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Abstract: This work provides a summary of the preparation, structure, reactivity, physicochemi-
cal properties, and main uses of 1,2,5-thiadiazole 1,1-dioxides in chemistry and material sciences.
An overview of all currently known structures containing the 1,2,5-thiadiazole 1,1-dioxide motif
(including the anions radical species) is provided according to the Cambridge Structural Database
search. The analysis of the bond lengths typical for neutral and anion radical species is performed,
providing a useful tool for unambiguous assessment of the valence state of the dioxothiadiazole-based
compounds based solely on the structural data. Theoretical methodologies used in the literature to
describe the dioxothiadiazoles are also shortly discussed, together with the typical ‘fingerprint’ of
the dioxothiadiazole ring reported by means of various spectroscopic techniques (NMR, IR, UV-Vis).
The second part describes the synthetic strategies leading to 1,2,5-thiadiazole 1,1-dioxides followed
by the discussion of their electrochemistry and reactivity including mainly the chemical methods
for the successful reduction of dioxothiadiazoles to their anion radical forms and the ability to form
coordination compounds. Finally, the magnetic properties of dioxothiadiazole radical anions and
the metal complexes involving dioxothiadiazoles as ligands are discussed, including simple alkali
metal salts and d-block coordination compounds. The last section is a prospect of other uses of
dioxothiadiazole-containing molecules reported in the literature followed by the perspectives and
possible future research directions involving these compounds.

Keywords: 1,2,5-thiadiazole 1,1-dioxides; molecular materials; persistent organic radicals; molecu-
lar magnetism

1. Introduction

Organic molecules are at the very edge of modern applications in technology (OLEDS,
organic conducting materials, batteries) and there is a never-ending need for new systems
that meet more and more demanding requirements. Heterocyclic organic compounds
containing both N and S atoms are widely studied throughout the chemical and molecular
sciences in this regard. Specifically, thiadiazoles [1–9] (Figure 1a) show several advan-
tageous features such as high thermal and chemical stability, easy synthetic preparation
and availability of precursors, coordination and bonding abilities [10], rich electrochem-
istry [11–13], and other functionalities such as magnetism [14], luminescence [15–18], or
chirality [19]. The thiadiazole ring provides a very convenient tool for tuning the physic-
ochemical properties of the relevant molecules—both nitrogen and sulfur atoms can be
oxidized with common laboratory oxidants to yield N-oxides, S-oxides (oxothiadiazoles),
and S,S-dioxides (dioxothiadiazoles).
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Figure 1. The family of the thiadiazole heterocycles including 1,2,5-thiadiazole 1,1-dioxides (a) and the structural formulas
of all 1,2,5-thiadiazole 1,1-dioxides characterized structurally by means of SCXRD according to the Cambridge Structural
Database search: 10 June 2021 (b). See Table 1 for additional details and literature references.
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Surprisingly, despite great interest in thiadiazole chemistry, little is done to harness
the potential of the oxidized species [20]. Dioxothiadiazoles, in this context, are under-
represented, and their chemistry is still awaiting to be recognized as, at the very least,
equally interesting as the parent thiadiazoles. The oxo- and dioxothiadiazoles can be
easily reduced to stable radical anions [21] and are therefore of potential use to the molecu-
lar magnetism community. However, this group of compounds seems to be completely
omitted as potential building blocks for the construction of molecule-based magnetic materi-
als [22,23] compared to other organic radicals (nitronyl nitroxides [24–27], verdazyl [28–30],
semiquinones [31,32], or TCNE and TCNQ derivatives [33,34]) which have been used
extensively to obtain all-organic magnets [35], Single Molecule Magnets [36,37], or Single
Chain Magnets (SCMs) [24,38–41], among many other functional magnetic materials. This
review focuses on 1,2,5-thiadiazole 1,1-dioxides (Figure 1a) and their radical anions [42],
which constitute perhaps the prime example of the dioxothiadiazole family, and summa-
rizes the current state-of-the-art in the field of 1,2,5-thiadiazole 1,1-dioxides with the aim
of shedding light on the extraordinary possibilities and applications of this heterocyclic
moieties with respect to the design and preparation of switchable/functional molecular
materials.

2. Structure and Geometry

1,2,5-thiadiazole 1,1-dioxides (hereafter denoted as dioxothiadiazoles) comprise a
five-membered heterocyclic ring oxidized at the sulfur atom. The ring is attached via
the carbon atoms to various organic “backbones” as depicted in Figure 1b (please note
that Figure 1b gathers all crystallographically characterized 1,2,5-thiadiazole 1,1-dioxides
excluding thiadiazolines and the related N-functionalized derivatives).

Table 1 supplements Figure 1b by providing references to the CSD database and the
relevant publications, where the respective compounds are reported [43–51]. Sulfonyl
(>SO2) is a very strong electron-withdrawing group; therefore, compared to thiadiazoles,
their dioxidized analogues containing this sulfonyl group are superior when it comes to
negative charge accommodation within the heterocyclic ring and the resulting radical
anion formation and their stability. In fact, most of the dioxothiadiazole species can be
successfully reduced not only to their monoanionic radical forms but also to the dianionic
species, while regular thiadiazoles are not prone to be reduced twice, and the first reduction
event occurs usually around −2.0 V vs. Fc/Fc+ [42]. The sulfonyl group is also modifying
the nature of molecular interactions available for the heterocyclic ring when transitioning
from thiadiazoles to dioxothiadiazoles: the exposed soft sulfur atom in thiadiazoles, which
is useful for the coordination to soft metal ions such as Cu+, Ag+ and Hg2+ as well as the
weak hydrogen bonding capabilities, is replaced by hard oxygen atoms in dioxothiadiazoles
that prefer hard metal ions such as alkali metals and can easily form hydrogen bonds.

Table 1. All 1,2,5-thiadiazole 1,1-dioxides characterized structurally by means of the single crystal X-ray diffraction
(according to the Cambridge Structural Database search using WebCSD tool: 10th June 2021).

No. in
Figure 1b Compound Name CCDC Number

(Database ID) Ref.

1 [1,2,5]thiadiazolo[3,4-f][4,7]phenanthroline 2,2-dioxide (4,7-tdapO2) 997100 (BOKXEG) [43]

2 [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (1,10-tdapO2)
819976 (NALXOP) [44]

[14]932270 (MINREI)

3 5-bromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide 1882326 (FOFFAK) [45]

4 5,10-dibromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide 1882327 (FOFFEO) [45]

5 benzo[1,2]tetrapheno[5,6-c][1,2,5]thiadiazole 8,8-dioxide 267853 (GESRUS) [46]

6 3,4-di(naphthalen-2-yl)-1,2,5-thiadiazole 1,1-dioxide 267854 (GESSAZ) [46]
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Table 1. Cont.

No. in
Figure 1b Compound Name CCDC Number

(Database ID) Ref.

7 phenanthro[9,10-c][1,2,5]thiadiazole 2,2-dioxide
1179881 (IGISIA)
783889 (IGISIA01)

1577093 (IGISIA02)

[47]
[21]
[48]

8 acenaphtho[1,2-c][1,2,5]thiadiazole 8,8-dioxide 1179882 (IGISOG) [47]

9 N-(1,1-dioxo-4-phenyl-1,2,5-thiadiazol-3-yl)-4′-phenyl-1′,3′,2′-dithiazole-5′-imine 1192789 (KAMYEC) [49]

10 pyreno[4,5-c][1,2,5]thiadiazole 10,10-dioxide 783892 (ONIPEH) [21]

11 3,4-dimethyl-1,2,5-thiadiazole 1,1-dioxide 1231828 (PEXMEK) [50]

12 3-methyl-4-phenyl-1,2,5-thiadiazole 1,1-dioxide 1231842 (PEXQAK) [50]

13 3,4-diphenyl-1,2,5-thiadiazole 1,1-dioxide 1231843 (PEXQEO) [50]

14 3,4-di(naphthalen-1-yl)-1,2,5-thiadiazole 1,1-dioxide 972953 (VITRIB) [51]

15 piceno[13,14-c][1,2,5]thiadiazole 14,14-dioxide 972954 (VITROH) [51]

16 5,10-dibromophenanthro[9,10-c][1,2,5]thiadiazole 2,2-dioxide 1577094 (ZIMLUF) [48]

A detailed structural analysis of the dioxothiadiazole heterocycle in various deriva-
tives, as presented in Table 2 and Figure 2, indicates that the respective bonds within
the heterocycle change length in a systematic way when the compound is reduced to the
radical anion form.

Table 2. Selected bond lengths for neutral and anionic dioxothiadiazoles (structures collected at 100–173 K). The average
values given in blue and red correspond to the blue and red bars in Figure 2.

Compound S=O (Å) S-N (Å) C=N (Å) C-C (Å) CSD ID T (K)

[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide

1.429 1.687 1.287
1.508 NALXOP 1731.424 1.686 1.290

1.425 1.684 1.290 1.507 MINREI 173

1.427 1.690 1.285
1.510 MINROS 1731.421 1.684 1.286

1.425 1.685 1.282 1.515 MINRIM 173

[CuIICl(1,10-tdapO2)](µ-Cl)2[CuIICl(1,10-tdapO2)] 1.419 1.703 1.273
1.503 DUZCIN 1201.419 1.682 1.287

5-bromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline
2,2-dioxide

1.423 1.694 1.293
1.506 FOFFAK 1201.429 1.693 1.285

5,10-dibromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline
2,2-dioxide

1.422 1.693 1.290
1.514 FOFFEO 1611.425 1.696 1.284

[1,2,5]thiadiazolo[3,4-f][4,7]phenanthroline 2,2-dioxide 1.430 1.700 1.291
1.519 BOKXEG 1001.427 1.699 1.287

pyreno[4,5-c][1,2,5]thiadiazole 10,10-dioxide 1.417 1.691 1.295
1.518 ONIPEH 1731.434 1.683 1.291

phenanthro[9,10-c][1,2,5]thiadiazole 2,2-dioxide 1.432 1.686 1.288
1.510 IGISIA01 1731.417 1.691 1.294

piceno[13,14-c][1,2,5]thiadiazole 14,14-dioxide 1.438 1.670 1.302
1.529 VITROH 1231.427 1.674 1.300

[CuIICl(4,7-tdapO2)CuIICl] 1.428 1.713 1.275
1.503 BOKXIK 1001.428 1.713 1.270

Average in neutral species 1 1.426(3) 1.691(7) 1.287(5) 1.512(7) - -
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Table 2. Cont.

Compound S=O (Å) S-N (Å) C=N (Å) C-C (Å) CSD ID T (K)

PPN+[CuIICl(1,10-tdapO2
−)2]

1.439 1.662 1.331
1.450

DUZCUZ 120
1.433 1.642 1.325

1.431 1.660 1.320
1.4531.434 1.664 1.321

PPN+[1,10-tdapO2]−
1.439 1.646 1.333

1.446 FOFFIS 1201.442 1.654 1.334

1.442 1.664 1.343
1.443 FOFFOY 1201.448 1.664 1.340

PPN+[5,10-diBr-1,10-tdapO2]−
1.443 1.646 1.333

1.452
FOFFUE 117

1.443 1.661 1.336

1.442 1.660 1.337
1.4351.445 1.656 1.333

PPN+[5-Br-1,10-tdapO2]−
1.437 1.648 1.334

1.441 FOFGAL 1201.432 1.659 1.332

K+[1,10-tdapO2]−
1.449 1.646 1.338

1.441 MINQEH 1731.448 1.639 1.337

NEt+[ptdaO2]−
1.442 1.640 1.340

1.471 VITSAU 1731.447 1.636 1.337

K+[4,7-tdapO2]−
1.438 1.638 1.330

1.437 VONZOP 1101.437 1.651 1.320

Average in radical anions 1 1.440(4) 1.652(7) 1.333(4) 1.447(10) - -

Relative difference between neutral and radical 1.0(0.3)% 2.3(0.4)% 3.5(0.3)% 4.3(0.7)% - -
1 ± 3σmean, where σmean—standard deviation of the mean given with formula σmean = σ√

n , σ is the standard deviation and n is the
number of observations. 1,10-tdapO2-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide; ptdaO2-piceno[13,14-c][1,2,5]thiadiazole
14,14-dioxide; 4,7-tdapO2-[1,2,5]thiadiazolo[3,4-f][4,7]phenanthroline 2,2-dioxide; PPN+-bis(triphenylphosphine)iminium cation.

Figure 2 presents the histograms of all bond lengths within the dioxothiadiazole ring
gathered in Table 2 in their neutral and radical forms (0.005 Å intervals on the bond length
axis). The largest bond length change can be observed for the C-C and C=N bonds, which
can be used as markers of the valence state of the dioxothiadiazole derivative. This may be
particularly useful when dioxothiadiazoles are used to form complexes with redox-active
metal centers to form organic–inorganic molecular frameworks with valence tautomerism—
with just a crystal structure, it is possible to accurately determine the valence state of the
ligands. Upon reduction, the C-C and S-N bonds get shorter, while C=N and S=O bonds
get longer.

The first systematic investigation of the properties of dioxothiadiazoles and perhaps
the first rational approach to this heterocycle as a promising candidate for the design of
molecular materials was carried out by Awaga et al. His group focused on dioxothiadi-
azoles fused to extended aromatic systems such as 1,10-phenanthroline (1,10-tdapO2) or
pincene and performed a general physicochemical evaluation of these systems [14,44,51,52].
[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (1,10-tdapO2) structurally embod-
ies all functionalities necessary to use this building block in the construction of mixed
organic–inorganic coordination systems [53]. It readily forms radical anions with stability
enhanced by the delocalization of the spin density over a large aromatic system of the 1,10-
phenanthroline moiety. This can be clearly seen by comparing 1,10-tdapO2 with monocyclic
analogues of dioxothiadiazoles such as 3,4-diphenyl-1,2,5-thiadiazole 1,1-dioxide. More-
over, the nitrogen atoms of its 1,10-phenanthroline backbone are capable of forming stable
complexes with d-block metal ions, while the oxygen atoms of the dioxothiadiazole group
can form electrostatic interactions with alkali metal ions. All heteroatoms of 1,10-tdapO2
may also participate in hydrogen bonding, providing directionality and enhancing the
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rigidity of the molecular frameworks formed. Additionally, the flat π electron-rich surface
of the tdapO2 can form π-π stacking interactions that controls to some extent the ordering
of molecules within the crystals. When distances between the 1,10-tdapO2 radical species
are small and the offset appropriate, these stacks become important magnetic interaction
pathways [14,44,52]. Please see the following sections for more details.

Figure 2. Histograms presenting the distribution of bond lengths in the dioxothiadiazole rings: (a) C-C, (b) C=N, (c) S-N,
and (d) S=O, depending on the valence state: neutral (blue bars) or radical anion (red bars). Note that each plot has the same
bond length axis range of 0.1 Å and the bars correspond to 0.005 Å (outsiders in the C-C distribution: *crystal structure
VITSAU, ** crystal structure VITROH).

2.1. Theoretical Investigations

Several theoretical works with a detailed description of selected dioxothiadiazole
molecules have been published, providing some general insight into the computational
methods best suited to yield satisfactory agreement with experimental data for this family
of compounds [47,50,54–58]. The most popular methods for the calculation of dioxoth-
iadiazole properties is standard and involve DFT with B3LYP hybrid functional and a
6-311G++(d,p) or 6-311G++(3df,3pd) basis set. As in the case of most organic molecules,
it is fast and reliable in reproducing data for UV-vis and IR interpretation that closely
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resemble experimental results [21,42,45,51,59,60]. For EPR spectra simulations, usually a
B98 hybrid functional is used instead. In the case of solvents effects, the Self-Consistent Iso-
density Polarized Continuum Model (SCI-PCM) is employed [59]. CHIH-DFT (Chihuahua
Heterocycles-Density Functional Theory) model chemistry is also proposed as a semi-
empirical DFT method specifically tailored to accurately predict properties of heterocyclic
systems such as dioxothiadiazoles [61].

2.2. NMR, UV-Vis, and IR Spectroscopy

Simply because there are no hydrogen atoms present within the 1,2,5-thiadiazole
1,1-dioxide moiety, the 1H NMR spectra are useless when it comes to the structural char-
acterization of this class of compounds. Several 13C NMR spectra have been reported for
3,4-disubstituted derivatives; carbon signals originating from 1,2,5-thiadiazole 1,1-dioxide
ring appear in the 150–170 ppm range [59,60,62–68] as compared to the 130–160 ppm range
for 1,2,5-thiadiazoles [69–71]. Many compounds were not characterized by 13C NMR spec-
troscopy due to their relatively low solubility in common deuterated solvents [43,45,51,67].

IR spectroscopy is quite useful for the characterization/identification of dioxothia-
diazoles. This technique can be easily performed in the solid state, which mitigates their
poor solubility. Four distinct IR bands are attributed to the heterocyclic ring: two C=N
stretching vibrations in the 1600–1550 cm−1 range and two S=O stretches at 1350–1280
and 1170–1100 cm−1 [20,63,64] enable identification of dioxothiadiazole derivatives in
more complex supramolecular and coordination systems. Figure 3 presents IR spectra
(fingerprint region) of two exemplary dioxothiadiazole derivatives with a clear indication
of the C=N and S=O stretching vibration bands.

Figure 3. Fingerprint regions of the IR spectra of two dioxothiadiazole derivatives: [1,2,5]thiadiazolo[3,4-
f][4,7]phenanthroline 2,2-dioxide (ref. [43]; blue line) and [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (ref. [44];
red line) with the C=N and S=O stretching vibration bands indicated.

UV-Vis spectroscopy for the simplest 3,4-disubstituted 1,2,5-thiadiazole 1,1-dioxides has
a maximum in the ultraviolet region (approximately 315 nm in MeCN and 240–280 nm in
ethanol) with the molar absorption coefficient on the order of 103 dm3·mol−1·cm−1 [68,72,73].
When the heterocyclic ring is fused to a larger aromatic system, the UV-Vis spectra
become complicated, and the εmax often exceeds 104 dm3·mol−1·cm−1 in the UV re-
gion [56,60,68,74].
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3. Preparation Methods

Synthetic strategies toward 1,2,5-thiadiazole 1,1-dioxides are scarce and can be divided
into two distinct categories: condensation of diketones with sulfamide [63,64,72,74–77] or
oxidations of the pre-existing thiadiazoles or 1,2,5-thiadiazole oxides to the corresponding
dioxides (Figure 4, Table 3) [21,67,78,79].

Figure 4. Summary of the synthetic strategies toward 1,2,5-thiadiazole 1,1-dioxides: condensation
of 1,2-diketones (A) or cyanogen (B) with sulfamide or oxidation of the pre-existing heterocyclic
scaffolds of 1,2,5-thiadiazoles or 1,2,5-thiadiazole 1-oxides (C) or 1,2,5-thiadiazolidines 1,1-dioxides
(D) using mCPBA.

Table 3. Summary of the synthetic strategies toward 1,2,5-thiadiazole 1,1-dioxides as depicted in Figure 4.

Synthesis Type
According to

Figure 2
Synthesis Details Product Ref.

A ethanol, reflux,
12–168 h

[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide
[1,2,5]thiadiazolo[3,4-f][4,7]phenanthroline 2,2-dioxide

5-bromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide
5,10-dibromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide

[44]
[43]
[45]

A ethanol, dry HCl,
reflux, 2–3 h

3,4-diphenyl-1,2,5-thiadiazole 1,1-dioxide,
acenaphtho[1,2-c][1,2,5]thiadiazole 8,8-dioxide [75]

A methanol, MeONa,
80 ◦C, overnight

sodium 4-phenyl-1,2,5-thiadiazol-3-olate 1,1-dioxide
disodium 1,2,5-thiadiazole-3,4-bis(olate) 1,1-dioxide

[76]
[72]

A NEt3, MW (360 W),
10 min 3,4-diphenyl-1,2,5-thiadiazole 1,1-dioxide [77]

A

solvent-free,
molybdophosphoric

acid (MPA), rt-150 ◦C,
3–530 h

3,4-diphenyl-1,2,5-thiadiazole 1,1-dioxide,
3-methyl-4-phenyl-1,2,5-thiadiazole 1,1-dioxide,

3,4-dimethyl-1,2,5-thiadiazole 1,1-dioxide,
phenanthro[9,10-c][1,2,5]thiadiazole 2,2-dioxide,

pyreno[4,5-c][1,2,5]thiadiazole 10,10-dioxide,
3,4-di(naphthalen-2-yl)-1,2,5-thiadiazole 1,1-dioxide,

3,4-di([1,1′-biphenyl]-4-yl)-1,2,5-thiadiazole 1,1-dioxide,
3,4-bis(4-chlorophenyl)-1,2,5-thiadiazole 1,1-dioxide

[74]
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Table 3. Cont.

Synthesis Type
According to

Figure 2
Synthesis Details Product Ref.

A

N,N’-
bis(TMS)sulfamide,

toluene, BF3·Et2O, rt,
8 h

3,4-diphenyl-1,2,5-thiadiazole 1,1-dioxide,
3-methyl-4-phenyl-1,2,5-thiadiazole 1,1-dioxide,
3-ethyl-4-phenyl-1,2,5-thiadiazole 1,1-dioxide,

3-ethyl-4-(4-methoxyphenyl)-1,2,5-thiadiazole-1,1-dioxide,
3-Isopropyl-4-(4-methoxyphenyl)-1,2,5-thiadiazole-1,1-dioxide,

3-ethyl-4-(4-chlorophenyl)-1,2,5-thiadiazole-1,1-dioxide,
3-ethyl-4-(furan-2-yl)-1,2,5-thiadiazole-1,1-dioxide,

3-ethyl-4-(thiophen-3-yl)-1,2,5-thiadiazole-1,1-dioxide

[64]

B diglyme, −60 ◦C,
dry HCl 3,4-diamino-1,2,5-thiadiazole 1,1-dioxide [63]

C DCM, mCPBA, reflux,
overnight

phenanthro[9,10-c][1,2,5]thiadiazole 2,2-dioxide,
pyreno[4,5-c][1,2,5]thiadiazole 10,10-dioxide,
3,4-dimethoxy-1,2,5-thiadiazole 1,1-dioxide

[21]
[78]

D
THF, KO2

or
DMF, NaOEt

3-amino-4-phenyl-1,2,5-thiadiazole 1,1-dioxide,
3-amino-4-(4-methoxyphenyl)-1,2,5-thiadiazole 1,1-dioxide,
3-amino-4-(naphthalen-1-yl)-1,2,5-thiadiazole 1,1-dioxide,

3-amino-4-hexyl-1,2,5-thiadiazole 1,1-dioxide,
3-(benzylamino)-4-phenyl-1,2,5-thiadiazole 1,1-dioxide,

3-(benzylamino)-4-(4-methoxyphenyl)-1,2,5-thiadiazole 1,1-dioxide

[79]
[67]

Out of the four possible synthetic routes leading to dioxothiadiazoles, the simplest and
the most versatile one is the condensation reaction between sulfamide and 1,2-diketones
(α-diketones) [75], as clearly indicated by Table 2. Another possible substrate for conden-
sations with sulfamide is cyanogen [63]. However, this reaction leads to 1,2,5-thiadiazole
1,1-dioxides as the only possible derivative, which could be further functionalized by C-C
coupling reactions. Small-scale preparations can resort to other substrates for condensa-
tions originating from diketone scaffolds such as methyl 2-oxo-2-phenylacetate and its
analogues as well as dimethyl or diethyl oxalate [72,76].

Condensations with sulfamide can also benefit from several modifications in order to
deal with common problems such as the presence of strong mineral acid and prolonged
heating at elevated temperature or the fact that sulfamide is not readily soluble in aprotic
solvents. Poor sulfamide solubility in aprotic media can be evaded by the use of its substi-
tuted analogue-N,N’-bis(trimethylsilyl)sulfamide prepared from SO2Cl2 and NH(SiMe3)2.
To remove the silyl groups from the product and force the reaction to proceed, a stoichio-
metric amount of BF3·Et2O complex is required. This synthetic procedure does not involve
strong acid catalyst and is performed efficiently at room temperature, thus providing an
excellent alternative for heat-sensitive substrates with functional groups incompatible with
strong mineral acids [64].

Another alternative for strong mineral acids may be the use of heteropolyacids (HPAs),
more precisely, a commercially available and cheap Keggin-type molybdophosphoric
acid H3PMo12O40·nH2O [74]. Reactions carried out with this catalyst can be performed
in a solvent-free fashion, making them an attractive, green, and environment-friendly
alternative to the conventional solvent-based approaches. Efforts are being made to develop
a silica-supported version of this catalyst to further decrease the catalyst load required
for the efficient dioxothiadiazole synthesis. Microwave-assisted synthesis has also been
proposed and successfully applied in dioxothiadiazole base-mediated preparations [77].

When it comes to oxidations of pre-existing thiadiazoles and oxothiadiazoles to the
respective dioxides, there is only one exclusive route involving mCPBA reported in the
literature [21,78]. There is also a possibility of transforming 1,2,5-dioxothiadiazolines back
to dioxothiadiazoles with the use of KO2 in THF or NaOEt in DMF [67,79].
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4. Reactivity
4.1. Reactivity toward Nucleophiles

Although the dioxothiadiazole ring is stable enough for sublimation at temperatures
up to 300 ◦C, elevated temperature can decompose it, liberating SO2 and leaving two
nitrile groups or a thiadiazole ring. This reaction was successfully applied in gram-scale
preparations of dinitriles [65,80,81].

The 1,2,5-dioxothiadiazole ring is especially vulnerable to nucleophiles, and additional
reactions of various nucleophiles to the C=N double bond are described. In fact, this
reaction is so favorable, it occurs spontaneously in EtOH or EtOH/MeCN solutions of 3,4-
diphenyl- or 3-methyl-4-phenyl-1,2,5-thiadiazole 1,1-dioxide [82–84]. This has proven to be
a general reactivity of 3,4-substituted-1,2,5-thiadiazole 1,1-dioxides toward alcohols; many
examples of addition of primary and secondary alcohols were presented and described in
details, providing equilibrium constants for these reactions [68]. The same equilibrium and
addition to double C=N bond can be observed for primary/secondary amines and amides;
see Figure 5 [85,86].

Figure 5. Addition of soft nucleophiles (primary and secondary alcohols, amines, and primary
amides) to the C=N double bond of 3,4-diphenyl 1,2,5-thiadiazole 1,1-dioxide [68,82–86].

Products of such additions are not stable and exist only in solution. However, for
some nucleophiles, this reversible addition to both C=N double bonds may lead even to
an irreversible ring cleavage with the release of sulfamide molecules when the reaction is
carried out in anhydrous MeCN or DMF at room temperature; see Figure 6 [85,87]. Double
additions can also be achieved using urea (or thiourea) and its substituted analogues to
furnish the bicyclic products presented in Figure 7 [73,86].

Figure 6. Double addition of soft nucleophiles to C=N bonds in 3,4-diphenyl 1,2,5-thiadiazole
1,1-dioxide followed by the heterocyclic ring cleavage [85,87].
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Figure 7. Double addition of substituted ureas/tioureas to C=N bonds of 3,4-diphenyl 1,2,5-
thiadiazole 1,1-dioxide [73,86].

Cyanide ions are capable of mono or double addition to the 1,2,5-dioxothiadiazole
1,1-dioxide ring at positions 3 and 4 depending on the molar ratio of the heterocycle and the
nucleophile. Unstable adducts can be recovered by the addition of methyl iodide to capture
substituted N-methylated thiadiazoline and thiadiazolidine oxides, respectively [88]. The
addition of alkyl halides to the solution of 3,4-diphenyl-1,2,5-thiadiazole 1,1-dioxide in
methanol and subsequent treatment with thiourea in acidic media yields N-alkylated
thiadiazoline oxides [89].

The C=N double bond can also be functionalized with alkyl and aryl Grignard reagents.
Although the addition proceeds smoothly with no side reactions, products are reported to
be unstable in the chromatographic purification (silica gel) and must be used as crudes for
further reactions such as reduction with sodium borohydride to achieve thiadiazolidine
dioxides [90].

An AlCl3–catalyzed addition of aromatic nucleophiles to the C=N bond of 3,4-diphenyl
1,2,5-thiadiazole was successfully carried out in DCM at room temperature yielding substi-
tuted 1,2,5-thiadiazolines in moderate to good yields (Figure 8) [46,91].

Figure 8. AlCl3 catalyzed addition of phenols to the C=N double bond of 3,4-diphenyl 1,2,5-
thiadiazole 1,1-dioxide [46,91].

When chiral reagents based on enantiopure binol and rhodium catalysts are used
together with vinylboronic acids, this addition to the dioxothiadiazole heterocycle can
be performed in a stereo-controlled manner to yield optically active 1,2,5-thiadiazoline
1,1-dioxides with 90+% yields and ee exceeding 90% [76].

Aromatic rings as substituents at positions 3 and 4 can undergo intramolecular cy-
clization/aromatization (Scholl reaction) catalyzed by strong Lewis (AlCl3) or Brønsted
(HClSO3/H2SO4) acids. However, this reaction suffers from some limitations regarding the
substrates and was only successfully applied in two cases: 3,4-diphenyl 1,2,5-thiadiazole
1,1-dioxide and 3,4-di(naphthalen-2-yl)-1,2,5-thiadiazole 1,1-dioxide [92].

As a result of the strong electron-withdrawing nature of the sulfonyl group, any
alpha hydrogens at carbon positions 3 and 4 are very acidic and can easily be removed in
basic environment to form tautomeric thiadiazoline carbanions that can be isolated by the
addition of strong acids such as TFA (Figure 9) [93].
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Figure 9. Abstraction of proton from methyl group of 3-methyl-4-phenyl 1,2,5-thiadiazole 1,1-dioxide
with the formation of tautomeric carbanion followed by the separation of a 3-methylene-4-phenyl-
2,3-dihydro-1,2,5-thiadiazole 1,1-dioxide by the addition of strong acid [93].

The reduction of dioxothiadiazoles to dioxothiadiazolidines proceeds smoothly with
the use of hydrogen and Adams’ catalysts (PtO2) [75]. Double bonds of 1,2,5-thiadiazole
dioxide can also be oxidized to furnish fused bis-oxaziridine derivatives (Figure 10) [3].

Figure 10. Oxidation of C=N bonds in 3,4-dimethyl 1,2,5-thiadiazole 1,1-dioxide with mCPBA leading
to bis-oxaziridine [3].

The abstraction of two oxygen atoms and reduction to parent 1,2,5-thiadiazole was
performed for [1,2,5]thiadiazolo[3,4-f]-4,7phenanthroline 2,2-dioxide through extensive
heating (285 ◦C) in vacuum for a prolonged time (15 h) in a sealed Pyrex tube with a partial
decomposition of the initial compound. Product was collected via sublimation [43].

4.2. Radical Anion Formation and Electrochemistry

One of the most researched and important features of dioxothiadiazoles is their
rich and interesting electrochemistry, which is heavily influenced by the substitution
of the heterocyclic ring at the carbon atoms. Several methods have been developed to
produce radical and dianionic species and investigate how structural changes influence the
electrochemical behavior of dioxothiadiazoles.

Anion radicals can be generated by electrochemical methods or with the use of com-
mon laboratory reducing reagents including CN−, SCN−, OCN−, I−, OH−, t-BuO−, amines
(triethylamine, ethanolamine, hexamethylenediamine, and N,N-dimethylaminoethylenedia
mine), and even amides (formamide, N-methylformamide DMF, acetamide, or urea) [42,59].
Electrochemical reduction performed in a controlled potential electrolysis fashion can yield
almost quantitative amounts of radicals, with net charge close to one Faraday per mole,
indicating that almost no side processes are taking place. In aprotic solvents (DMF, DMSO,
MeCN, or DCM) some of the radicals are stable for prolonged periods of time (up to several
days), even in the presence of water and oxygen, in dry solvents, they are stable almost
indefinitely. The stability of the radical anions depends on the solvent used and decreases
in the following series: DMF > DMSO > MeCN >> DCM [48]. It is noteworthy that the
use of highly nucleophilic reductors, such as cyanide, may result in the formation of side
products by addition to the C=N double bond of the heterocycle. Therefore, sterically
hindered reducing agents are preferred, as they allow for better selectivity of anion radical
formation; however, even the change of the cation in the system (e.g., KCN vs. LiCN) may
play an important role in avoiding the addition reaction [42]. Finally, radical anions of
dioxothiadiazoles can be generated with moderate yields in the photochemical approach
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using the wavelength of around 254 nm and DMF as a solvent [48]. However, reduction is
taking place because of the initial radical formation involving DMF molecules that further
reduce dioxothiadiazole species. This might be followed by side reactions originating
from the photodegradation of DMF which makes the photochemical radical formation
unappealing for preparative or practical use.

Typically, two distinct, reversible reduction events can be observed for any dioxothiadi-
azole within the MeCN electrochemical window. Reduction to radical anions usually takes
place at around−0.5 V vs. Fc/Fc+ and is followed by the second reduction to a diamagnetic
dianion at around −1.3 V [14,21,43,44,48,51,60,94]. It is noteworthy that most thiadiazoles
cannot be reduced twice at all and are hardly even reduced to monoanions [21,43,44,94,95].
Electrochemistry, HOMO, and LUMO levels can be easily manipulated and tuned by the
introduction of electron-withdrawing substituents such as bromine atoms [45,48].

5. Magnetic Properties of Dioxothiadiazole Radical Anions

Due to the exceptional stability of the dioxothiadiazole radical species, they can
be studied using standard techniques such as electron paramagnetic resonance (EPR)
or magnetometry. The same applies to their compounds: metal salts and coordination
complexes. The following section will summarize and discuss all relevant radical anion-
based magnetic materials.

5.1. Electron Paramagnetic Resonance

There are several reports providing some insights into the stability and structure of the
anion radical species based on the 1,1-dioxo-1,2,5-thiadiazole motif [42,48,59]. In general, g
factors for radicals based on dioxothiadiazoles vary within the range of 2.002–2.009. This
indicates that the unpaired electron responsible for its formation is delocalized. Hyper-
fine coupling constants for nitrogen atoms of the 1,1-dioxo-1,2,5-thiadiazole ring aN of
around 2.5–4 G are usually present in EPR spectra of these anion radicals [14,42,43,51,59].
The presence of the -NO2 group in the structure of the radical backbone, even if it is
seemingly distant from the dioxothiadiazole ring, is enough to draw a major part (about
2/3) of the electron spin density toward it, affecting the g factor value and EPR spectra
because of stronger interaction with nitrogen atom reflected in strong (ca. 11 G) hyperfine
coupling [59].

5.2. Magnetometry

Having an unpaired electron, anion radicals based on 1,2,5-dioxothiadiazole 1,1-
dioxides are paramagnetic. Therefore, they can interact magnetically with other spin
carriers in the solid state, leading to peculiar magnetic behaviors, including the long-range
ferro-/antiferromagnetic ordering. This line of research is well known in the field of
molecular magnetism with many fascinating examples [24,35–41]. Dioxothiadiazoles have
drawn little attention in this regard, and only recently, some interesting results have been
published [43–45,52,53].

Nevertheless, all magnetic systems published so far involve dioxothiadiazoles fused
to a larger π-electronic system such as phenanthroline [14,43–45,52] or pincene [51]. Most
commonly, those systems present antiferromagnetic superexchange coupling with J/kB val-
ues between −13 and −310 K (for the spin Hamiltonian H = −2 JΣSiSi+1), arising from the
magnetic interactions between two π-π stacked dioxothiadiazoles [14,44,45,51]. Figure 11
presents an exemplary χT(T) dependence for π-π stacked structure of K+[4,7-tdapO2]− [43]
due to the very strong antiferromagnetic interactions between the radical anions. Ferromag-
netic interactions are also observed with J/kB value in the 6–24 K range [14]. In light of this
information, it becomes clear that for this type of system, stacking interactions are crucial
for the successful design of molecule-based magnets with desired magnetic properties.
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Figure 11. Typical χT(T) dependence (red stars) recorded at 1000 Oe for K+[4,7-tdapO2]− [42]
(a) showing the importance of the π-π stacking interactions (b) as efficient magnetic interaction
pathways. The solid line in (a) is a simulation assuming local antiferromagnetic interactions between
two 4,7-tdapO2

− radical anions (g = 2.00) with J = −250 cm−1 (H = −2 JS1S2).

6. Magnetic Materials with Dioxothiadiazoles as Ligands

Two significantly different classes of compounds can be distinguished among ex-
amples of dioxothiadiazole-based magnetic materials: organic and alkali metal salts of
dioxothiadiazole anion radicals [14,43,44,51] and d-block metal ions coordinated by the
dioxothiadiazoles [43,53]. Most of the coordination abilities of the dioxothiadiazole hetero-
cycle are realized through its oxygen atoms, although there are examples where nitrogen
atoms are also involved in coordination to metal centers. There are numerous exam-
ples of alkali metal salts of dioxothiadiazole anions where K+, Rb+, or Cs+ cations are
interacting with the oxygen atoms of the dioxothiadiazole moiety and a few examples
where nitrogen atoms are utilized together with the oxygen atoms to coordinate to metal
centers [14]. There is also one example of a coordination chain {CuCl2(4,7-tdapO2)}n (4,7-
tdapO2 = [1,2,5]thiadiazolo[3,4-f][4,7]phenanthroline 2,2-dioxide) where copper ions are
coordinated by one nitrogen of the dioxothiadiazole unit and one nitrogen atom of the
4,7-phenanthroline backbone and the diamagnetic 4,7-tdapO2 ligand acts as a molecular
bridge (Figure 12) [43]. Magnetic measurements for {CuCl2(4,7-tdapO2)}n revealed that
it behaves as a magnetic chain with CuII···CuII antiferromagnetic interactions transmit-
ted through the bridging ligand, dominating the magnetic properties of the compound.
Dioxothiadiazole moiety can contribute to the functionality of the designed coordination
complexes by utilizing its rich electrochemistry to tune the properties of the material. An ex-
ample of such use of dioxothiadiazoles is a series of complexes of [1,2,5]thiadiazolo[3,4-
f][1,10]phenanthroline 2,2-dioxide (1,10-tdapO2) with CuII ions where the metal was coordi-
nated by two 1,10-tdapO2 moieties with different valence states: solely neutral 1,10-tdapO2
in {[CuIICl(1,10-tdapO2)](µ-Cl)2[CuIICl(1,10-tdapO2)]}, mixed neutral and radical 1,10-
tdapO2 in [CuIICl(1,10-tdapO2

−)(1,10-tdapO2)]·2MeCN and solely radical 1,10-tdapO2
−

in PPN[CuIICl(1,10-tdapO2
−)2]·2DMA (DMA = dimethylacetamide; PPN = bis (triph-

enylphosphine) iminium cation); see Figure 13.
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Figure 12. Schematic structure of {CuCl2(4,7-tdapO2)}n chain with 4,7-tdapO2 molecules acting as diamagnetic bridges
between the CuII metal ions [42].

Figure 13. A family of CuII-1,10-tdapO2 complexes where the 1,10-tdapO2 ligands exhibit different valence states: two
neutral ligands in a CuII

2 dimer (a), CuII complex with one neutral and one radical anion (b) and a similar CuII complex
with two radical anions (c) [53].

An interesting point was made about the redox potentials of the 1,10-tdapO2 molecule
changing upon the coordination to the positively charged, electron-withdrawing metal
ion. This change was found to be about +300 mV as compared to the free ligand with
the first reduction potential at around −520 mV vs. Fc/Fc+. In terms of the magnetic
properties, the three reported compounds are paramagnetic and show antiferromagnetic
interactions, which are revealed as the decrease of the χT(T) product while cooling. In
the case of the system with mixed neutral and radical 1,10-tdapO2 ligands, [CuIICl(1,10-
tdapO2

·−)(1,10-tdapO2)]·2MeCN, its magnetic properties are dominated by strong antifer-
romagnetic interaction between the neighboring 1,10-tdapO2 radical anions rather than the
intramolecular 1,10-tdapO2-CuII ones, showcasing the crucial character of intermolecular
1,10-tdapO2···1,10-tdapO2 contacts in the construction of dioxothiadiazole-based magnetic
materials [53].

Overall, the dioxothiadiazoles are underexplored when it comes to the design and
construction of magnetic materials in combination with paramagnetic metal ions. However,
taking into account their rich electrochemistry and chemical tunability, as well as the
possibility to form stable radical anions, the library of new switchable compounds is
expected to be expanded extensively in the near future.

7. Other Properties and Applications
7.1. Organic Semiconductors

As a result of their rich electrochemistry, dioxothiadiazoles are considered as good
candidates for the construction of n-type organic semiconductors [21,51,60]. The chemistry
and physical properties of molecules with this particular heterocycle are most commonly
discussed in light of electrochemical features: low-lying HOMO and LUMO energy levels,
making them good candidates for the n-type electron-transporting organic materials. Small
organic molecules acting as n-type semiconductors are of special research interest as they
are necessary for the preparation of purely organic electronics and are not studied as
extensively as their p-type counterparts [21,60]. The rigid and flat heterocyclic ring of
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dioxothiadiazoles might also improve the mechanical properties of the designed materials
and their overall crystallinity.

7.2. Medical and Other Studies

Several different molecules containing dioxothiadiazole moieties have been used in
biochemical research as ligands for specific biological targets, for example: CXC- and
CC-chemokine receptors in cancer treatment [96,97], 11C-labeled radiotracer for selective
norepinephrine transporter imaging in PET of cardiac sympathetic nerve system evalu-
ation in patients with heart failure or Parkinson’s disease [98], or histamine H2-receptor
agonists [62,78,99].

Due to the electrochemical activity of dioxothiadiazoles, the phenanthro[9,10-c]-1,2,5-
thiadiazole 1,1-dioxide was tested for its application as a non-toxic corrosion inhibitor for
copper in acidic media [100].

8. Conclusions and Perspectives

Dioxothiadiazoles present reactivity and properties very different from their parent
thiadiazole analogues. The presence of the sulfonyl group strongly influences the elec-
trochemical behavior of these molecules, enabling easy access to paramagnetic radical
monoanions. This feature together with the possibility of a straightforward chemical mod-
ification at the carbon atoms makes this class of compounds very attractive as potential
building blocks for the construction of tuneable functional molecular magnets. The incor-
poration of dioxothiadiazoles into more complex multinuclear coordination compounds
might result in fascinating switchable materials with valence tautomerism, while the
polymerization of dioxothiadiazole units might lead to all-organic conductive/magnetic
materials. Another research direction might be the merging of multiple dioxothiadiazole
groups within a small carbon-based backbone with the aim of reaching organic molecules
with multiple valence states. Such molecules would have at least two dublet states (two
different S = 1/2 states) and possibly a triplet state (S = 1 state).
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