and Figure 12(4 3)). For the resulting masks
OH andOD intensity features from imageE are cal-
culated. As additional feature values the numbers of
connected particles are counted and stored in HNO and
DNO.

3.4.2. The half height partitions from the rice field
The watershed or rice field transformation delivers

not only the zones of influence (ZOI) around each par-

ticle but also without anya priori the number of dark
and bright particles. To illustrate this, the transforma-
tion results are shown in one dimension in Fig. 11. For
cell chromatin these properties are a very valuable fea-
ture. In Fig. 13 the images from rice field calculation
are outlined. Especially Fig. 13(3 2) and (4 2) show the
watersheds and (1 1) and (2 1) the upper and lower rice
field. In Fig. 13(2 4) the locations of each detected par-
ticle are marked in red for eu-chromatin and in green
for hetero-chromatin particles.

The contextual features from the rice field transform
are evaluated using the extinction imageE with masks
OHU or OHU resulting in feature setsHU . . . and
HL . . . (see Appendix C.1). Half height areas represent
a decomposition of the object into particle oriented sur-
roundings derived from the rice field image transfor-
mations. Half height area of upper rice field surrounds
the bright particles. Up to resolution dependent losses
the equation (HUA + HLA) ≈ A should hold. Addi-

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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tionally the numbers of particles are counted and stored
under HUNO and HLNO.

3.4.3. Comparison of the different particle
segmentations

The different ways of defining chromatin particles
will give significantly different results. For the May-
all/Young method (see Section 3.3.5) a threshold is de-
rived from the object mean M1 of theextinction im-
age. For dark and bright particles a threshold is de-
rived from the object mean value FM1 of theflat tex-
ture imageFT which is already normalized in terms of
global intensity changes. For the half height partition
(see Section 3.4.2) the result is derived from atopolog-
ical transformationwhere the border of the partition is
independent of a threshold and only dependent on the
topological neighborhood of the particles.

Comparing visually the respective segmentation in
Fig. 12(3 4), (4 3) and Fig. 13(1 2), (2 2) the differ-
ences are obvious. The dark and bright particle seg-
mentation delivers small regions as centers of the loca-
tions of the local extremes but by far not as complete
as the rice field driven half height method. The May-
all/Young method is highly dependent on large scale
intensity changes which occur relatively frequently in
nuclei.

3.4.4. Contextual features from particle relationships
based on graphs

The locations of the particles can be used to gener-
ate graphs for structural analysis [85,90]. The Delau-
nay triangulation graph, nearest neighborhood graph,
the minimum spanning tree and the convex hull of the
dark particles and the bright particles are calculated.
From these graphs the numbers of nodes and neighbor-
ing nodes can be extracted and used for further analy-
sis of topography and deposition of stain. Automati-
cally the number of neighboring nodes per node is cal-
culated and stored. In Fig. 13(3 3) and (4 3) the Delau-
nay triangulation and the nearest neighborhood graph
is outlined. The variation in the number of neighbors
in different parts of the tissue may be a strong indica-
tor of topological heterogeneity. This type of feature
is little used in cytometry but is much more common
in (micro-)histometry [63,68,130]. We also did some
work on applying texture measures to histometry and
on comparing the two approaches [40,41].

3.5. Some feature transformations

As already mentioned in Section 2.8 base features
have to be transformed to reduce e.g., size dependen-

cies and increase comprehensibility. In Appendix F
some transformations are outlined as examples. Possi-
ble transformations are strongly dependent on the goal
and problem of the specific experiments.

4. Implementation

The presented feature set is the result from about
25 years work on cyto- and histological specimens at
GSF and has been widely used for a multitude of dif-
ferent projects. A similar set of features has been de-
veloped and used at the Centre for image analysis in
Uppsala. The actual implementation of the GSF ex-
traction program is written in IDL1. It succeeds several
precursors (ILIAD [48], DIBIVE, BIP (developments
in our labs)) which were programmed by interpreted
language and were running on several different proces-
sors following the technical development of comput-
ers. The actual IDL implementation is nearly indepen-
dent of the underlying hardware. It was primarily de-
veloped on VAX2 and runs now on PC and Unix ma-
chines likewise only dependent on the range of sup-
ported architecture of IDL. In Uppsala the Unix based
IMP image measurement program platform which also
traces some of its roots back to the ILIAD system is
used.

A software package embedded into a graphical user
interface (GUI) has been developed for easy access
by computer-non-professionals (Fig. 14). The pack-
age is fully equipped for different image acquisi-
tion modes, image display (PRAEPARAT_ZEIGEN)
(Fig. 3), segmentation (SCHWELLE_A, automatically)
and (SCHWELLE_K, interactively controlled) (Fig. 4)
as well as for different feature extraction methods
(PRAEPARAT_RECHNEN) and the choice of certain
groups of features (PARAMETER, PARAMETER_-
SET) and their parameterization. The possibility to
switch between different feature groups and parameter
sets is used for production systems based on prelimi-
nary studies using a selected, possibly reduced set of
features.

The input of the procedurePRAEPARAT_RECHNEN
for feature extraction is a set of images of arbitrary for-
mat combined with the zones of interest described by
a mask or a threshold and a control parameter file. The
set of images normally representsonespecimen. Im-
ages can contain eitheroneobject (which might con-

1Interactive Data Language, RSI, Boulder, Colorado, USA.
2Digital, (Compaq), formerly Maynard, Mass., USA.
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Fig. 14. Graphical user interface (GUI) for image cyto- and histometry. Selection of volume, project and specimen, eventually image with possible
commands and editable execution line. This figure can be viewed on http://www.esacp.org/acp/2003/25-1/rodenacker.htm.

sist of more than one connected component) or scenes
with multiple objects. The output of the procedure is
a feature file containingper objectone record of all
computed features. It is also possible to display inter-
mediate results on screen. This facility is used to illus-
trate the described features and to visualize certain spe-
cific feature values or combinations as well as segmen-
tation results. Shown are typically transformed images
with the corresponding frequency distribution over-
layed. The abscissa has [0· · ·255] or [−128· · ·127]
values and the ordinate is scaled to the double of the
maximum frequency of the histogram. Bin size used
for histograms is always 1. The feature set from speci-
mens can directly be displayed as a graph in combina-
tion with the corresponding images.

The image data are stored in a directory tree with the
project directory at the top and underneath the speci-
men directories. Image data can be in various formats.
They can contain one object (single cell evaluation) or
scenes with several objects. The extraction method is
considered asoff-line. Image data are gathered, stored
and more or less automatically segmented. Finally the
feature values are calculated. Actually features and im-
ages are stored on hard disc using a data base sys-
tem [44] and are fed into SAS3 or BMDP4 statistics

3SAS Institute, Heidelberg, Germany.
4BMDP, UCLA, Los Angeles, USA.

packages.
Each extracted set of features per object represents

a real valued vector. These vectors are stored in afea-
ture filecontaining all feature vectors of the objects of
one specimen. In addition to computed features some
organizational data are stored in the feature file such
as:

NUM Running number of (cell) image in the set
TC Automatically computed threshold
TI Interactively controlled threshold if any
BGM1E Estimated background mean
BGM2E Estimated background SD

These values are obtained by the automatic thresh-
old estimation routine. Finally some stored data come
from the gathering device describing a preliminary ob-
ject classification and the coordinates of the image field
on the specimen:

DIA12 Two character diagnosis (if any is given)
CX, CY Frame coordinates in the specimen inµm

For each project consisting of an arbitrary number
of specimens acontrol fileis created, containing all ap-
propriate parameters for the processing of the images.
These data can be grouped into parameters for

• Automatic threshold estimation
• Object mask generation
• Intensity conversion
• Feature calculation control.

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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The latter consist of Boolean parameters for switching
on and off whole groups of features to be evaluated as
well as the necessary parameters like median window
size or radius of outer border. Additionally the repre-
sentation for display is controlled for visual inspection
of the feature extraction procedure. The parameters are
separately described in the algorithmic appendices and
on the web page of the authors.

5. Applications overview

The presented feature set has been used in a multi-
tude of different cyto- and histometric projects, a list
of typical projects sorted by application field is given
in this section. Depending on the problem the most im-
portant features vary. Typically in classification prob-
lems of different cell types, shape and simple intensity
features are used. In all other cases like functional di-
agnosis or prognosis concerns, mostly texture feature
were selected to relate specimen to some relevant ex-
ternal criterion. This is also valid for (micro-) histome-
try approaches. The list of features and parameters are

• Cytology

– Cervix

∗ Early cancer recognition [25]
∗ Malignancy associated changes [26,30,32,

33,122]
∗ Development of a prescreener [1,18,60,61,

124,126]
∗ Miscellaneous [21,29,125]

– Mamma

∗ Cancer grading and diagnosis [29,32,99,113–
119]

∗ Prognosis [5–9,31,54,64]
∗ Functional diagnosis by hormone receptor

status [24,64,101,102,104–106]
∗ Morphological changes of hormonally treated

breast cells in culture [96]

– Thyroid:

∗ Differentiation of adenoma, papillary carci-
noma and follicular carcinoma [24,29,32,67,
98,100]

– Esophagus:

∗ Discrimination of dysplasias by chromatin
features [50,134].

– Prostate:

∗ Differentiation of hormone sensitive and in-
sensitive carcinomas [101,103]

– Cell cycle analysis:

∗ Analysis of chromatin morphology of fi-
broblasts [2,52,53]

– Oncology on cultured cells:

∗ Differentiation of tumorigenic and non-
tumorigenic virus infected cells [107,108]

– Biological dosimetry:

∗ Changes in sperm morphology and chro-
matin distribution [10,12,34]

∗ Influences of working environments on cel-
lular systems [83,84]

– Miscellaneous topics: [27,28]

• Histology

– Bladder:

∗ Histological sections of carcinomas
[40,41,63]

– Colon:

∗ Histological sections of carcinomas [87–89]

– Lung:

∗ Diagnosis and prognosis of neuroendocrine
tumours [65,66]

– Pancreas:

∗ Canine neuroendocrine tumors [76]

• Measurement quality

– Staining comparison and evaluation, measure-
ment quality and stability

∗ Staining comparison and evaluation
[99,120,121]

∗ Measurement quality and stability
[11,13,86]

∗ General aspects on cell measurements
[16,20]

6. Summary and recommendations

In this paper we have outlined somewhat in detail
the feature extraction strategies and the resulting fea-

http://www.gsf.de/ILIAD/
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ture sets used at the GSF image analysis laboratory
in Neuherberg, Germany and at the Centre for image
analysis in Uppsala, Sweden. A list of studies in which
the described feature extraction methodology has been
applied has been provided to illustrate how the features
are used in practice. In this final section we will try to
summarize the main recommendations we would like
to make based on these experiences in a set of rules of
thumb.

(1) It is important to carefully analyze the problem
at hand. The initial definition of the problem is
rarely the problem which has to be solved. It is
particularly important to take a critical look at
the available image quality. Is the image magni-
fication/resolution optimal for the problem. Are
the preparation and image acquisition procedures
sufficiently stable. The chances of success are
significantly greater if the image analysis con-
siderations are brought in before the specimens
are prepared and the images collected. Too often
the image analysts are contacted too late in the
process when significant parameters no longer
can be changed. Many image analysis problems
can be made much simpler with small changes in
imaging parameters.

(2) The experimental design phase including first
tests should be ruled by a sincere sense of sim-
plicity and modesty. The experimental design
rules the final trade off of the whole experiment.
Never try to solve simple problems with compli-
cated tools. Make the experiment as simple as
possible, but not simpler. Try to visually deter-
mine which classes of features are likely to be
able to discriminate between the cell categories
of interest. The images (cells) should be ob-
served carefully and knowledge concerning the
cell type, the preparation procedure and the im-
age acquisition should be applied. Every recog-
nized or estimated regularity or irregularity is
helpful to select or to reject an appropriate fea-
ture either for cleaning or for refining and struc-
turing the data set.

(3) The natural hierarchy of features as described in
Section 2.3: morphometrical, photometrical, tex-
ture and structure features can serve as a guide-
line in this analysis. Considering features as sta-
tistical estimators this hierarchy reflects the in-
creasing variability of the features. Intensity fea-
tures allow to discriminate morphologically sim-
ilar groups, texture features allow to discriminate
photometrical similar groups and so on. Hence,

for the experimental design it is recommended
to start with the most appropriate feature group,
e.g., in cytometry with morphometrical and in
histometry with photometrical features and to
continue on reduced strata (by a certain similar-
ity criterion) with features from the next hierar-
chy level. Usually it is not recommended to ap-
ply textural or structural features on data varying
strongly in size and intensity.

(4) Within each relevant feature group in the hier-
archy a few features that expresses the aspects
of the cells that seems most promising should
be selected. Among the morphometric features
area and perimeter are commonly useful, while
the Fourier shape features form a powerful but
somewhat complicated way of extracting more
detailed shape information. The total integrated
optical density is the most commonly used pho-
tometric feature. In the texture group the co-
occurrence features are the most popular in the
literature, unfortunately there are very many de-
grees of freedom in the parameters and selection
of the specific subset of features here which make
the optimal feature selection difficult. The more
recently developed texture and structure features
based on watersheds and rice field images form
a most interesting alternative with fewer degrees
of freedom and less dependence on parameters
although with much fewer results in literature to
base an opinion about usefulness on.

(5) In addition to features actually intended to be
used for cell recognition or classification it is
often worth while to record a number of fea-
tures for quality control purposes. An example
is to calculate the background intensity near the
cell. If that varies significantly for different cells
there may be problems with the illumination ho-
mogeneity that need to be taken care of. Even
the time of recording the cell may be of interest
since it can reveal drifts in the instrumentation.
We once found strong correlation between time
of day and malignancy index in an experiment,
which turned out to be caused by higher temper-
ature in the afternoon effecting the properties of
the camera used.

(6) Be aware of the exact mathematical definition of
the different features used and document that in
the experimental reports. Do not accept black-
box features with unknown definition, even if
they have names that sound OK. This is ab-
solutely necessary to make the experiments re-
producible for others.
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(7) Only when the best effort in applying knowledge
about cell differences and visually feasible fea-
tures has been exhausted should direct statistical
methods for feature selection be applied. Modern
multivariate statistics, e.g., various types of step-
wise discriminant analysis does provide powerful
tools for extracting which features are discrimi-
natory, but the statistical outcome is strongly in-
fluenced by the number of features tested in the
statistical analysis. It is far too easy to come up
with overly optimistic results if hundreds of fea-
tures are generated and tested on the few dozen
cases typically available in a biomedical study.

(8) It is usually a good idea to divide the found fea-
ture set according to the feature hierarchy to try
to find out the decisive cells. This is especially
true if cells are not individually diagnosed but
by a case diagnosis. Only a subset of cells usu-
ally carries the important properties pointing to
the overall diagnosis. Backtracking of decisions
is not only necessary in cluster analysis. It helps
to improve insight and comprehension into the
variability of the material.

(9) Any classification result needs to be verified on
independent material. Preferably the available
material should be divided from the very start in
design set and test set. If that is not possible the
leave one out, or jack-knife classification meth-
ods can be applied. But here one should be care-
ful with the overly optimistic results that will re-
sult if the entire material is used in a statistical
feature selection process. The test-case left out
in each classification run is then not entirely in-
dependent since it has influenced the feature set
used for the classifier. Still more overoptimistic
results will result if only the results on the design-
set are quoted. Such results should not be trusted
at all.

Cytometry is a diverse field with many kinds of
images and many scientific questions that need to
be treated in different ways depending on the spe-
cific application. So straightforward application of a
recipe such as the one above will seldom work, the re-
searchers need to apply his/her own scientific judge-
ment when applying these rules. Still they may hope-
fully be of some use in avoiding some of the pitfalls we
have encountered.

Our ambition with this paper has been to point out
the need for a more clear documentation of what fea-
tures are used in the various studies if medical micro-
scopic image analysis. This is necessary for the re-

search results to become more transparent, comprehen-
sible and interchangeable. We hope to see future pa-
per by other authors presenting alternative approaches.
The developed programs can be given to others for
non-commercial purposes. However, support and re-
sponsibility for errors and problemscannotbe taken
over. For a direct use of the programs a licensed ver-
sion of IDL and IMP respectively is a prerequisite.
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Appendix A. Notations

I ⊂ Z2 × R = Image of given size
(columns, rows)

f : I → R = Image considered as func-
tion

E ⊂ Z2 × R = Extinction image after inten-
sity conversion

X ⊂ Z2 × R = Any other image after trans-
formation

Bx ⊂ Z2 = A circle of radius x with
B̌x = Bx (a structuring ele-
ment)

X ⊕ Bx,X �Bx = Dilation, erosion ofX by
Bx

p ∈ X = ((x,y),v) ∈ X
A pixel of an image X at
(x,y) and valuev

O ⊂ I = {p ∈ I | p pixel of the ob-
ject} mask of the object

1O : Z2 → {1, 0} =

{
1 if p ∈ O
0 otherwise

Indicator function of
maskO

|O | = number of elements ofO

C ⊂ O = O ∩O �B1
border pixels, contour

X(O) = The set of all pixels ofX

in O

XO = fX · 1O
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h : [0, 255]→ Z or = histogram (X(O)) or

h : [−128, 127]→ Z frequency distribution with

h(x) = |{ v,v ∈ [x,x+ 1[} |
d(p1,p2) = distance betweenp1 andp2
distance(O) : I → R = Distance function ofO

∀q ∈ O | distance (q) = min
p/∈O
d(q,p)

∀q /∈ O | distance (q) = 0

watershed(X) = Watershed function ofX
with X partition ofX and∀Y ∈ X ∃ y ∈ Y local

minimum inY with ∀p ∈ Y ,p �= y ∃ a monotone

decreasing path fromp to y

smooth(X , sm) = Box car smoothing function
ofX with window sizesm

Appendix B. Morphometric features, expressing
size and shape

B.1. Position and orientation dependent features

Derived from original objectO and borderC.

KX =
1
A

∑
(x,y)=p∈O

x x-coordinate of centroid

KY =
1
A

∑
(x,y)=p∈O

y y-coordinate of centroid

LOX = min
(x,y)∈O

x left upperx-coordinate

LOY = min
(x,y)∈O

y left uppery-coordinate

RUX = max
(x,y)∈O

x right lowerx-coordinate

RUY = max
(x,y)∈O

y right lowery-coordinate of box

B.2. Geometric features

P =
|C|−1∑

i=0 pi∈C
d
(
pi,p(i+1) mod|C|

)

perimeter

A = | O | area

EXT_MAX = max
(p1,p2)∈C×C

d (p1,p2)

maximum extension

RAD = max
r∈N

{Br ⊂ O}

radius (see Section 3.3.5)

= max(distance(O))

P2A =
P 2

4πA
shape factor

B.3. Contour features: Curvature and Fourier
descriptors

B.3.1. Curvature and bending energy
Derived from borderC

Transformation:
(1) Estimation of the border points
(2) Calculation of coordinates
(3) Freeman codefm(n) from coordinates (see fig-

ure below. This figure can be viewed on http://
www.esacp.org/acp/2003/25-1/rodenacker.htm.)

(4) Curvature:k = shift(fm,−1)− fm
(5) Bending energy:BE =

∑
k2

fm = (0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 4, 4, 3, 1, 1, 2, 3, 4, 4,
3, 3, 4, 4, 6, 5, 4, 5, 6, 7, 6, 5, 6, 7, 7, 7)
k = (0, 0, 0, 0, 0, 1, 1,−1, 1, 2, 0,−1,−2, 0, 1, 1, 1,
0,−1, 0, 1, 0, 2,−1,−1, 1, 1, 1,−1,−1, 1, 1, 0, 0, 1)
BE = 32

B.3.2. Convex hull, deficiency and elliptic deviation
Derived from borderC by applying the Delaunay

triangulation to the points ofC. The returned border
points of the triangulated region span the convex hull.

CH = convex hull ofO (see Fig. 10)

CH_A = |CH |

CH_DEFI = CH_A−A
(see Fig. 10, left, dark gray)

From the contour the best-fit ellipse delivers other
helpful and easy comprehensible shape features like
(see Appendix B.3.3 Pt. 4 and Fig. 10):

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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ELL_MN = minor axis of best-fit ellipse

ELL_MX = major axis of best-fit ellipse

ELL_DA = Elliptic deviation

B.3.3. Fourier descriptors
Derived from borderC as a collated sequence of

points (px,py) (see Fig. 9 and [42] Chapter. 6.5).

(1) Generation of the complex valued function

LC(p) = lc(px) + ilc(py),

wherenp new points are generated by linear in-
terpolation for equidistant nodes. This is a neces-
sary prerequisite of the fast Fourier transforma-
tion.

(2) Fourier transformation:

LC(m) =
1
np

np−1∑
k=0

LC(k)e
− i2πmk

np .

(3) Calculation of Fourier descriptors
Normalization:

L̃C(m) =
LC(m)
LC(1)

and L̃C(0) = 0.

Shape descriptor:

FFT =
∑m

n=−m L̃C(n)/n∑m2
n=m1

L̃C(n)
, m = np/2.

Shape descriptor energy (global), sum of power
spectrum (see Fig. 9):

EFT =
m∑

n=−m
|L̃C(n)|2.

Shape descriptor difference energy (frequency
interval, e.g., 3–11), difference of partial sums of
power spectrum:

DEFT3,11 =
11∑

n=−11

|L̃C(n)|2 −
3∑

n=−3

|L̃C(n)|2.

(4) Calculation of smoothed contours
Smoothing of the contour in the Fourier spectrum
means cutting off (windowing out) parts of the
spectrum, preferably higher frequencies. To gen-
erate a best fit ellipse (see Fig. 10) only the first
two spectral values are taken.

B.4. Invariant moment features

B.4.1. General 2-dim. central moments of a function
or image X

General 2-d moments

mst(XO) =
∑

(x,y)=p∈O
xsytX(x,y)

Central 2-d moments

µst(XO) =
∑

(x,y)=p∈O
(x−KX)s(y −KY )tX(x,y)

intensity

µst(1O) =
∑

(x,y)=p∈O
(x−KX)s(y −KY )t

shape
withKX =

m10(1O)
m00(1O)

andKY =
m01(1O)
m00(1O)

and derivations from the moments

MMTHETA =
1
2

arctan

(
+2µ11(1O)

µ20(1O) − µ02(1O)

)
IMTOTE =m00(EO)

IMKX =
m10(EO)
m00(EO)

IMKY =
m01(EO)
m00(EO)

IMTHETA =
1
2

arctan

(
+2µ11(EO)

µ20(EO) − µ02(EO)

)
NMTOTE =m00(FTO)

NMKX =
m10(FTO)
m00(FTO)

NMKY =
m01(FTO)
m00(FTO)

NMTHETA =
1
2

arctan

(
+2µ11(FTO)

µ20(FTO) − µ02(FTO)

)

B.4.2. Invariant moment features
After Hu [62] and Reiss [82] with
X = 1O the mask (feature prefixM . . . ),
X = EO the extinction image (feature prefix

I. . . ) or
X = FTO the flat texture image (feature prefix

N . . . )
and the linear, quadratic and cubic invariant forms
which are based on the central moments [82, p. 50ff].
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The features derived fromX = EO andX = FTO
belong to Sections 3.2.2 and 3.3.3 respectively and are
cited in Appendixes B.4 and D.3.

Q(X) = µ20(X)µ02(X) − µ2
11

P (X) =
(
µ30(X)µ03(X) − µ21(X)µ12(X)

)2
−4
(
µ30(X)µ12(X) − µ21(X)2)

×
(
µ21(X)µ03(X) − µ12(X)2)

I(X) = µ20(X)
(
µ21(X)µ03(X) − µ12(X)2)

−µ11(X)
(
µ30(X)µ03(X) − µ21(X)µ12(X)

)
+µ02(X)

(
µ30(X)µ12(X) − µ21(X)2)

R(X) = µ30(X)2µ02(X)3

−6µ30(X)µ21(X)µ11(X)µ02(X)2

+6µ30(X)µ12(X)µ02(X)

×
(
2µ11(X)2 − µ20(X)µ02(X)

)
+µ30(X)µ03(X)

×
(
6µ20(X)µ11(X)µ02(X) − 8µ11(X)3)

+9µ21(X)2µ20(X)µ02(X)2

−18µ21(X)µ12(X)µ20(X)µ11(X)µ02(X)

+6µ21(X)µ03(X)µ20(X)

×
(
2µ11(X)2 − µ20(X)µ02(X)

)
+9µ12(X)2µ20(X)2µ02(X)

−6µ12(X)µ03(X)µ20(X)2µ11(X)

+µ03(X)2µ20(X)3

S(X) = µ40(X)µ04(X) − 4µ31(X)µ13(X)3µ22(X)2

T (X) = µ40(X)µ22(X)µ04(X)

+2µ31(X)µ22(X)µ13(X) − µ40(X)µ13(X)2

−µ04(X)µ31(X)2 − µ22(X)3

The affine invariants [82, p. 59] from the mask im-
age:

MM1 =
Q(1O)
µ00(1O)4

MM2 =
P (1O)
µ00(1O)10

MM3 =
I(1O)
µ00(1O)7

MM4 =
R(1O)
µ00(1O)11

MM5 =
S(1O)
µ00(1O)6

MM6 =
T (1O)
µ00(1O)9

The affine invariants from the extinction image also
invariant under contrast changes [82, p. 60]:

IM1 =
R(EO)

µ00(EO)P (EO)

IM2 =
Q(EO)2

µ00(EO)I(EO)

IM3 =
Q(EO)I(EO)
R(EO)

IM4 =
µ00(EO)S(EO)
I(EO)

IM5 =
µ00(EO)T (EO)
P (EO)

The affine invariants from the flat texture image also
invariant under contrast changes [82, p. 60]:

NM1 =
R(FTO)

µ00(FTO)P (FTO)

NM2 =
Q(FTO)2

µ00(FTO)I(FTO)

NM3 =
Q(FTO)I(FTO)
R(FTO)

NM4 =
µ00(FTO)S(FTO)

I(FTO)

M5 =
µ00(FTO)T (FTO)

P (FTO)

Appendix C. Densitometric features, expressing
total intensity

C.1. Features from frequency distributionh(v)

h = histogram (X(O))

h(v) = frequency of pixel valuev
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A =
∑

v v
0h(v) =

∑
v h(v) =

M0 = |O| sum (area)

H =
h

M0
probability function

M1 =
1
M0

∑
v v

1h(v) =
∑

v vH(v) mean

M2 =
1
M0

∑
v v

2h(v) − (M1)2

standard deviation

M3 =
1

(M2)3

(∑
v v

3h(v)

−3
∑

v vh(v)
∑

v v
2h(v)

+2
∑

v vh(v)
3
)

skewness

M4 =
1

(M2)4

(∑
v v

4h(v)

− 4
∑

v vh(v)
∑

v v
3h(v)

+6
∑

v vh(v)
2∑

v v
2h(v)

−3
∑

v vh(v)
4
)
− 3 kurtosis

MIN = class of smallest non-zero frequency

of h

= min(X(O))

MAX = class of largest non-zero frequency

of h

= max(X(O))

MINn = maximum class of then smallest

frequencies ofh

MAXn= minimum class of then largest

frequencies ofh
n

A
quantile ofh

MED = median(X(O))

= class of median frequency ofh

= P50 50% percentile

MD = mode ofh, class of maximum

frequency ofh

PXX = XX % percentile, where∑
v�PXX

H(v) =
XX

100

ENT = −
∑
v

H(v) log2(H(v)) entropy ofh

C.2. Intensity features from various regions

Parameter:
c1 multiplicative scale factor

(−150.0)
c2 preliminary white value

(−240.0)
s base value of transmission

zero, the black shoulder (5.0)
BI radius of mask reduction
BO radius of mask enlargement

Transformation:

E = c1 log10

(
T − s
c2

)
Conversion from transmissionT to extinc-
tionE

Features: (see C.1)
. . . fromhistogram (E ·O)
BI. . . fromhistogram (E · [O �BBI ])
BO. . . fromhistogram (E · [(O ⊕BBO) \O])
BG. . . fromhistogram (E ·Oc)
TO. . . fromhistogram (E)
D. . . fromhistogram (E ·OD)
H . . . fromhistogram (E ·OH )
HU . . . fromhistogram (E ·OHU )
HL. . . fromhistogram (E ·OHL)

(see Appendix D.3 and D.4)

C.3. Invariant moments from the extinction image

(See Appendix B.4)
Features: IM1 . . . IM5 invariant features

Appendix D. Textural features

D.1. Gradient transformation

Parameter:
none
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Transformation:
GRA(x,y) =

1
2

((
E(x+ 1,y) − E(x− 1,y)

)2
+
(
E(x,y + 1)− E(x,y − 1)

)2) 1
2

OGRA = O �B1

Features: (see C.1)
G. . . fromhistogram (GRA ·OGRA)

D.2. Laplace transformation

Parameter:
r size of convolution kernel

Transformation:

LAP (x,y) = E(x,y + r) + E(x+ r,y)

+E(x,y − r) + E(x− r,y)
− 4E(x,y)

OLAP = O �Br

Features: (see C.1)
L. . . fromhistogram (LAP ·OLAP )

D.3. Flat texture transformation

Parameter:
r window size of median filter
c3 weight factor for particle segmentation

Transformation:

FT (x,y) = E(x,y) − median({E(x+ ν,y + ξ

ν, ξ = −r . . . r})

OFT = O �Br/2

ThresholdTH andTD in FT for bright (H)
and dark (D) particle with parameterc3, in-
termediate particle masksO1

H andO1
D and

resulting particle masksOH andOD:

TH = FM1 + c3 · FM2

TD = FM1− c3 · FM2

O1
H = {(x,y) | FT (x,y) > TH } ∩OFT
O1
D = {(x,y) | FT (x,y) < TD} ∩OFT
OH = O1

H \ (O1
H ∩O1

D)

OD = O1
D \ (O1

H ∩O1
D)

without isolated pixels

Feature: (see C.1)
F . . . fromhistogram (FT ·OFT )
NM1 . . .NM5 invariant features

(see Appendix B.4)

D.4. Topological gradient and rice fields

Parameter:
sm window size for smoothing

Transformations:

WL = watershed(smooth(E, sm))

WU = watershed(255− smooth(E, sm))

RL = Lower rice field
each region from WL is replaced by the
corresponding regional minimum value

RU = Upper rice field
each region from WU is replaced by the
corresponding regional maximum value

RG = RU −RL topological gradient

D2 =
RU +RL

2
− E

topological flat texture image

OHU = {(x,y) | D2(x,y) > 0} ∩O
OHL = {(x,y) | D2(x,y) � 0} ∩O

Features: (see C.1)
RG. . . fromhistogram (RG ·O)

D.5. Mayall/Young chromatin features [133]

Parameter:
MY percent of mean
MW mesh width

Transformation:

T1 =M1 · (1−MY/100)

T2 =M1 · (1 +MY/100)

NB =
∣∣{(x,y) | E(x,y) < T1} ∩O

∣∣
NW =

∣∣{(x,y) | E(x,y) > T2} ∩O
∣∣

m : [1,RAD] → R = mean radial extinction
from border (1) to center (RAD), derived
from [distance(O) · E]. This transfor-
mation can be thought for an objectO as

distance(O) =
RAD∑
i=1

1O �Bi
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Feature:

HETERO =
NB +NW
A

heterogeneity

Σmeshdiff = number of differing black and white
pixel in a checker board meshed tes-
sellation of given width

CLUMP =
Σmeshdiff
NB +NW

clumpness

RMi =
RAD∑
r=1

ri ·m(r)

radial moment of orderi

MARG =
RM2

RM0 ·RAD2 margination

D.6. Run-length and co-occurrence features

D.6.1. Co-occurrence features
Parameter:
Norm: type of normalization

1: histogram equalization byhist_equal(X(O))
2: linear stretch by

[. . .M1−. . .M2, . . .M1+. . .M2] → [0,Ng−1]
Ng: number of gray values in gray level

dependence matrixp
(dx,dy): displacement vector

Transformation:

(1) Normalization byNorm
(2) Re-scaling toNg grey values
(3) Two-dimensional histogram generationNg×Ng

from original and the by vector (dx,dy) dis-
placed image. Additionally to smooth out image
directionality the displacement vector (dx,dy) is
applied for pair counting after rotation by 90◦

(see figure below. This figure can be viewed on
http://www.esacp.org/acp/2003/25-1/rodenacker.
htm. This smoothing should not be performed if
directional un-isotropy of texture should be ex-
amined. In this case several different displace-
ment vectors with their respective features have
to be considered.

Features:
CO . . . from extinction imageE ·O
NC . . . from flat texture imageFT ·OFT

· · ·A = Number of pairs of grey values

· · ·1 =
Ng−1∑
i=0

Ng−1∑
j=0

p(i, j)2

Angular 2nd Moment

· · ·2 =
Ng−1∑
n=0

n2px−y(n)

Contrast, Difference Variance, Inertia

· · ·3 =
1
σxσy

Ng−1∑
i=0

Ng−1∑
j=0

ijp(i, j) − µxµy

Correlation

· · ·4 =
Ng−1∑
i=0

Ng−1∑
j=0

(i− µx)2p(i, j)

Sum of Squares: Variance

· · ·5 =
Ng−1∑
i=0

Ng−1∑
j=0

p(i, j)
1 + (i− j)2

Inverse 2nd Difference Moment

· · ·6 =
2Ng−1∑
i=0

ipx+y(i)

Sum Average

· · ·7 =
2Ng−1∑
i=0

(i− µx+y)2px+y(i)

Sum Variance
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· · · 8 = −
2Ng−2∑
i=0

px+y(i) logpx+y(i)

Sum Entropy

· · · 9 = −
Ng−1∑
i=0

Ng−1∑
j=0

p(i, j) logp(i, j)

Entropy

· · · 10=
Ng−1∑
i=0

i2px−y(i)

Difference Variance

· · · 11= −
Ng−1∑
i=0

px−y(i) logpx−y(i)

Difference Entropy

· · · 12=
HXY −HXY 1
max(HX ,HY )

Measure of Correlation 1

· · · 13=
√

(1− exp[−2(HXY 2−HXY )])

Measure of Correlation 2

· · · 14=
Ng−1∑
i=0

Ng−1∑
j=0

(i+ j)p(i, j) = µx + µy

Local Mean
with

HX = −
∑
j

px(j) log(px(j))

Vertical Entropy

HY = −
∑
i

py(i) log(py(i))

Horizontal Entropy

HXY = −
∑
i

∑
j

p(i, j) log(p(i, j))

Entropy

HXY 1 = −
∑
i

∑
j

p(i, j) log(px(i)py(j))

Entropy 1

HXY 2 = −
∑
i

∑
j

px(i)py(j) log(px(i)py(j))

Entropy 2

D.6.2. Run-length features

Parameter:
Norm: type of normalization

1: histogram equalization byhist_equal(X(O))
2: linear stretch by

[. . .M1− . . .M2, . . .M1+ . . .M2] → [0,Ng−1]
Ng: number of gray values in gray

level dependence matrixp
Nr maximum size of runs considered
dir direction of runs considered

(0 = · · ·, 1 =
. . .)

Transformation:
(1) Normalization byNorm
(2) Re-scaling toNg grey values
(3) Run-length distribution generation of width
Ng ×Nr from original in direction dir and
(dir + 2)mod4 (rotation by 90◦) to smooth out
image directionality.

Features:
RL . . . from extinction imageE ·O
NR . . . from flat texture imageFT ·OFT

· · ·1 =
Ng−1∑
i=0

Nr∑
j=1

p(j, i)
j2

Short Runs Emphasis
(2nd Inverse Length Moment, SRE)

· · ·2 =
Ng−1∑
i=0

Nr∑
j=1

j2p(j, i)

Long Runs Emphasis
(2nd Length Moment, LRE)

· · ·3 =
Ng−1∑
i=0

(
Nr∑
j=1

p(j, i)

)2

Gray Level Nonuniformity (GLD)

· · ·4 =
Nr∑
j=1

(Ng−1∑
i=0

p(j, i)

)2

Run Length Nonuniformity (RLD)

· · ·5 =
1
A

Ng−1∑
i=0

Nr∑
j=1

p(j, i)

Run Length Percentage (RLP)
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Appendix E. Structural or contextual features

E.1. Contextual features from the flat texture image

Parameter: (see D.3)
Transformation: (see D.3)
Feature: (see C.1 and D.3)
D. . . fromhistogram (E ·OD)
DNO number of dark particles
H . . . fromhistogram (E ·OH )
HNO number of bright particles

E.2. The half height partitions from the rice field

Parameter: (see D.4)
Transformations: (see D.4)
Features: (see C.1 and D.4)
HU . . . fromhistogram (E ·OHU )
HUNO number of dark particles
HL. . . fromhistogram (E ·OHL)
HLNO number of dark particles

E.3. Contextual features from particle relationships
based on graphs

From the centroid of all dark and bright particles
found by rice field transformRL andRU (see Appen-
dix D.4 and Fig. 13).

Parameter: none (see D.4)

Transformations: (see Section D.4 and Fig. 13(3 3)
and (4 3))

(1) Generation of the Delaunay triangulation graph
(DT), the nearest neighborhood graph (NN) and
the minimum spanning tree graph (MST) for
the dark (U ) and bright (L) particle (point) sets
[47,123].

(2) Calculation of graph node features: Many po-
tentially useful features can be generated from
these graphs. Some examples are outlined in
the following: The graphs can be considered as
class definition. A group of nodes consist of the
reference node and its neighbors reachable by
one edge. For calculation of group features for
each node (particle) features have to be calcu-
lated like particle area, mean density [68,85,92].

In the figure (above) (this figure can be
viewed on http://www.esacp.org/acp/2003/25-1/
rodenacker.htm) a simulation of points is dis-
played with DT (white), MST (green) and con-
vex hull (blue). Below are displayed the Voronoi
polygons.

(3) Features: Delaunay triangulation graph: total
number of triangles, total number of edges, the
number of nodes withx edges (x ∈ [1, 9]).

(4) Features: Minimum Spanning Tree: total length
of tree, mean length of edges, the number of
nodes withx edges (x ∈ [1, 6]).

(5) Features: Nearest Neighborhood Graph: total
length of of edges, number of edges.

Appendix F. Some feature transformations

F.1. Shape

(See Appendix B.3.2)

ELL_ELON =
ELL_MN
ELL_MX
Elongatedness

http://www.esacp.org/acp/2003/25-1/rodenacker.htm
http://www.esacp.org/acp/2003/25-1/rodenacker.htm
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RELL_DA =
ELL_DA
A

Relative elliptic deviation

RCH_DEFI =
CH_DEFI
CH_A

Relative deficiency

F.2. Intensity

(See Appendix C)

. . .NOM1 = . . .M1−BGM1

= . . .M1−BOM1

normalized mean extinction

or near background normalization

KETOTE =NOM1 · A
total extinction of nucleus

. . . TOTE = . . .M1 · . . . A
total extinction

. . .DMXMN = . . .MAX − . . .MIN
span

. . . SPAN =
. . .MAX − . . .MIN

. . .M1

weighted span

. . . CV =
. . .M2
. . .M1
coefficient of variation

F.3. Texture

(See Appendixes D and E)

. . . RANO =
. . . A

. . . NO

number weighted particle area

. . . RAA =
. . . A

A

area weighted particle area

. . . RNOA =
. . . NO

A

area weighted particle number

. . . TOTE = (. . .M1−BGM1) · . . . A
total extinction of particle

RFM1 =
DM1
HM1
ratio of mean intensity of particles

EULER =
HUANZ −HLANZ + 1

A

weighted Euler number
from half height partition

PHUNO =
HUNO

HUNO +HLNO
relative number of dark particles

PHLNO =
HLNO

HUNO +HLNO
relative number of bright particles
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