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Abstract Neurofibromatosis Type 1 (NF1) is commonly as-
sociated with deficits in executive functions such as working
memory and inhibitory control. A valid biomarker to describe
the pathological basis of these deficits in NF1 is not available.
The aim of this study was to investigate whether any abnor-
malities in white matter integrity of the executive function
related anterior thalamic radiation (ATR), cingulate bundle
(CB), and superior longitudinal fasciculus (SLF) may be
regarded as a pathological basis for inhibitory control deficits
in adolescents with NF1. Sixteen NF1 patients and 32 healthy
controls underwent 3 T DTI MRI scanning. Whole brain-,
ATR-, CB-, and SLF-white matter integrity were studied using
fractional anisotropy, mean (MD), radial, and axial (DA) dif-
fusivity. Correlation analyses between white matter metrics
and inhibitory control (as measured with a computerized task)
were performed. Also, verbal and performance abilities (IQ-
estimates) were assessed and correlated with white matter
metrics. Patients showed significant whole brain- and local

microstructural pathology when compared to healthy controls
in all measures. In NF1-patients, whole-brain (MD: r = .646
and DA: r = .673) and ATR- (r-range: −.405–.771), but not the
CB- (r-range: −.307–.472) and SLF- (r-range: −.187–.406)
white matter integrity, were correlated with inhibitory control.
Verbal and performance abilities were not associated with
white matter pathology. In NF1, white matter abnormalities
are observed throughout the brain, but damage to the ATR
seems specifically, or at least most strongly related to inhibi-
tory control. Future studies should examine whether reduced
white matter integrity in other brain regions or tracts is (more
strongly) associated with different aspects of the cognitive-
behavioral phenotype associated with NF1.
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Introduction

Neurofibromatosis Type 1 (NF1) is a single-gene disorder
affecting approximately 1 in 3.500 individuals (National
Institutes of Health. 1988). In NF1, a loss of function mutation
of the neurofibromin gene leads to increased expression of rat
sarcoma (Ras-) proteins (name based on discovery of two
cancer-causing viruses in rats). Ras is expressed in all cell
lineages and organs (including the brain), and both directly
and indirectly, through for instance the MAPK- and PI3K/
AKT/mTOR pathways, regulates intracellular signaling.
Loss of neurofibromin and subsequent increased Ras-
activity have been associated with abnormalities in (neural)
cell differentiation, growth, and apoptosis (Dasgupta and
Gutmann 2005; National Institutes of Health. 1988;
Shilyansky et al. 2010; Tidyman and Rauen 2009).
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In line with the pathophysiological loss of control over
these cellular processes, including neuronal cells, brain imag-
ing studies have shown various cerebral abnormalities in NF1.
These include volumetric abnormalities (mainly increased
white matter and subcortical gray matter volumes, and de-
creased cortical grey matter density) (S. C. Huijbregts et al.
2015) and lower cortical gyrification (Violante et al. 2013).
Other frequently-observed abnormalities are focal areas of
hyperintensities on T2-weighted images, of which the exact
nature is not yet known (Billiet et al. 2014) and reduced in-
tegrity of white matter microstructure (Ferraz-Filho et al.
2011; Karlsgodt et al. 2012; van Engelen et al. 2008).
Damage to white matter microstructure was found in the entire
brain (Karlsgodt et al. 2012).

NF1-patients also exhibit very high rates of cognitive
and social impairment. Specifically, 60–80 % of children
with NF1 experience (specific) learning disabilities
(Hyman et al. 2005), up to 60 % show mild to severe
autism symptoms, and up to 50 % qualifies for a diagno-
sis of Attention Deficit (Hyperactivity) Disorder (Garg
et al. 2013; Hyman et al. 2005). Considering cognition,
executive dysfunction is a major hallmark of the disease
(Diggs-Andrews and Gutmann 2013; Huijbregts et al.
2010b; Rowbotham et al. 2009). Core executive functions
include inhibitory control, working memory and cognitive
flexibility (Miyake et al. 2000). All of these are affected
in NF1 (Huijbregts et al. 2010b; Rowbotham et al. 2009).
For executive functioning, positive associations have been
reported between executive impairment and subcortical
volumes in NF1 (S. C. Huijbregts et al. 2015). With re-
spect to the impact of T2-hyperintensities on cognition
assocations with lesion location have been revealed, but
not with presence or number (Hyman et al. 2007; Moore
et al. 1996).

Surprisingly, no studies have been performed yet examin-
ing associations between white matter microstructural
abnomalities and the cognitive-behavioral phenotype of
NF1, although it has been suggested that presence of T2-
hyperintensities might impair functioning of white matter
tracts and subsequently cognition (Payne et al. 2014). White
matter integrity may be the best neural substrate for functional
connectivity, which several recent studies have shown to be
abnormal in NF1 (Loitfelder et al. 2015; Tomson et al. 2015).
Also, abnormalities in functional connectivity have been re-
lated to parent-reported problems with executive functioning
in NF1 (Loitfelder et al. 2015).

Reduced microstructural white matter integrity in adult
NF1 patients compared to healthy controls was reported
to be present in the entire brain, but most prominently in
the anterior thalamic radiation (ATR) (Karlsgodt et al.
2012). The ATR connects the thalamus with the frontal
cortex and its strategic role in executive functioning has
been shown in other disorders, such as CADASIL

(Duering et al. 2011), a hereditary stroke disorder, schizo-
phrenia (Mamah et al. 2010), and first episode psychosis
(Pérez-Iglesias et al. 2010). Although not specifically
highlighted in NF1, other tracts such as the cingulate bun-
dle, projecting from the posterior cingulate cortex to the
medial prefrontal cortex (Gordon et al. 2011), and the
superior longitudinal fasciculus, which connects the pari-
etal, occipital and temporal lobes with ipsilateral frontal
cortices (Schmahmann et al. 2008) have also been associ-
ated with executive functioning (Heilbronner and Haber
2014; Mesulam 1998; Nestor et al. 2004; Petrides and
Pandya 2002).

In the present study, it was investigated whether whole
brain white matter integrity and white matter integrity in tracts
specifically associated with executive functions were related
to inhibitory control in adolescents with NF1.

Methods

Participants

Sixteen NF1 patients (7 male, age: M = 12.45, SD = 2.75,
min-max: 9.3–18.6) and 32 healthy controls (21 male, age:
M = 12.43, SD = 2.99, min-max: 9.2–19.0; tage = −0.014,
page = .989; χ2sex = 1.835, psex = .176) underwent structural
MRI scanning. All NF1 subjects fulfilled the diagnostic
criteria specified by the National Institutes of Health
Consensus Conference (National Institutes of Health. 1988).

Scanning procedure

All subjects underwent scanning at the Leiden University
Medical Center. Imaging was performed on a Philips 3 Tesla
Achieva MRI scanner using an 8 channel SENSE receiver
head coil (Philips Healthcare, Best, The Netherlands). In each
subject, DTI data were acquired using a 16 directions spin
echo sequence with 73 slices without a gap in AC-PC direc-
tion (TR 8.36 s, TE 56 ms, flip angle 90 degrees, 2.3 mm
isotropic voxels, FOV = 220 × 167.9, b-value 1000s/mm2,
total scan time of 183 s, and one B0-image). For the evaluation
of T2-hyperintensities, T2-weighted structural scans were ac-
quired (52 slices, voxel size: 0.43 × 0.478, 3 mm slice thick-
ness, FOV: 220x175x156, TE 80 ms, no slice gap, scan dura-
tion 236 s). All anatomical scans were reviewed by a neuro-
radiologist.

Image processing

All analyses were performed using FMRIB’s Software
Library (Smith et al. 2004). Preprocessing included pre-
alignment, correction for eddy currents, and brain extrac-
tion. FMRIB’s Diffusion Toolbox was used to reconstruct
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diffusion tensors, fitting a diffusion tensor model at each
voxel. Tensor eigenvalues describing the diffusion
strength in primary, secondary and tertiary diffusion di-
rections were extracted. Voxelwise statistical analysis of
the fractional anisotropy (FA) data was carried out using
Tract-Based Spatial Statistics (TBSS (Smith et al. 2006)).
All subjects’ FA data were aligned into a common space
using the nonlinear registration tool (FMRIB’s non-linear
registration tool, (Smith et al. 2004)). Next, the mean FA
image was created and thinned to create a mean FA skel-
eton which represents the centers of all tracts common to
the group. Each subject’s aligned FA data was then
projected onto this skeleton and the resulting data fed into
voxelwise cross-subject statistics. FA, mean diffusivity
(MD), axial diffusivity (DA) and radial diffusivity (RD)
were used as measures of microstructural white matter
integrity. RD was calculated using the average of the sec-
ondary and the tertiary eigenvectors (L2 + L3/2). Each
additional measure (MD, DA, and RD) was projected on
the FA-skeleton. Permutation-based inferences (FSL’s ran-
domize, 5000 permutations, FWE-corrected, p = 0.05)
with threshold-free cluster enhancement (TFCE) were car-
ried out for voxelwise analyses of the skeleton. Two sam-
ple t-tests were used for the whole brain voxelwise group
comparisons (NF1 patients vs. healthy controls).

Thereafter, masks of the ATR, the cingulate bundle (CB)
and the superior longitudinal fasciculus (SLF) (Fig. 1) were
created using binarised regions of interest, which were based
on the John Hopkins University White-Matter Tractography
Atlas (Mori et al. 2005). To ensure value extraction in white
matter only, the mask was applied to the mean FA skeleton.
This confines the statistical analysis exclusively to voxels
from the center of the tract, thereby minimizing anatomic
inter-subject variability, registration errors, and partial volume
effects. Averaged FA, MD, DA, and RD values of the regions
of interest were used to examine group differences and the
relation with inhibitory control.

Neuropsychological assessment

The Sustained Attention Dots-task from the computerized
Amsterdam Neuropsychological Tasks (ANT) was used to
evaluate inhibitory control (S C J Huijbregts et al. 2002). In
the Sustained Attention Dots-task (600 trials) participants
press the yes-button (i.e. a response with the index finger of
the dominant hand) when 4 randomly placed dots appear on
the computer screen (200 trials), and the no-button (a response
with the index finger of the non-dominant hand) when 3 or 5
randomly placed dots appear (total of 400 trials). As pressing
the no-button becomes the predominant (Bautomatic^) re-
sponse, inhibitory control is required when responses with
the yes-button have to be given. Lack of accuracy of task
performance (error rate) was used to represent quality of

inhibitory control. Neuropsychological assessment also in-
cluded the following subtests from the Wechsler Intelligence
Scale for Children (Wechsler et al. 2011): Vocabulary and
Comprehension (verbal comprehension), Block-Design (visu-
al-spatial abilities), Picture Completion (fluid reasoning),
Symbol Search, and Coding (processing speed). Verbal abili-
ties were estimated based on the z-transformed subscales vo-
cabulary and comprehension, performance abilities were esti-
mated on the basis of all other z-transformed subtests.
Neuropsychological data were collected for 13 NF1 patients
and 9 HC.

Statistical analyses

Statistical analyses were performed using SPSS 21 for
Windows (SPSS, Chicago, IL). Whenever appropriate, non-
parametric procedures were applied. Correlation analyses be-
tween averaged whole brain or averaged tract-based DTI met-
rics, and inhibitory control, and verbal and performance abil-
ities were conducted (false discovery rate corrected for multi-
ple comparisons, q = .05). Correlation analyses were conduct-
ed in patients only. To increase accuracy of sampling esti-
mates, 1000 equally sized random samples with replacement
were generated (bootstrapping) using bias corrected and ac-
celerated intervals. The confidence intervals of the
bootstrapping approach were used for inferences. Also, differ-
ences in DTI-metrics between left and right hemisphere were
assessed. To indicate strength of results, relative deviation in
white matter microstructure compared to healthy controls, ef-
fect size (Cohen’s d) and percent of non-overlap of the group
specific distributions were calculated.

T2 hyperintensities

The T2 scans from NF1 patients were visually checked by a
neuroradiologist for presence of T2-hyperintensities. Next,
hand-labelled masks were created of all voxels showing T2-
hyperintensities. To examine the potential influence of thalam-
ic T2-hyperintensities (for which specifically effects on cog-
nition had been shown: (Hyman et al. 2007; Moore et al.
1996; Payne et al. 2014)) on the ATR-microstructure, non-
parametric group comparisons using the ATR’s FA, MD,RD,
and DA between pat ients wi th and without T2-
hyperintensities were conducted.

Results

Voxel-wise microstructural analysis of the whole brain

Whole brain voxel-wise permutation analyses revealed a
reduction of FA and an increase of MD, RD, and DA
throughout the whole brain in NF1 adolescents when
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compared to controls (Fig. 2). Correlation analyses in
NF1 patients revealed an association between the aver-
aged values of the MD and inhibitory control (r = .646,
CIbootstrap = 0.034–0.882), and the averaged values of the
DA and inhibitory control (r = .673, CIbootstrap = 0.272–
0.861) (Fig. 3). No significant correlation was identified
for the averaged values of the whole brain DTI metrics
and our estimates of verbal, performance and total
abilities.

The microstructure of cingulate bundle-, superior
longitudinal fasciculus-, and ATR-white matter

Group comparisons using the averaged values of the cingulate
bundle, the superior longitudinal fasciculus, and the ATR re-
vealed for all but a few significantly decreased FA and in-
creased MD, RD and DA in NF1 patients when compared to
controls (Table 1). The averaged values of the FA, MD, RD,
and DA of the CB, the SLF and the ATR showed differences

Fig. 2 Whole brain group
differences in fractional
anisotropy (a, NF1 patients <
controls), mean diffusivity (b,
NF1 patients > controls), radial
diffusivity (c, NF1 patients >
controls) and axial diffusivity (d,
NF1 patients > controls), TFCE
and FWE corrected, p < 0.05

Fig. 1 Schematic illustration of
the anterior thalamic radiation
(ATR, a), the cingulate bundle
(CB, b) and the superior
longitudinal fasciculus (SLF, c)
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between patients and controls in the range of 0.7 to 12.1 %,
being most pronounced in the RD (Fig. 4). Also, large effect
sizes (CB range: 0.7–1.2; SLF range: −0.3-1.2; ATR range:
−0.8-(1.6)), which were associated with a high percentage of
non-overlapping distributions were found (Fig. 4). To exam-
ine hemispherical differences in microstructural damage be-
tween left and right averaged CB, paired t-tests restricted to

NF1 patients revealed differences in the FA (t(15) = 11.091,
p < 0.001), RD (t(15) = −5.856, p < 0.001), and DA
(t(15) = 3.162, p = 0.006), but not for MD (t(15) = −1.441,
p = .170). In the SLF, FA (t(15) = 3.196, p = 0.006), MD
(t(15) = −3.037, p = 0.008), and RD (t(15) = −3.738,
p = 0.002), but not DA (t(15) = −0.394, p = 0.699) showed
hemispherical differences. In the ATR, the FA (t(15) = 3.029,

Fig. 3 Scatter plots showing errors in inhibitory control and whole brain mean diffusivity (a), whole brain axial diffusivity (b), fractional anisotropy of
left ATR (c), mean diffusivity of left ATR (d) , and radial diffusivity of the left ATR (e)

Table 1 Differences between
NF1 patients and controls in
fractional anisotropy (FA), mean
diffusivity (MD), radial
diffusivity (RD), and axial
diffusivity (DA) within the cin-
gulate bundle, the superior longi-
tudinal fasciculus, and the anterior
thalamic radiation

left right

df t p df t p

Cingulate bundle FA 46 2.746 0.009 46 2.983 0.005

MD 46 -4.623 <0.001 46 -3.856 <0.001

RD 46 -4.755 <0.001 46 -4.199 <0.001

DA 46 -2.241 0.030 46 -2.422 0.019

Superior longitudinal fasciculus FA 46 0.995 0.325 46 -0.294 0.770

MD * 75.000 <0.001 * 100.500 0.001

RD 46 -2.467 0.017 * 188.500 0.140

DA 46 -3.972 <0.001 * 86.500 <0.001

Anterior thalamic radiation FA 46 4.942 <0.001 46 4.111 <0.001

MD * 21.000 <0.001 * 35.500 <0.001

RD * 23.000 <0.001 46 -7.307 <0.001

DA 46 -3.603 0.001 46 -3.058 0.004

*U-Test
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p = .008), MD (t(15) = −3.067, p = .008), and RD
(t(15) = −.846, p = .002), but not the DA (t(15) = −.702,
p = .494 ) showed significant differences between left and
right hemisphere. All tracts indicate less microstructural dam-
age to the left hemisphere, with the exception of the DA of the
cingulate bundle. A similar effect was found in control sub-
jects (CB: FA t(31) = 19.849, p < 0.001; MD t(31) = −2.134,
p = 0.041; RD t(31) = −10.284, p < 0.001, DA t(31) = 7.867,
p < 0.001; SLF: FA t(31) = 5.871, p < 0.001; MD
t(31) = −4.385, p < 0.001; RD t(31) = −5.388, p < 0.001;
DA t(31) = 1.572, p = 0.126; ATR: FA: t(31) = 5.832,
p < 0 .001 ; MD: U = −4 .938 , p < 0 .001 ; RD:
t(31) = −10.413, p < 0.001; DA: U = −3.009, p = 0.003).

Relation of the cingulate bundle, the superior longitudinal
fasciculus and the ATR with inhibitory control

No DTI-measure of the CB or the SLF revealed a significant
correlation with our measure of inhibitory control in NF1 pa-
tients (CB: FA left: r = −.203, CIbootstrap = −.785–.424; FA
right: r = −.307, CIbootstrap = −.776–.349; MD left: r = .350,
CIbo o t s t r a p = . -483– .879 ; MD right : r = − . 009 ,
C I b o o t s t r a p = − . 7 6 9– . 6 5 3 ; RD l e f t : r = . 4 72 ,
C I b o o t s t r a p = − . 366– . 823 ; RD r igh t : r = .099 ,
C I b o o t s t r a p = − . 6 5 9– . 7 0 9 ; DA l e f t : r = . 0 93 ,
CIboo t s t r a p = − .477– . 731; DA righ t : r = − .131 ,
CIboots t r ap = − .778– .595; SLF: FA left: r = .055,

Fig. 4 Mean DTI values (fractional anisotropy (FA), mean diffusivity
(MD), radial diffusivity (RD), and axial diffusivity (DA)) of NF1
patients and healthy controls in the cingulate bundle, the superior

longitudinal fasciculus, and the anterior thalamic radiation left and right.
Cohen’s d and non-overlap provides information about the effect size and
the non-overlapping distribution of patients and controls, respectively
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CIbo o t s t r a p = − . 583– . 720 ; FA r igh t : r = − . 187 ,
CIbootstrap = −.725–.483; MD left: r = .241, CIbootstrap = .-
512–.712; MD right: r = .406, CIbootstrap = −.594–.902; RD
left: r = .111, CIbootstrap = −.643–.583; RD right: r = .331,
C I b o o t s t r a p = − . 4 5 6– . 7 9 0 ; DA l e f t : r = . 2 80 ,
C I b o o t s t r a p = − . 3 87– . 785 ; DA r igh t : r = .347 ,
CIbootstrap = −.286–.772). In contrast, for the ATR associations
with inhibitory control were evident for FA (r = −.405,
CIbootstrap = −0.752-(−0.060); not significant after correction
for multiple comparisons), MD (r = .707, CIbootstrap = 0.196–
0.930), and RD (r = .771, CIbootstrap = 0.490–0.919), all in the
left hemisphere (Fig. 3). No significant correlations between
FA, MD, RD, and DA of the CB, the SLF or the ATR and our
IQ-estimates were found.

Neuropsychological results

When compared to controls, NF1 patients showed significant-
ly lower scores on our measure of performance abilities
(MHC = 0.606, SDHC = 0.638; MNF1 = −0.474,
SDNF1 = 0.812; t(18) = 3.250, p = .004) and total abilities
(MHC = 0.551, SDHC = 0.620; MNF1 = −0.402,
SDNF1 = 0.730; t(18) = 3.107, p = .006). A trend was found
for verbal abilities (MHC = 0.442, SDHC = 0.680;
MNF1 = −0.259, SDNF1 = 0.899; t(18) = 1.928, p = .070).
Despite relatively large absolute differences in error rate, no
significant group differences were found for inhibitory control
between patients and controls (Mcontrols = 20.11 ± 15.36,
MNF1 = 32.85 ± 27.37, t(20) = −1.259, p = .222).

T2-hyperintensities

T2-hyperintensities were identified in 62.5 % (n = 10 of 16) of
the patients, of which 31.3 % (n = 5) showed T2-
hyperintensities in the thalamus, 37.5 % (n = 6) in the cere-
bellum, 25 % (n = 4) in the pallidum, 18.8 % (n = 3) in the
brainstem and in the cortical grey matter, 6.3 % (n = 1) in the
putamen and amygdala, and 31.3 % (n = 5) in the cerebral
white matter. Also, 12.5 % (n = 2) subjects had one T2-
hyperintensity in the left ATR. To determine whether thalamic
T2-hyperintensities have an effect on the microstructural in-
tegrity of ATR, subjects were separated in two groups, thalam-
ic T2-hyperintensities present (n = 5) and absent (n = 11).
Non-parametric group comparisons revealed no significant
differences in the ATR FA (left: p = 0.267, right: p = 0.377),
MD (left: p = 0.320, right; p = 0.913), RD (left; p = 0.743,
right: p = 0.913) or DA (left; p = 0.115, right: p = 0.267).

Discussion

In this study we found extensive global and local white matter
abnormalities in NF1 adolescents. The significance of white

matter pathology and its impact on cognitive functioning has
already been recognized in various neurological and
neurodevelopmental disorders (Duering et al. 2011; Mamah
et al. 2010; Pérez-Iglesias et al. 2010; Yu et al. 2012). In NF1,
white matter pathology has also been observed before (Ferraz-
Filho et al. 2011; Karlsgodt et al. 2012; van Engelen et al.
2008), but its functional significance as a biomarker for the
quantification of impaired executive functioning had not yet
been investigated. We found a number of associations be-
tween whole brain white matter integrity and inhibitory con-
trol, one of the core executive functions, in NF1. In order to
achieve more specific results, we examined white matter in-
tegrity in three tracts, the cingulate bundle, the superior longi-
tudinal fasciculus, and the anterior thalamic radiation, which
have all been associated with executive functioning (Duering
et al. 2011; Gordon et al. 2011; Heilbronner and Haber 2014;
Mamah et al. 2010; Nestor et al. 2004; Pérez-Iglesias et al.
2010; Petrides and Pandya 2002; Schmahmann et al. 2008).
Whereas indeed we found strong associations between white
matter integrity of the ATR and inhibitory control, no signif-
icant associations were observed for the CB and the SLF. A
possible explanation for the apparent specificity of the associ-
ation between ATR WM-integrity and inhibitory control in
this study might lie in the nature of the task that was used,
or, in other words, in the type of inhibitory control measured
by the Sustained Attention Dots-task -task. Inhibitory control
as measured by the Sustained Attention Dots-task may be
classi f ied as Bcool^ execut ive funct ioning: i t is
Bdecontextualized^, and does not involve affect or motivation
(Griffith-Lendering et al. 2012; Stephan C J Huijbregts et al.
2008; Rubia 2011). The ATR connects the thalamus and the
frontal cortex and does not seem to involve projections from/
to cortical or subcortical brain regions that have specifically
been related to affect/emotion and motivation, whereas the CB
connects brain regions associated with executive functions,
decision-making and emotion (Gordon et al. 2011). The CB
might therefore be associated more strongly with so-called
Bhot^ executive functioning, i.e. executive functioning with
an affective or motivational component or within an affective
or motivational context (Griffith-Lendering et al. 2012;
Stephan C J Huijbregts et al. 2008; Rubia 2011).
Alternatively, however, the CB is one of the brain’s major
white matter pathways and its specific architecture may have
to be considered in more detail. Heilbronner and Haber
(Heilbronner and Haber 2014) found evidence for a cingulate
bundle architecture involving four compartments, with some
connections to limbic structures (such as the amygdala), and
others not connected to such structures associated with affect/
emotion and/or motivation. Therefore, it seems possible that
white matter integrity of some but not all compartments of the
CB is related to Bcool^ executive functioning, while whitematter
integrity of other compartments may be associated more strongly
with Bhot^ executive functioning. A similar explanation may be
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suggested for the lack of significant associations between SLF
whitematter integrity and inhibitory control, the SLF also being a
large bundle of white matter fibers, present in each hemisphere,
and with potentially different functional significance in different
segments. Such an explanation would corroborate with the fact
that we found associations between whole brain white matter
integrity and inhibitory control as well, as the contribution of
the ATR WM-integrity (possibly together with the non-
significant contributions of the CB and the SLF) to whole
brain WM-integrity may be sufficient to render these corre-
lations significant. However, in order to provide more defi-
nite answers future studies should segment further what are
now considered unitary regions of interest, and include neu-
ropsychological tasks that measure other executive functions
such as working memory and cognitive flexibility and tasks
that measure Bhot^ executive functions (see (Griffith-
Lendering et al. 2012; Stephan C J Huijbregts et al. 2008;
Rubia 2011)). One (further) reason for investigating this in
more detail is that it has convincingly been shown that NF1-
patients have extensive socio-emotional problems (Garg et al.
2013; S. C. Huijbregts et al. 2015) as well as impaired social
information processing (Huijbregts et al. 2010a; Pride et al.
2014), and it seems reasonable to hypothesize that white
matter integrity of tracts other than the ATR are more strong-
ly associated with such problems.

Another important topic for future studies is to inte-
grate what is known at neurobiological or cellular signal-
ing level regarding NF1-pathophysiology and what has
consistently been found at neuroanatomical level, and
to investigate interrelations between different neuroana-
tomical abnormalities observed in NF1. Globally, we
found mean and axial diffusivity to be negatively asso-
ciated with inhibitory control. Mean diffusivity is a mea-
sure of the average molecular motion independent of any
directionality and is affected by cellular size and integrity
(Cercignani et al. 2001). Axial diffusivity was reported
to be specifically sensitive to axonal degeneration
(Alexander et al. 2007). In NF1, DTI-metrics have been
related to T2-hyperintensities, although white matter ab-
normalities were also observed in lesion-free brain re-
gions (Eastwood et al. 2001; Ferraz-Filho et al. 2011).
The results of our study indicated that presence of T2-
hyperintensities did not determine abnormalities of the
microstructure in ATR in NF1-adolescents. Moreover,
apart from some evidence showing associations between
lesions at specific (subcortical) locations and cognitive
outcomes, the hypothesis stating that T2-hyperintensities
influence cognition lacks empirical support (S. C.
Huijbregts et al. 2015; Hyman et al. 2007; Moore et al.
1996). Although results to date suggest only a relatively
marginal role for T2-hyperintensities in both white matter
microstructure and cognitive outcomes, whilst white mat-
ter microstructure itself seems to play a significant role

in cognitive outcomes, it should be noted that the sample
size of patients with and without T2-hyperintensities was
limited, thus warranting further studies on this issue.
Altogether, however, results of this and other studies
suggest that concurrent pathological (e.g. neurobiologi-
cal/cellular) processes affect white matter microstructure
in NF1 patients.

As noted, the main limitation of this study was its sample
size. However, the sample size is comparable to other imaging
studies in NF1 (Karlsgodt et al. 2012; Pride et al. 2014; Violante
et al. 2013). Perhaps more importantly, the strong involvement
of white matter integrity of the ATR in inhibitory control was
corroborated by high effect sizes (all above 0.8) and non-
overlapping distributions when comparing NF1-patients and
controls. Also, estimation of verbal and performance abilities
and inhibitory control was not available for all subjects (with
those data particularly not collected among healthy controls).
Group differences in absolute numbers, which are similar to, or
even larger than those observed in other studies (Huijbregts
et al. 2010b; Rowbotham et al. 2009), indicating lower scores
on IQ-subtests for NF1-patiens and more inhibitory control
errors for NF1-patients than controls, may not always have
reached significance due to limited power. Lastly, to underpin
our speculations on different aspects of executive functioning
possibly being associatedwith specific whitematter tracts, tasks
incorporating different executive function-dimensions have to
be included in future studies.

It is concluded that, in NF1, microscopic white matter dam-
age to the ATR is strongly associated with inhibitory control
deficits. White matter integrity of the ATR may be predictive
of other impairments in executive functioning characterizing
NF1 as well, and thus represent an important target in thera-
peutic interventions. Although there is still much to be clari-
fied, the single-gene disorder NF1 provides an extremely rel-
evant model for studying associations between neurobiology,
cell signaling, neuroanatomy and cognition/behavior as well.
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