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Abstract: Magnaporthe oryzae (synonym Pyricularia oryzae) is a filamentous fungal pathogen that
causes major yield losses in cultivated rice worldwide. However, the mechanisms of infection
of M. oryzae are not well characterized. The VPS13 proteins play vital roles in various biological
processes in many eukaryotic organisms, including in the organization of actin cytoskeleton, vesicle
trafficking, mitochondrial fusion, and phagocytosis. Nevertheless, the function of the Vps13 protein
in plant pathogenic fungi has not been explored. Here, we analysed the biological functions of the
Vps13 protein in the development and pathogenicity of M. oryzae. Deletion mutants of MoVps13
significantly reduced the conidiation and decreased the rate of fungal infection on hosts. Moreover,
the loss of MoVps13 resulted in defective cell wall integrity (CWI) and plasma membrane (PM)
homeostasis when treated with chemicals for inducing cell wall stress (200 mg/mL Congo Red or
0.005% SDS) and sphingolipid synthesis inhibitors (2 µM myriocin or 2 µM amphotericin B). This
indicated that MoVps13 is also involved in cell wall synthesis and sphingolipid synthesis. Through
immunoblotting, autophagic flux detection, co-localization, and chemical drug sensitivity assays, we
confirmed the involvement of Movps13 in ER-phagy and the response to ER stress. Additionally, we
generated the C-terminal structure of MoVps13 with high accuracy using the alphaflod2 database.
Our experimental evidence indicates that MoVps13 is an important virulence factor that regulates the
pathogenicity of M. oryzae by controlling CWI, lipid metabolism and the ER-phagy pathway. These
results have expanded our knowledge about pathogenic fungi and will help exploration for novel
therapeutic strategies against the rice blast fungus.

Keywords: Magnaporthe oryzae; MoVps13; ER-phagy; pathogenic fungi; cell wall integrity

1. Introduction

The filamentous fungus Magnaporthe oryzae (syn Pyricularia oryzae) causes rice blast
disease, which is responsible for a significant reduction in rice production and poses
a serious threat to rice global food security [1–3]. Magnaporthe oryzae exhibits classic
characteristics in terms of growth, development, and plant infection. The typical disease
cycle starts with three celled conidia [4,5]. The conidia attach to the surface of host leaves
by powerful glycoprotein-rich mucilage and germinate within a few hours to form germ
tubes [6,7]. At the tip of the germ tube, melanized and pressurized dome-shaped infected
cells, called appressoria, are formed [8,9]. Intracellular nutrients, such as glycogen and
glycerol, are continuously decomposed by autophagy and transported to the appressorium,
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which develops enormous turgor that exerts a physical force to break the waxy cuticle of
the rice leaf and subsequently differentiates into biotrophic invasive hyphae (IH) [10–13].
Primary IH develop into bulbous pseudohyphae in rice cells and then expand to other cells
by filamentous hyphae [14,15]. Understanding the mechanism of infection for rice blast
fungus may help inform strategies to control rice blast disease.

VPS13 proteins are large, evolutionarily conserved proteins found in many eukaryotes,
which play vital roles in organization of actin cytoskeleton, vesicle trafficking, phagocytosis,
and autophagy [16–18]. In humans, there are four VPS13 proteins (HsVps13A, HsVps13B,
HsVps13C and HsVps13D) [19–22]. These proteins are partly redundant but have inde-
pendent functions. Deletion of HsVPS13A was shown to lead to an autosomal recessive
disorder characterized by adult-onset chorea, progressive neurodegeneration, and ab-
normal erythrocyte morphology (acanthocytosis) [23]. Loss of HsVps13B caused a rare
autosomal recessive disorder characterized by non-progressive psychomotor retardation,
microcephaly, characteristic facial features, retinal dystrophy, and intermittent neutrope-
nia in children [24–26]. Genetic studies have also revealed that variants of HsVps13C
are associated with increased risk of diabetes, and HsVps13D contributes to septic shock
mortality [27,28]. There is only a single Vps13 protein in Saccharomyces cerevisiae. In yeast,
Vps13 is mainly localized in the endoplasmic reticulum (ER)-mitochondria contact site
and the ER-nuclear vacuole junction. However, the functions of Vps13 and the regulatory
mechanism of its localization are not clear [16,29]. Recent studies have found that Vps13 is
required for the packaging of ER into autophagosomes during ER-phagy in yeast, indicat-
ing that Vps13 may participate in the degradation pathway [17,30]. As for yeast, only a
single Vps13 protein was found in the plant pathogenic fungus M. oryzae. Nevertheless,
the biological role of MoVps13 is not well characterized. In this study, we identified the
Vps13 protein and analysed its biological functions in hyphae growth, conidia production,
appressorium formation, and plant infection by M. oryzae.

Most chemical drugs are designed based on the three-dimensional structure of target
proteins. However, determining the protein structure using experimental methods is a
challenge for a vast majority of proteins, despite steady advances in x-ray crystallogra-
phy, nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryo-EM) [31–33].
Despite the extensive efforts of the global scientific community over recent decades, experi-
mentally determined structures are available for only ~18% of the total residues in protein
sequences in the human proteome [32]. In other organisms, especially plant pathogenic
fungi, only a few protein structures have been analysed, which is a key barrier to the
development of new fungicides. The ability to characterize protein structure has substan-
tially improved with the use of structural modelling using the machine-learning algorithm,
AlphaFold2, an artificial intelligence system developed by DeepMind, that predicts the 3D
structure of a protein from its amino acid sequence. Its predictive accuracy has been shown
to be comparable to that of experiments [31,32,34]. In our research, we constructed the
SHR, Vps13_C and ATG_C domain 3D structure of MoVps13 with high confidence using
AlphaFold2 software. This result will help better characterize the function of MoVps13
in rice blast fungus and may serve as an experimental platform for drug testing based on
protein structure. Future research will entail screening of small molecule compounds based
on the 3D structure of MoVps13.

2. Materials and Methods
2.1. Gene Deletion and Complement Strategy

For the gene knockout, we used homologous recombination strategies modified
by Lu et al. [35]. The knockout vector PKO3A, containing a suicide gene, HSVtk, was
cut by the restriction enzymes XbaI and HidIII (New England Biolabs, Beijing, China).
The ~1.2 kb upstream fragment and the fragment downstream of the target gene were
amplified with specific primers (Table S1), and then fused with the resistant gene HPH and
linearized by recombinase Exnase (Vazyme Biotech Co., Ltd., C113-02, Nanjing, China). The
recombination plasmids were transferred into Agrobacterium tumefaciens and the knockout
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was performed by AtMT (Agrobacterium tumefaciens mediated transformation) methods.
The mutants were screened using a CM medium containing 200 µg/mL hygromycin B
and 0.5 µM 5-fluoro-2′-deoxyuridine and further verified by multiple rounds of PCR and
RT-PCR, as described by Zhu et al. [11].

For the mutant recovery assay, the full-length target gene was fused to the PKD5-GFP
vector, which contains a sulfonylurea resistance gene (SUR), and transformed into the
mutant. The complementation strains were identified by phenotype recovery condition,
fluorescence observation, and quantification of mRNA expression.

2.2. Strains, Growth Conditions, and Phenotypic Analyses

All strains of M. oryzae used in this work were Guy11 and cultured on a complete
medium under 16 h/8 h light/dark cycle at 25 ◦C [36]. For the virulence assay, the
mycelium plugs were incubated on cut leaves of rice and barley for 4 days at 25 ◦C in
more than 95% humidity conditions. For spore incubation assay, the conidial suspensions
(5 × 104 conidia/mL) were sprayed on 14 day old rice seedlings (CO39) and observed at
7 days post-incubation. The pathogenic lesions were quantified using ImageJ software.

2.3. Growth Stress Assay

To test the response of mutants to different stresses, different inhibitors were added
to a solid CM medium with appropriate quantification. All assays in this study were
performed in triplicate. The relative growth rates were calculated using the formula:
growth rate = (the diameter of the strain treated with chemicals)/(the diameter of the
untreated strain).

2.4. Autophagy Assays

To detect autophagy flux, the GFP-MoAtg8 were transformed to the wild type Guy11
and the ∆Movps13 mutant using an in situ complementary method. The Guy11::GFP-
MoAtg8 and the ∆Movsp13::GFP-MoAtg8 strain were grown in liquid CM medium for 48 h
with 150 rpm shaking at 25 ◦C, and shifted to a SD-N medium for induction for 4 h. For
the ER-phagy assay, the MoSec63-GFP were transformed to the wild type Guy11 and the
∆Movps13 mutant, and the Guy11::MoSec63-GFP and the ∆Movsp13::MoSec63-GFP strains
were grown in liquid CM medium for 48 h with 150 rpm shaking at 25 ◦C, then shifted to a
SD-N medium for induction for 4 h with 5 mM DTT, as described by Wei et al. [37].

2.5. Immunoblotting Analysis

For macroautophagy and ER-phagy, the free GFP and fusion bands were detected by
GFP antibody (GFP 1:10,000; Abcam; ab32146, Shanghai, China) with 12% SDS-PAGE. For
the MoAtg8 and the MoAtg8-PE turnover assays, the MoAtg8 and the MoAtg8-PE bands
were detected using an Atg8 antibody (1:2000, BML; PM090, Beijing, China) with 13.5%
SDS-PAGE. For detecting the phosphorylation level, proteins of the Guy11 and ∆Movps13
mutant strains were extracted by TCA-SDS methods. The Mps1 phosphorylation level was
detected using a MAPK antibody (Cell Signaling Technology; 9212S, Danvers, MA, USA).

3. Results
3.1. Identification of VPS13 Protein in M. oryzae

In M. oryzae, a single Vps13 domain-containing protein, MGG_06537, was identified
in the genome by the EnsemblFungi database (http://fungi.ensembl.org/Magnaporthe_
oryzae, accessed on 5 July 2020). We assigned the MoVps13 to M. oryzae. Pfam domain
analysis showed that MoVps13 has 3223 amino acids, containing Chorein_N, Vps13_N
domain in the N-terminal and SHR, Vps13_C and the ATG_C domain in the C-terminal.
All domains are conserved in humans, S. cerevisiae and other plant pathogenic fungi,
such as Fusarium graminearum, Colletotrichum orbiculare, and Botrytis cinerea (Figure 1A).
Phylogenetic analysis showed a high similarity of MoVps13 to ascomycetes fungi, such
as C. orbiculare CoVps13, F. graminearum FgVps13, and B. cinerea BcVps13. We also
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found that MoVps13 is similar to S. cerevisiae ScVps13, H. sapiens HsVps13D, HsVps13A,
HsVps13C, and HsVps13D (Figure 1B). These results suggested that Vps13 is conserved in
many eukaryotes.

Figure 1. Characterization of Vps13 protein in M. oryzae. (A) Schematic illustration of the Vps13 proteins in M. oryzae, C.
orbiculare, F. graminearum, B. cinerea, S. cerevisiae, and H. sapiens. (B) Phylogenetic tree of the Vps13 proteins in different
organisms. The phylogenetic tree was constructed using the neighbour-joining method with 1000 bootstrap replicates in
MEGA software.

3.2. Three-Dimensional Structure of MoVps13 Protein in M. oryzae

For designing drugs to control pathogenic fungi and better understand the protein
function, structural data at atomic resolution are required. However, structural information
for most proteins is still limited in the Protein Data Bank. AlphaFold2 is a recently devel-
oped protein predictive platform based on the machine learning method, which has greatly
expanded the structural coverage of sequences, with high accuracy. To obtain the structure
of MoVps13, we submitted the MoVps13 C-terminal 2279-223 amino acid sequence to the
structure prediction server AlphaFold2 database (https://www.cloudam.cn/v2/console/
create-job, accessed on 15 October 2021). The mean pLDDT values, up to 78.18, indicated
that the predicted structure was modelled well. In our predicted model, the SHR domain
contains 19 β-sheets, the MoVps13_C domain contains 4 α-helices, and the ATG_C domain
has only two α-helices (Figure 2A,B). Next, we analysed the Vps13 C-terminal 2279-3223
amino acid sequences using Clustal X software with the multiple sequence alignment
method. The results showed that the SHR domain, vps13_C, and the ATG_C domain are
conserved in different organisms (Figure 2C).

https://www.cloudam.cn/v2/console/create-job
https://www.cloudam.cn/v2/console/create-job
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3.3. MoVps13 Is Involved in Conidiation and Virulence

Previous studies have found that the Vps13 protein plays vital roles in diverse organ-
isms ranging from yeasts to humans. Given it is a conserved protein, we assumed that
MoVps13 also has biological roles in M. oryzae. To explore the functions of MoVps13 in
M. oryzae, we obtained knockout mutants of MoVPS13 by a high-throughput target-gene
deletion method (Figure S1A,B). After confirming the mutants by PCR and the qPCR
method as described by Lu et al., we subsequently complemented the mutants with the
MoVPS13 gene [38]. The vegetative growth of the MoVPS13 deleted mutant was similar to
the wild type; however, the conidiation ability of the ∆Movps13 mutant was significantly
lower (Figure 3A,B). Next, we tested whether the germination and appressorium formation
were affected in the ∆Movps13 mutant. The conidium germination and appressorium
formation were normal in the ∆Movps13 mutant after 6, 12, 24 h induced in artificial hy-
drophobic film (Figure 3B). To examine whether MoVps13 regulates the pathogenicity
of M. oryzae, virulence assays were performed on two different susceptible plant hosts
(rice and barley). Mycelial plugs of the Guy11, the ∆Movps13, and the complementation
strains were inoculated on detached barley leaves. At 4 day-post-incubation (dpi), the
wild type and the complementation strains caused severe lesions, while only small lesions
could be detected in the ∆Movps13 mutant (Figure 4A). Simultaneously, an infection as-
say was performed to gain further insights into the effects of the ∆Movps13 mutant on
disease progression. After 36 h of inoculation, almost all infection hyphae in the wild
type Guy11 and the complemented strains showed numerous branches that had expanded
to neighbouring cells. However, only a few infection hyphae in the ∆Movps13 mutant
expanded to other cells and were restricted to the first invaded host (Figure 4B,C). To
test the conidia pathogenicity of the ∆Movps13 mutant, we inoculated conidial suspen-
sions (5 × 104 conidia/mL) of wild-type, the ∆Movps13, and the complementation strain
to wound-treated rice leaves and sprayed the conidial suspensions (5 × 104 conidia/mL)
to 14-day rice seedlings (CO39). After 7 dpi, the Guy11 and complementation strain caused
large expansive lesions on rice leaves, but the ∆Movps13 mutant only produced restricted le-
sions (Figure 4D–F). These results show that MoVps13 has a role in conidiophore formation,
conidial differentiation, invasive hyphal growth, and host colonization.
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software. Asterisks indicate statistically significant differences (t test, *** p < 0.01).
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Figure 4. Virulence analyses for the ∆Movps13 mutant. (A) Pathogenic lesions on cut leaves of barley
with mycelial plugs from the Guy11, the ∆Movps13 mutant, and the complementation strains. (B) Pen-
etration assays on barley leaves within the Guy11, the ∆Movps13 mutant, and the complementation
strains. Bar = 50 µm. (C) Three different types of invasive hyphae were quantified and statistically
analysed in the Guy11, the ∆Movps13 mutant, and the complementation strains. Error bars represent
the SD. Type I, infection hyphae were restricted to the first invaded host, Type II, no infection hyphae,
Type III, infection hyphae were expanded to neighbouring cells (D) Disease lesions on wound leaves
of rice in the Guy11, the ∆Movps13 mutant, and the complementation strains. (E) Rice spraying
assays to detect pathogenicity. (F) Statistical analysis of the lesions area of the Guy11, the ∆Movps13
mutant, and the complementation strains using ImageJ software.

3.4. MoVps13 Localized in ER and Involved in ER-Phagy

To further explore the functions of MoVps13 in M. oryzae, the MoVPS13-GFP was
constructed and transformed into the ∆Movps13 mutant. Under fluorescence microscopy,
MoVps13 appeared in an ER-like structure of hyphae and conidia. To confirm the natural
structures of MoVps13, MoLhs1-mCherry (an ER marker) fusion protein was co-expressed
with MoVps13-GFP. The localization of MoVps13 coincided completely with MoLhs1-
mCherry in the hyphae and conidia, indicating that MoVps13 was mainly localized in
the ER (Figure 5A). In Dictyostelium discoideum and human HeLa cells, VPS13A regulates
autophagy; VPS13A downregulation has been shown to cause GFP-LC3 and GFP-WIPI1 ac-
cumulation [39]. To examine whether MoVps13 regulates macroautophagy, the autophagy
flux was detected in wild type Guy11 and the ∆Movsp13 strain. In nutrition condition,
autophagy was weak, and few MoAtg8-PE (autophagy marker to monitor autophagy
flux) band were found. Deprivation of the nitrogen source induced autophagy resulted
in MoAtg8-PE accumulation (Figure 5B). Next, we tested the activity of GFP-MoAtg8 in
nutrition and nitrogen starvation conditions. Both the Guy11 and the ∆Movps13 strains
increased free GFP bands when induced in a SD-N medium for 4 h; however, there was no
significant difference between the Guy11 and the ∆Movps13 strains (Figure 5C). Autophagy
plays a key role in pressure accumulation during formation of the appressorium. To ver-
ify the role of MoVps13 in infection-associated autophagy in M. oryzae, we observed the
numbers of autophagosomes in conidia of the wild-type Guy11 and the ∆Movps13 strain in
nutrition starvation conditions for 0, 8 and 24 h. The GFP-MoAtg8 puncta appeared when
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induced for 0 h, and most of the free GFP fluorescence in conidia occurred in vacuoles at 8 h
and 24 h. At 24 h, no GFP fluorescence was found and most of GFP-MoAtg8 puncta were
in the appressorium, both in the wild-type Guy11 and the ∆Movps13 strain. However, there
was no significant difference between the Guy11 and the ∆Movsp13 strain with respect to
conidia, or the appressorium (Figure 5D,E).

Recent studies have shown that Vps13 is required for the packaging of the ER into
autophagosomes during ER-phagy in S. cerevisiae [30]. We further detected whether ER-
phagy was affected in the ∆Movps13 strain. When treated with 5 mM DTT (a chemical
inducer of ER-phagy) on the CM medium, the ∆Movps13 strain showed greater sensitivity
than the wild-type and the complementation strain for 5 days (Figure 6A,B). Next, we
transferred Sec63-GFP (the ER-Phagy marker) into the Guy11 and the ∆Movps13 strains
and induced the transformants with 5 mM DTT in a liquid CM medium for 4 h. In the
CM medium, the sec63-GFP was found and few free GFP bands could be detected in both
the wild type and the ∆Movps13 strains; however, the Sec63-GFP bands were stronger in
the mutant than in the Guy11 strain. After induction for 4 h, a few Sec63-GFP were found
and the free GFP band was increased in the Guy11 strain. However, the Sec63-GFP band
still persisted, while the free GFP was lower in the ∆Movps13 strain compared to the wild
type (Figure 6C). Although the MoAtg8 and the MoAtg8-PE were increased when induced
by DTT, there was no significant difference between the Guy11 and the ∆Movps13 strains
(Figure 6D). These results suggested that ∆Movsp13 is mainly involved in ER-phagy rather
than macroautophagy.
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Figure 5. Autophagy flux analysis in ∆Movps13. (A) Co-localization of MoVps13 with MoLsh1 in
conidia. The fluorescence was observed by fluorescence microscopy. Bar = 10 µm. (B) Immunoblot
analysis of MoAtg8/MoAtg8-PE turnover in the Guy11 strain and the ∆Movps13 mutant. (C) Im-
munoblot analysis of GFP-MoAtg8 proteolysis in the Guy11 strain and the ∆Movps13 mutant. (D)
Observation of autophagosomes in conidia in the Guy11 strain and the ∆Movps13 mutant at 0 h, 8 h,
and 24 h. Bar = 10 µm. (E) Statistics were calculated using ImageJ software and Prism software.
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PE turnover in the Guy11 strain and the ∆Movps13 mutant after treatment with 5 mM DTT.

3.5. MoVps13 Is Hypersensitive to Sphingolipid Synthesis Inhibitors and Displays Cell
Wall Defects

Previous studies have shown that Vps13 is a lipid transfer protein involved in non-
vesicular traffic of secretory lipids from the ER in S. cerevisiae [40]. To verify the functions
of MoVps13 in lipid synthesis, we examined the growth of the ∆Movps13 mutant in the
presence of a TOR kinase inhibitor (rapamycin), sterol lipid binding inhibitor (amphotericin
B), and a sphingolipid synthesis inhibitor (myriocin). The ∆Movps13 mutant showed
greater sensitivity to all three inhibitors compared with the wild-type Guy11 and the
complementation strains, indicating that loss of Vps13 impaired the PM homeostasis in
M. oryzae (Figure 7A–C). Next, we further examined whether MoVps13 participates in the
cell wall synthesis pathway by performing cell wall stress assays in the wild-type Guy11,
the ∆Movps13 mutant, and the complementation strains. When treated with 0.005% SDS
and 200 µg/mL Congo Red in CM medium for 7 days, the growth rates of the ∆Movps13
mutant were significantly reduced, both by SDS and Congo Red compared with the wild-
type Guy11 and the complementation strains (Figure 8A,B). To verify the regulation of
the CWI pathway, the phosphorylation level of MoMps1 was detected by Western blot,
which showed that the phosphorylation level of Mps1 was significantly decreased in
the ∆Movps13 mutant irrespective of CM conditions or the Congo Red stress conditions
(Figure 8C,D). These results suggested that MoVps13 has key roles in lipid synthesis and is
involved in the cell wall synthesis pathway.
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rapamycin or 2 µM amphotericin B for 5 days at 25 ◦C. (B) Relative growth rates of the Guy11,
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agar medium containing 2 µM myriocin for 5 days at 25 ◦C.
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strains. Asterisks indicate statistically significant differences (*** p < 0.01). (C) Western blot analysis of the
phosphorylation of MoMps1 in the Guy11 and the ∆Movps13 mutant strains. (D) The phosphorylation
level of MoMps1 was analysed using ImageJ software. Asterisks indicate statistically significant differences
(*** p < 0.01).
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4. Discussion

Magnaporthe oryzae has the ability to cause rice blast disease via a penetration peg
that is produced by the appressorium and its expansive growth across cells [10,41]. These
invasion processes are regulated by a variety of signal pathways and effectors between
plants and pathogens. In recent years, Vps13 proteins have been reported to play vital roles
in regulating actin cytoskeleton, vesicle trafficking, phagocytosis, and autophagy from
yeast to humans [18,21,30,42]. However, there is little research on the functions of Vps13
proteins in filamentous fungi. Whether Vps13 plays a role in the growth, development,
and virulence of M. oryzae, is not clear. To explore these scientific issues, we deleted the
MoVPS13 gene in wild type strain Guy11 and systematically analysed its effect on the
growth, development, and pathogenicity of M. oryzae. In this work, we characterized
MoVps13 in M. oryzae and showed that it is required for fungal development and plant
pathogenicity. We discovered that VPS13 is involved in ER-phagy and is mainly localized
in the ER, which is consistent with that observed in other organisms. Additionally, we also
found that MoVps13 participates in maintaining cell wall integrity, lipid homeostasis, and
regulates TOR activity. To the best of our knowledge, these results have not been reported
for other species, and these discoveries will help us better understand the various functions
of Vps13 protein in plant pathogenic fungi.

Macroautophagy (referred to as ‘autophagy’ hereafter for simplicity) is an evolution-
arily conserved cellular pathway in many eukaryotic organisms. In this process, some of
the damaged proteins or organelles are swallowed by autophagic vesicles and transferred
to lysosomes (animals) or vacuoles (fungi and plants) for degradation and recycling [43,44].
In recent decades, autophagy has been shown to be an important factor that regulates
host infection by many plant pathogenic fungi [11,43–47]. In M. oryzae, autophagy was
shown to promote appressoria formation and pressure accumulation. Knockout of the
core autophagy genes was shown to lead to complete loss of pathogenicity [10,44]. In F.
graminearum, autophagy is required for proper vegetative growth, full virulence, and toxin
biosynthesis [48]. In U. maydis, autophagy pathways are important for normal budding
of haploid sporidia, survival under nutrient starvation, and pathogenic development [47].
Recent studies have indicated an essential role of selective autophagy, such as mitophagy,
ER-phagy and lipophagy, in cellular development [49,50]. Sandra et al. first found that
a Vps13A homologous protein TipC is required for autophagic flux in Dictyostelium dis-
coideum. Lack of TipC resulted in a reduced number of autophagosomes and impaired
autophagic degradation as determined by a proteolytic cleavage assay [39]. Nevertheless,
no autophagy defects have been reported in the mutant strain so far, despite there being
only one Vps13 protein in yeast [51]. Recently, Chen et al. reported that the ∆vps13 mutant
is defective in the selective autophagy of ER (ER-phagy), an alternate ER degradation path-
way that engulfs ER into autophagosomes and delivers them to lysosomes or vacuoles for
degradation [30]. These results indicated that the Vps13 family protein may have unique
functions in different organisms. M. oryzae has only one Vps13 protein. However, whether
MoVps13 participates in the autophagy pathway is still unclear. To answer this question,
we detected the autophagy flux using GFP-Atg8 and Atg8/Atg8-PE turnover assays. In
our study, we found that the number of autophagosomes and autophagic degradation
was not significantly changed compared with the wild type, which indicated the lack of
involvement of MoVps13 in macroautophagy. The GFP-Movps13 showed that MoVps13
is localized in the ER. Therefore, we also tested the ER-phagy conditions in ∆Movps13
using the ER-phagy marker Sec63-GFP that is described by Sun et al. [52]. In the ∆Movsp13
mutant, the band Sec63-GFP was maintained at a high level and fewer free GFP bands
were found compared with the wild type Guy11 strain after treatment with DTT to induce
ER stress; these findings indicated that MoVps13 promoted ER-phagy in M. oryzae.

We also observed a significant decrease in the mycelial growth of the ∆Movps13 mutant
in the presence of SDS, Congo Red, and Rapamycin. Loss of MoVps13 led to production of
few aerial hyphae and the middle sections of old hyphae collapsed when cultured on a
CM medium for 10 days (data not shown). This phenomenon was similar to that observed



J. Fungi 2021, 7, 1084 12 of 15

in the Mps1 deletion mutant, suggesting impairment of the cell wall integrity (CWI) in
the ∆Movps13 mutant. The fungal cell wall has a complex structure and plays a key role
in modulating the response of fungal pathogens to host and environmental signals, as
well as in plant infection [53–56]. In M. oryzae, the cell wall synthesis is mainly regulated
by the MAPK-Mps1 pathway, which is important for cell wall integrity, conidiogenesis,
and plant infection [54,55]. The MoMps1 deletion mutant was shown to exhibit defective
appressorium penetration and autolysis defects with fewer aerial hyphae, rare conidiation,
and loss of virulence [57,58]. A recent study demonstrated the crosstalk between the CWI
pathway and TOR signalling, which has recently been recognized as an important regulator
of rice infection by the blast fungus M. oryzae [59]. The TOR interaction protein Tap42
interacts with MoTip41 and mediates the crosstalk between the TOR and the CWI signalling
pathways [60]. Our results demonstrate that MoVps13 affects both the CWI pathway and
TOR signalling and may regulate cell wall integrity by promoting TOR activity. The precise
nature of the relationships needs to be confirmed by further research.

Our previous study found that TOR signalling mediates MoYpk1 activity, which is a
response to PM homeostasis [43]. The PM is a selectively permeable barrier and a dynamic
interface that helps maintain cellular environmental homeostasis [43,61]. Sterols and
sphingolipids, as the main components of the cell membrane, play a very important role in
maintaining cell membrane homeostasis and intracellular signal transmission, and are also
ideal targets for novel fungicides [62–65]. Recent studies have shown that membrane lipids
are synthesized in the ER by multiple biosynthetic enzymes, and then transferred to other
intracellular membrane systems via vesicular or non-vesicular trafficking pathways [40,43].
In yeast, sterols and sphingolipids are synthesized in the ER by a series of catalysing
enzymes and delivered to the PM or other membrane organelles [66]. Vps13 is a lipid
transfer protein that is involved in non-vesicular traffic of secretory lipids from the ER [40].
Given the regulatory effect of MoVps13 on TOR activity and its localization in the ER, we
speculate that MoVps13 is also involved in maintaining PM homeostasis in M. oryzae. To our
surprise, the ∆Movps13 mutant showed increased sensitivity to myriocin (a sphingolipid
synthesis inhibitor) and amphotericin B (which binds to PM sterols and disrupts PM
structure), indicating the involvement of MoVps13 in PM homeostasis.

Research on the pathogenicity mechanism of M. oryzae contributes to the development
of novel strategies to control rice blast, such as improving cultivation methods, breeding
disease-resistant varieties, and designing new antifungal drugs [67]. Until now, the use of
effective antifungal drugs is a key component of management of fungal pathogenic disease.
However, there is a paucity of antifungal agents that can help prevent these diseases [68].
Unfortunately, the development of fungicide resistance outpaces the discovery of new
fungicides. Therefore, identification of new targets for disease management is a key
imperative. Recently, He et al. found several anti-penetrant drugs (metazachlor, cafenstrole,
and diallate), acted as very-long-chain fatty acids VLCFA biosynthesis inhibitors, which
showed effective, broad-spectrum fungicidal activity against diverse fungal pathogens,
without affecting their respective hosts. Their results provided a class of fungicides which
offer broad prospects for control of plant diseases [67]. With the advances in artificial
intelligence technology, designing and screening of drugs based on protein structure for
control of fungal diseases is an emerging research hotspot. In our study, we identified
the SHR, Vps13_C and ATG_C domain structures of MoVps13 with high confidence by
AlphaFold2 software. Our results may be helpful for the development of specific targeted
drugs to control fungal pathogens.

5. Conclusions

In this study, we identified the vacuolar protein-sorting receptor MoVps13 in M. oryzae
and systematically analysed its biological function. We found that MoVps13 regulated
hyphal growth, conidiation, and virulence. Expression of MoVps13 significantly decreased
rates of fungal infection. In addition, we analysed the molecular mechanism of MoVps13
in autophagy, cell wall integrity, and sphingolipid synthesis. Our results uncovered the
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functions of MoVps13 in cell wall signalling, PM homeostasis, and ER-phagy in M. oryzae.
Furthermore, we identified the SHR, Vps13_C and ATG_C domain structure of MoVps13
with high accuracy using alphaflod2. These results will facilitate better characterization of
the pathogenetic mechanisms of rice blast fungus. Next, the precise molecular functions of
MoVps13 protein should be investigated, which may serve as an experimental platform for
drug testing based on protein structure. Future research will entail screening of specific
anti-fungal compounds based on the 3D structure of MoVps13.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7121084/s1, Figure S1: The knockout strategies of MoVps13, Table S1: Primers used in
this study.
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