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Abstract: Quaternary perovskite solar cells are being extensively studied, with the goal of increasing
solar cell efficiency and securing stability by changing the ratios of methylammonium, formami-
dinium, I3, and Br3. However, when the stoichiometric ratio is changed, the photoelectric properties
reflect those of different materials, making it difficult to study the physical properties of the quaternary
perovskite. In this study, the optical properties of perovskite materials with various stoichiometric
ratios were measured using ellipsometry, and the results were analyzed using an optical simulation
model. Because it is difficult to analyze the spectral pattern according to composition using the
existing method of statistical regression analysis, an artificial neural network (ANN) structure was
constructed to enable the hyperregression analysis of n-dimensional variables. Finally, by inputting
the stoichiometric ratios used in the fabrication and the wavelength range to the trained artificial
intelligence model, it was confirmed that the optical properties were similar to those measured with
an ellipsometer. The refractive index and extinction coefficient extracted through the ellipsometry
analysis show a tendency consistent with the color change of the specimen, and have a similar
shape to that reported in the literature. When the optical properties of the unmodified perovskite
are predicted using the verified artificial intelligence model, a very complex change in pattern is
observed, which is impossible to analyze with a general regression method. It can be seen that this
change in optical properties is well maintained, even during rapid variations in the pattern according to
the change in composition. In conclusion, hyperregression analysis with n-dimensional variables can be
performed for the spectral patterns of thin-film materials using a simple big data construction method.

Keywords: perovskite; stoichiometry; optical properties; ellipsometry; neural network; deep learning;
hyper regression; backpropagation

1. Introduction

Lead–halogen perovskite materials are being increasingly used in solar cells as light
absorbers. Such materials were first reported in 1978, and their utility in opto-electronic
fields has been studied by applying them to devices such as photodetectors and lasers [1–6].
Owing to the advantageous optical and electrical properties of these materials, they have
been the focus of considerable interest, especially in the photovoltaic industry. The first
solar cell manufactured using the organic–inorganic lead halide perovskite compounds
CH3NH3PbBr3 and CH3NH3PbI3 was reported to have an efficiency of 3.81% [7]. Although
the efficiency of the first perovskite solar cell was very low, the photovoltaic effect was
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confirmed. Various syntheses and device structures have been investigated to increase the
power-generation efficiency of perovskite solar cells. The highest efficiency recorded in this
structure was 25.7%, in which reliability was ensured even after 500 h [8–14]. Inexpensive
solar cells can be manufactured if perovskite solar cell efficiency can be increased and its
reliability improves. Hence, various studies related to perovskite have been conducted.
Recently, multi-junction solar cells have been studied to maximize their power conversion
efficiency using perovskite materials [15].

Currently, the most widely used perovskite material for manufacturing solar cells
is methylammonium lead iodide (CH3NH3PbI3). This is a metal halide perovskite with
a cubic crystal structure, and is expressed as ABX3. A solar cell composed of such a
perovskite material has limited power conversion efficiency. When exposed to moisture,
MAPbI3 material forms monohydrate and dihydrate, and finally decomposes into PbI2.
It has been reported that it is easily decomposed even at 85 ◦C or higher [16–18]. To
solve this problem, research using other organic ions was attempted by replacing methyl
ammonium (MA; CH3NH3) with suitable materials. An alternative organic ion typically
used in perovskite ion replacement studies is formamidinium (FA; CH(NH2)2+). FAPbI3
material crystallizes above 150 ◦C and changes from a hexagonal structure (yellow δ–phase)
to a trigonal structure (black α–phase) [19]. The use of FA organic ions improves the
power conversion efficiency of solar cells [20,21]. However, it has been reported that
the color of the FA material changes with time, resulting in the deterioration of solar
cell characteristics, which lowers the stability of perovskite solar cells [22]. To solve this
problem, a study was conducted to increase efficiency and stability using a mixture of MA
and FA materials [23]. Similarly, recent studies have replaced iodine with other substances,
mainly bromide [24]. Currently, perovskites with satisfactory optoelectronic properties are
produced with the generic chemical formula of MAxFA1−xPb(IyBr1−y)3, defined by the
quaternary stoichiometric ratio.

Generally, the perovskite material is deposited using a spin-coating method on a
glass substrate coated with ITO after the stoichiometric ratio is adjusted using a liquid
precursor. Thereafter, the deposited perovskite is transformed and grown into a multi-
crystalline phase during the solidification process. However, this irregularly changes the
chemical composition inside the perovskite over the entire deposited layer. This non-
uniformity of the chemical composition inside the perovskite material creates differences
in the chemical properties of each crystal in the crystallized perovskite. These results show
that, unlike general single-crystal materials, crystallized perovskite materials have statistical
chemical composition, making it difficult to accurately define their chemical properties. The
statistical chemical composition characteristics of quaternary perovskite create variations
in the experimental conditions depending on the researcher, manufacturing environment,
and process sequence. Owing to these variable conditions, it is very difficult to accurately
achieve the target chemical composition of the perovskite.

Typically, to determine the optimal conditions for a thin-film solar cell, it is necessary
to accurately check the optoelectronic properties of the materials constituting the individual
layers. When the information regarding these photoelectric properties is inaccurate or insuf-
ficient, it is necessary to check the power conversion efficiency by manufacturing thin-film
solar cells for all chemical compositions of the perovskite. To reduce the amount of experi-
mentation, numerical simulations must be performed with accurate information about the
materials applied to the manufacturing equipment to predict the potential performance
of certain process variables. From an optical point of view, the optimal thickness of the
perovskite material for absorbing sunlight must be considered to increase the performance
of thin-film solar cells in numerical simulations. In addition, the optical diffraction charac-
teristics due to the difference in refractive index between the hole transport layer, electron
transport layer, and ITO thin films in contact with the perovskite should be considered. In
particular, the electrical conductivity of perovskite materials depends on the direction of
growth of the crystals. Therefore, from the electrical point of view of the thin-film solar
cell, applying a thick perovskite may increase the overall resistance and deteriorate the
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performance of the device. In numerical simulations, the necessary details to determine
the optimal thickness of the light absorption layer are the refractive index and extinction
coefficient according to the change in the wavelength of the perovskite material.

Considering these factors, it can be said that the fabrication of a stable and reliable per-
ovskite is essential for research. However, the physical properties of quaternary perovskite
materials vary according to the environmental conditions in the research [22]. In particular,
because the environmental variables applied in the perovskite solidification process are
very diverse, it is difficult to manufacture the same perovskite material as reported in
literature if the environmental conditions and apparatus differ from those in the original
research. Hence, it is generally difficult for researchers to use the reported composition
values interchangeably, because there may be differences in the chemical composition of
the final perovskite product, even if the same experimental process as that reported in the
literature is followed. In summary, because the optimal stoichiometric ratio in the process
of manufacturing a quaternary perovskite solar cell depends on the research environment,
it is recommended that researchers not apply results reported in literature without ver-
ification; instead, they must fabricate a device for each chemical composition under the
same environmental conditions and evaluate its performance. However, in reality, it is
very difficult for an individual researcher to conduct studies under all conditions; hence, a
method for predicting the physical properties of the quaternary perovskite depending on
changes in composition is required. If the distribution of optical properties of perovskite
is defined through reliability-based prediction of physical properties, a different chemical
composition can be selected according to the purpose of light absorption of each solar cell.
For example, even in the case of a solar cell using a single junction and multiple junctions,
the composition of the perovskite optimized for each condition is different because the light
absorption target changes. To select the chemical composition of perovskite to optimize the
optical properties of each solar cell, experimental data for all compositions are required.
However, it is very difficult to fabricate and analyze a solar cell because the conditions of
these experiments are very diverse. The prediction of these properties enables the efficient
design of experiments, and reliable optimal points can be identified in the environments of
individual researchers.

The method of identifying a trend based on discrete data is widely used in the fields
of natural science and data science. If this tendency is identified and expressed in the form
of a linear equation, it is possible to predict the change before and after the current point in
time. However, it is difficult to establish a regularity that can satisfy a linear equation for
the optical pattern characteristics of each spectrum, expressed using the refractive index
and extinction coefficient. From the human cognition point of view, this irregular change
in the spectrum can be recognized as having a certain tendency; however, expressing the
irregularity as a linear equation requires high-level mathematical skills and exceptional
conditions. The creation of such a mathematical model requires considerable research effort.
Moreover, because the constructed model can predict only in a very limited range, a wide
range of models suitable for the various environments of individual researchers needs
to be generated, which is difficult. Therefore, a technology based on machine learning,
which is currently widely used in data science, is required to define the regularity based
on the changes in the irregular physical properties of perovskite and predict its properties
according to the changes in the chemical composition.

Currently, machine learning-related research is being actively conducted, and many
results have been reported in the fields of traffic speed prediction, medical image screening,
and wind speed forecasting [25–27]. In the field of materials science, it has been shown
that the material design process can be drastically reduced using machine learning al-
gorithms [28–32]. A study was conducted by the photovoltaic industry to predict the
environmental conditions and performance of a power plant in real time using machine
learning technology [33,34]. Machine learning-based methods have been applied to the
photovoltaic industry to develop a forecasting technology for a target result to be achieved
in a specific period [28,35,36]. Nasim et al. reported the results of applying neural network
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learning by constructing big data as a result of simulating the power conversion efficiency
according to the change in the thin film thickness and energy bandgap of the perovskite
solar cell in the SCAPS-1D program [35]. It is impossible to predict multidimensional data
such as optical properties, because only simple values can be predicted in the form of con-
version efficiency, which is scalar data, for a specific input thin film condition. In the case of
Nelson et al., the optical characteristics according to the arrangement of perovskite nano
particles were learned by artificial intelligence using the results of ï¬nite difference time
domain (FDTD) simulation, and the results showed low reliability [36]. Since these methods
basically use equation-based simulation programs, big data configuration is possible, but
problems occur in the definition of the neural network learning model and data, and thus
show low reliability. Convolutional neural network (CNN) technology is widely applied in
the development of forecasting technology in the solar industry [28]. It is mainly used for
two-dimensional images, and is capable of detecting internal objects and classifying them
according to their features Although this method is suitable for image processing, it is too
complicated to be used for predicting optical properties in the field of materials science.
To solve this problem, we need to rebuild the fundamental principles of machine learning
technology. In this study, a big data structure for learning a predictive model is first defined
using optical spectral data extracted from actual fabricated perovskite. This is the world’s
first implementation of hyperregression technology that can easily build high-reliability
artificial intelligence models from big data.

Considering the principle of the basic error backpropagation algorithm in the machine
learning method, the neural network route with the least error is selected to discover the
association between the observable variables. This process is similar to the linear regression
commonly used in statistics. Regression analysis is used to explain the linear relationship
between two-dimensional discrete data, and as the shape of the data becomes increasingly
complex, the analysis is performed using a polynomial regression model. This analysis
is verified through a visualization process using graphs, called curve fitting. Because the
statistical regression method defines the relationship between the variables, it is difficult
to visualize the three-dimensional or higher-order data, which makes it difficult to apply
the regression equation. To solve this problem, it is necessary to develop a technique for
selecting the neural network route with the least error for high-dimensional data using
machine learning technology.

Because numerous types of variables are related to the optical properties of perovskite
materials, the properties can be predicted using machine learning technology by processing
the optical property information with n-dimensional variables. In this study, we developed
a regression technique using an ANN, which can analyze the relationship between variables
in a high-dimensional data structure such as in hyperregression analysis. The characteristic
of hyperregression analysis is that only the prediction within the measured boundary range
is valid; therefore, it is useful for data analysis within a certain composition range where
the physical limits are defined, such as the stoichiometric ratio. In this study, a quaternary
perovskite material was prepared, and the optical properties were analyzed according to
the stoichiometric ratio. Through ellipsometry analysis, the refractive index and extinction
coefficient of the perovskite material were extracted according to the stoichiometric ratio
and visualized according to the change in the quaternary system. In addition, the optical
properties of the perovskite materials were predicted through hyperregression analysis in a
three-dimensional or higher-order data structure using the error backpropagation algorithm
in an ANN structure. The hyperregression analysis developed in this study can be used to
predict the characteristics even in an environment in which various n-dimensional variables
are applied. This will enable researchers to develop artificial intelligence for predicting
physical properties, because an adequate amount of big data can be collected even with a
small amount of data that would be deemed insufficient for learning in optical spectrum
pattern analysis using the CNN technology.
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2. Experiment
2.1. Sample Preparation

As shown in Figure 1a, we used a soda–lime glass substrate uniformly coated with
200 nm of ITO. The thickness of the substrate was 0.8 mm and the thin film stacking area
was 25 mm × 25 mm. Perovskite was deposited on the substrate by the spin-coating
method, and nine specimens were prepared with three FA and iodine compositions by
adjusting the stoichiometric ratio.

(a) (b) (c)

Figure 1. Perovskite material specimen defined by quaternary stoichiometric ratio; (a) thin-film
laminated structure of specimen; (b) optical model structure for ellipsometry; (c) Perovskite samples.

2.1.1. Perovskite Precursor Solution Preparation:

The materials used for perovskite precursor solutions preparation include PbI2
(Sigma-Aldrich, St. Louis, MI, USA), PbBr2 (Sigma-Aldrich), CH3NH3I (MAI) (Greatcell Solar),
CH3NH3Br (MABr) (Greatcell Solar), CH(NH2)2I (FAI) (Greatcell Solar), CH(NH2)2Br (FABr)
(Ossila), dimethyl formamide (DMF) (Sigma-Aldrich), and dimethyl sulfoxide (DMSO) (Sigma-
Aldrich). All the chemicals used were anhydrous and were used as received without further
purification. A total of nine perovskite precursor solutions were prepared as given in
Table 1. Adopting the solution stoichiometry aspects from a perovskite compositional space
exploration study by Jacobsson et al. [37], the molar concentration of the [Pb2+] in final
solution was kept at a molar ratio of 1.25, which was higher than the accumulative molar
concentration of organic salts, i.e., FA and MA. Precisely, the [Pb2+]/([MA] + [FA]) ratio
for all precursor solutions was 1.1. The molar concentration for each precursor for each
perovskite composition is given in Table 1 for 1mL solvent mix of DMF/DMSO (ratio 1
to 4). All the solutions were prepared in a nitrogen filled-glovebox. After weighing the
precursors, the solutions were stirred for 3 h at room temperature inside the glovebox.

Table 1. Molar concentrations of the precursors in the perovskite precursor solution of each composition.

Perovskite Compositions
Molar Concentration of Precursors in Respective Compositions

MAI MABr FAI FABr PbI2 PbBr2

FAPbI3 0 0 1.14 0 1.25 0
FAPbI1.5PbBr1.5 0 0 0.57 0.57 0.625 0.625
FAPbBr3 0 0 0 1.14 0 1.25
FA0.5MA0.5PbI3 0.57 0 0.57 0 1.25 0
FA0.5MA0.5PbI1.5PbBr1.5 0.285 0.285 0.285 0.285 0.625 0.625
FA0.5MA0.5PbBr3 0 0.57 0 0.57 0 1.25
MAPbI3 1.14 0 0 0 1.25 0
MAPbI1.5PbBr1.5 0.57 0.57 0 0 0.625 0.625
MAPbBr3 0 1.14 0 0 0 1.25

2.1.2. Substrate Preparation:

As a substrate, we used a commercially available ITO glass with sheet resistance of
about 10 Ohm/sq., 0.7 mm thick soda lime glass, and 200 nm thick indium-doped tin
oxide (ITO). The substrates were cut to 25 mm × 25 mm sizes and then ultrasonicated
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in a bath of deionized water, acetone, and ethyl alcohol for 15 min each to remove any
impurities from the ITO surface. The remnant ethanol from the sonication process was
dried by nitrogen blowing, followed by further drying in a heat oven at 80 ◦C for 10 min.
The ITO surface is highly hydrophobic; therefore, just before the perovskite deposition, the
ITO surface was subjected to an ozone plasma treatment for 15 min at 400 W power. This
step ensures the removal of residual organic substances from the ITO surface as well as
making it hydrophilic for good coverage of perovskite during the spin-coating step.

2.1.3. Perovskite Deposition:

Next, 100 µL of the prepared perovskite solution was poured and spread onto the
ozone-plasma-treated ITO glass. The substrate was rotated at 1000 rpm for 10 s with a
5 s ramp, followed by spinning at 4000 rpm for 30 s with a 2 s ramp. Using a pipette
with a pipette tip cut to a relatively larger hole size of 100 µL, anhydrous chlorobenzene
(Sigma-Aldrich), an anti-solvent, was delivered uniformly onto the center of the rotating
substrate approximately 15 s before the end of the spinning. This step normally introduces
change of color of the film due to supersaturation, and after spin-coating, the films were
immediately heat-treated at 100 ◦C for a time duration between 30 and 60 min depending
upon the composition used. One exception was the case of the FAPbI3 sample, which
was heat treated at 150 ◦C for 15 min because it needs a higher temperature to form an
alpha phase. As the substrate is put on a hot plate, the transformation of the perovskite
precursor film to perovskite is visually observable within first few seconds to a minute,
depending upon the composition. After heat treatment, the samples were cooled down to
room temperature and then sent for further analyses.

2.1.4. Sample Preparation for SEM Analysis:

The samples for scanning electron microscopy (SEM) analysis were prepared according
to the procedure described in Fabrication Process section. However, the samples were cut
to expose their cross-sections. The samples were mounted onto a SEM sample holder and a
thin osmium coating was applied via chemical vapor deposition (CVD) for better visibility
and to prevent sample charging during SEM analysis. The SEM analysis was conducted on
a NovaNano SEM 450/FEI equipment.

2.2. Ellipsometry Analysis

Variable-angle spectroscopic ellipsometry and spectrophotometer measurements were
performed on the specimens, as shown in Figure 1c. A phase-modulated spectroscopic
ellipsometer (SEMILAB, GES5-E) was used to determine the refractive index and extinction
coefficient of the quaternary perovskite material (MAxFA1−xPb(IyBr1−y)3). The ellipsome-
ter used in the study had a spectrum range of 245–976 nm, beam spot >1.5 mm, and
measurement accuracy of sub-Å ∼10 µm. Considering the Brewster angle of the perovskite
specimen, the ellipsometry incident beam angle was set to 75◦. In the ellipsometer measure-
ment process, various characteristics, such as surface roughness, void content, texture, and
bulk composition inhomogeneity of the perovskite material, were measured. An optical
model using a Semilab spectroscopic ellipsometry analyzer program was established to
analyze the characteristics of the specimen obtained from the ellipsometer measurement
process. The Bruggeman effective medium approximation (EMA) model was applied to
analyze the influence of the irregular texture structure caused by the surface roughness of
the perovskite material [38,39]. The EMA model is used very frequently in ellipsometry
analysis. If the optical layer is mixed in the thin-film structure, it is approximated by mixing
the optical information of the individual components to calculate the optical properties of
the layer. In this study, the empty space outside the specimen was defined as a void, and
the rough perovskite surface was mixed with the values defined in the bulk dispersion
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optical layer model. The Bruggeman equation related to the effective refractive index (ne f f )
of a two-component system of the studied material is as follows [40].

νV
nV − ne f f

nV + (d− 1)ne f f
+ νPerov

nPerov − ne f f

nPerov + (d− 1)ne f f
= 0 (1)

where the refractive index of the void is nV and that of perovskite is nPerov. The volume
fractions of the two phases are represented by νV and νPerov, respectively. The system
dimensionality is denoted by d, which is 3 for a nanoporous system [41,42]. The total
volume fraction is set to 1, and is expressed as νV + νPerov = 1. The extinction coefficient
can also be expressed as the relational expression in Equation (1).

The modified Forouhi–Bloomer model was applied considering the properties of the
non-parabolic energy dependence of the valence and conduction bands of perovskite and
ITO, and has the following relation [43,44]:

n(E) =
−(B0D + 2C0)E + 2B0F + C0D

(E− D)E + F
(2)

k(E) =
A + B

(
E− Eg

)
+ C

(
E− Eg

)2

(E− D)E + F
(3)

B0 =
B− 2CEg + CD

Q
(4)

C0 =
A− BEg + CE2

g − CF
Q

(5)

Q =
√

4F− D2 (6)

where the law parameters A, B, C, D, and F have positive non-zero values, and Eg represents
the optical energy band gap. A and F have eV2 unit values, and C is a dimensionless constant.

A new Gaussian dielectric function based on the general form of the Voigt function was
applied to define the optical model of amorphous or glass materials [45]. In the new Gaus-
sian optical model, the dielectric constant is defined as the following relational expression:

ε1(E) =
2Amp√

π

[
D
(

E + E0

σ

)
− D

(
E− E0

σ

)]
(7)

ε2(E) = Amp

[
exp

{
−
(

E− E0

σ

)2
}
− exp

{
−
(

E + E0

σ

)2
}]

(8)

where Amp is the oscillator amplitude and E0 is the oscillator peak position. The operator
defined value is denoted by D. The full width at half maximum originating from the Br
oscillator broadening is defined as follows.

σ =
Br

2
√

ln2
(9)

In this study, a Drude model was used to simulate the conduction of quasi-free
electrons in metals or semiconductor materials [38].

ε1(E) = −

(
EP
E

)2

1 +
(

EΓ
E

)2 (10)



Nanomaterials 2022, 12, 932 8 of 27

ε2(E) =
EP
E

(
EΓ
E

)2

1 +
(

EΓ
E

)2 (11)

where EP is the plasma energy and EΓ is the broadening related to the scattering frequency.
The optical model structure of the ellipsometer analysis consists of four layers: glass

substrate, ITO phase, perovskite phase, and EMA phase, as shown in Figure 1b. The glass
substrate was defined as having infinite thickness and was used by applying the well-
known nk value of soda-lime glass, and an optical model was designed using the dispersion
law for the deposited phase. For the second layer comprising the ITO phase, the Drude
and modified Forouhi–Bloomer models were applied to construct the optical model. The
perovskite phase, modified Forouhi–Bloomer model, and Gauss model were applied to the
third layer of the structure. Finally, to reflect the void effect caused by the surface roughness
of the perovskite material, the EMA phase was applied as the fourth layer of the structure.

2.3. Hyperregression Analysis

As shown in Figure 2, the construction of an ANN for performing hyperregression
analysis can be defined as follows:

z1 = (ω1x1 + · · ·+ ωnxn + b) (12)

where x and z denote the neurons of the input and hidden layers, respectively. The weight
of the input signal is expressed as ω, and the neuron threshold, which determines whether
the neural signal is output, is called the bias and is denoted as b. A rectified linear unit
(ReLU) is used as the activation function to generate the output layer for the input layer,
and is expressed as follows:

a(x) =
{

0 for x < 0
x for x ≥ 0

(13)

y1 = a(z1) (14)

CT , MSE =
1
n

n

∑
i=1

(tn − yn)
2 (15)

where a(x) represents the ReLU algorithm. The notation y denotes the neurons of the
output layer and t denotes the neurons of the ground truth layer. CT is the cost function of
the mean squared error (MSE) algorithm. Artificial neural network learning is a process of
minimizing the cost function by adjusting the bias and weights that respond to the neurons.

The process of minimizing the cost function is called optimization, and the process of
continuously calculating and updating the displacement with respect to the slope of the
bias and weight for optimization is called the gradient descent. The minute displacement
for the weight and bias of the input neuron using the gradient descent method can be
expressed as follows:

∆ω1 = −η
∂ f

∂ω1
, ∆b1 = −η

∂ f
∂b1

(16)

(∆ω1, . . . , ∆ωn, ∆b1, . . . , ∆bn) = −η

(
∂ f

∂ω1
, . . . ,

∂ f
∂ωn

,
∂ f
∂b1

, . . . ,
∂ f
∂bn

)
(17)

where η is the learning rate of the deep learning process, and fast learning is possible at a
high learning rate; however, it is necessary to define an appropriate value, as accuracy is
low at very high learning rates.
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Figure 2. Schematic of fully coupled artificial neural network model.

As the number of variables for deep learning increases, the complexity of the gradient
descent method increases, and the partial differential calculation increases exponentially;
therefore, it is difficult to quickly verify the result because the amount of calculation
increases. To solve this problem, the minimum cost function can be derived using the error
backpropagation algorithm. The error backpropagation method defines the slope of the
cost function for each neuron as the error δ. By defining the slope of the cost function
with respect to the weight and bias as the equation for the error δ, the partial differential
calculation of the gradient descent is omitted. In the error backpropagation process, the
output layer is calculated by randomly configuring the weight and bias matrix inside
the ANN, and the cost function is constructed using the MSE algorithm by comparing
it with the verification value. In the generated cost function, an error δ matrix inside the
ANN is constructed for each neuron, and the slope of the cost function with respect to the
weight and bias is calculated. The initial weights and biases are updated to the subsequent
values using the gradient descent method by calculating the differential values of the initial
weights and bias matrices to which the learning rate is applied. The process of calculating
the output layer and updating the cost function is repeated using the updated weights
and biases.

As described earlier, the error backpropagation method can be defined as a repetition
of the error minimization process originating from the difference between the true and
predicted values with various variables, which is, in principle, the same as statistical
regression analysis. The regression analysis shows the linear relationship of discrete data
expressed using two variables; for a complex data distribution, the analysis is performed
using a polynomial regression model. Here, when there are fewer than three variable terms,
the regression can be conveniently analyzed, but when the regression structure has three or
more dimensions, we cannot express it using a visual graph, and it is difficult to perform
regression analysis on the data.

In general, when visualizing the changes in temperature with time, two variable axes
can be set in the graph, and a regression analysis of two-variable data can be performed.
Here, the temperature according to the change in time and atmospheric pressure can be
visualized, as there are three variable axes in the graph, and linear regression analysis
is possible. However, when there are four variable axes in the graph, the temperature
according to the change in time, atmospheric pressure, and chemical composition cannot
be visualized using a general method; thus, regression analysis is difficult. The change in
optical properties according to the stoichiometric ratio of the quaternary compound to be
investigated in this study has many variables; hence, it can be predicted by visualizing
n-dimensional data and performing regression analysis. However, because regression
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analysis is not possible with the current algebraic method, a new method for regression
analysis is required. As shown in Figure 2, the input item in the machine learning algorithm
can be treated as a single variable, and when it increases, the terms of the input layer in the
ANN increase. Therefore, in machine learning, regression analysis is theoretically possible
by defining infinite variables. The regression curve formed using the artificial intelligence
technology increases exponentially according to the number of variables, and the shape of
the curve is such that it cannot be expressed with human cognitive ability. In this study,
using the artificial intelligence technology to perform regression analysis on data where
three or more variables act is defined as hyperregression analysis.

In general, regression analysis through artificial intelligence methods can often be
used to explain data classification and trends. In the case of the optical properties to be
analyzed in this study, because the refractive index and extinction coefficient according to
the change in wavelength comprise one unit of data, artificial intelligence specialized in
pattern analysis is often used to interpret them. In the case of such a CNN-based pattern
analysis, it is difficult to secure a result that is not learned by the classification standard
because it is focused on the classification and discrimination of the shape of the irregular
pattern. To predict the optical properties of perovskite by machine learning, it is necessary
to construct big data based on the actual data and to learn the information stored in these
data. The first problem is configuring big data to perform machine learning. The process of
machine learning generally requires big data with at least 1000 data units. Nine specimens
were prepared in this study; hence, there were nine patterns of the refractive index and
extinction coefficient, constituting a very small quantity of data. It is difficult to use these
data to increase the efficiency of the experiments because a large amount of data is required
to build big data based on patterns.

A key approach to build big data using a minimal set of specimens is to change the
general perspective on the shape of the data. Instead of representing the entire refractive
index pattern according to the wavelength as a single unit of data, if the refractive index
value for each wavelength is represented as a unit of data, it is possible to construct big
data by accumulating a large amount of data despite the small number of specimens. In
conclusion, the parameters for machine learning are defined as the stoichiometric ratio
of MA, FA, I3, and Br3 and the wavelength as input variables, and the corresponding
refractive index or extinction coefficient as the output variable. Through the ellipsometry
analysis used in this study, it is possible to analyze 928 refractive indices and extinction
coefficients for the wavelengths of 244–978 nm at intervals of 1 nm per specimen. By
considering only nine points to produce the minimum number of specimens within the
range of the perovskite composition, as shown in Table 2, 6612 big data were configured
to perform machine learning for the refractive index and extinction coefficient. A data set
was constructed for training and validation. The configured data set was classified into a
training data set of 4408 data points(66.6%), a validation data set of 1102 data points (16.7%),
and a test data set of 1102 data points (16.7%). The data set distribution of FAPbI3 material
was defined as shown in Figure 3. As can be seen in Figure 3a,c, the optical characteristic
pattern of the FAPbI3 material can be confirmed regardless of the type of data set. As can
be seen in Figure 3d,f, the distribution of the specific data set was defined by selecting the
data at intervals of 6 nm in the wavelength band within the AI learning data range and
defining the validation and test data sets.
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Table 2. Big data of refractive index and extinction coefficient composition details according to the
optical properties of perovskite materials by stoichiometric ratio.

Count

Big data of refractive index

Input neuron data Output neuron data

MA FA I3 Br3 Wavelength (µm) n

1 1 0 1 0 0.976372547 2.406349547
2 1 0 1 0 0.975582775 2.406770478
...

...
...

...
...

...
...

928 1 0 1 0 0.244254811 1.523567095
929 1 0 0.5 0.5 0.976372547 2.141620475

...
...

...
...

...
...

...
6612 0 1 0 1 0.244254811 1.501819505

Count

Big data of extinction coefficient

Input neuron data Output neuron data

MA FA I3 Br3 Wavelength (µm) k

1 1 0 1 0 0.976372547 0.029159807
2 1 0 1 0 0.975582775 0.029408273
...

...
...

...
...

...
...

928 1 0 1 0 0.244254811 0.741038184
929 1 0 0.5 0.5 0.976372547 0.021949375

...
...

...
...

...
...

...
6612 0 1 0 1 0.244254811 0.754939147

Thus, we conducted machine learning using the nine results corresponding to the
ellipsometry analysis of the fabricated perovskite samples, and the weight and bias ma-
trix with the minimized cost function were defined by learning of the ANN model. The
refractive index and extinction coefficient corresponding to a wavelength can be confirmed
by inputting the values of the stoichiometric ratio and wavelength used in the experiment
to the learned artificial intelligence model. If these results are repeated using the artificial
intelligence model for wavelengths of 300–900 nm at intervals of 1 nm, a pattern graph
that is almost identical to the optical information analyzed through the specimen can be
obtained. This technique of performing machine learning is called hyperregression analysis,
and in addition to spectral prediction, interpolation approximations of various parts can
be easily derived. Deviating from the concept of pattern-type recognition for the entire
spectrum, the proposed approach achieves results similar to those of the regression analysis
of the tendency of the refractive index and extinction coefficient corresponding to a single
wavelength to change with the increase in FA or Br3.

We used TensorFlow (ver.2.0.0) to perform machine learning, and KERAS (ver.2.2.4)
was applied as the backend module. KERAS was used to construct the ANN, which
adopted a sequential structure. As shown in Figure 2, seven hidden layers were used,
and the number of neurons was configured differently for each layer. ReLU was used for
the activation function of each layer. Multi-GPU calculation was performed to train the
ANN. To perform deep learning, the optimizer applied the root mean square propagation
algorithm modified from stochastic gradient descent. The MSE algorithm was used to
perform a regression analysis for the loss function of machine learning.
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Figure 3. AI training, validation, and test data sets of measured optical properties on FAPbI3 and
learning loss progress with epochs: (a) whole refractive index data set of FAPbI3, (b) AI learning
progress on refractive index of quaternary perovskite with loss and validation loss, (c) whole extinc-
tion coefficient data set of FAPbI3, (d) extension refractive index data set of FAPbI3, (e) AI learning
progress on extinction coefficient of quaternary perovskite with loss and validation loss, (f) extension
extinction coefficient data set of FAPbI3.

3. Results
3.1. Ellipsometry Measurement

As shown in Figure 4, the cross-section of the specimen was measured using SEM
to confirm the thicknesses of ITO and perovskite to be used in the optical model for
ellipsometry analysis. Two samples, FAPbBr1.5I1.5 and MAPbBr1.5I1.5, were damaged during
the preparation for SEM analysis. The bottom layer was a soda-lime glass substrate, and
it can be seen in Figure 4 that an ITO layer with a thickness of approximately 200 nm
was positioned on it. The thickness of the ITO layer was confirmed through the cross-
sectional measurement of the specimen using SEM, and it was defined accordingly in the
ellipsometry optical model.

The fabricated perovskite specimens were measured through ellipsometry, and the
measured results are summarized in the ψ and ∆ shapes in Figure 5. The measured results
included all information of the fabricated perovskite specimen, namely, the surface rough-
ness, perovskite thickness, and optical properties of ITO and the glass substrate. Regarding
the composition of nine perovskites, an optical model reflecting all the information was
established; the results were fitted to the experimental results, and good agreement was
observed over the entire wavelength range.

As shown in Figure 6, the refractive index and extinction coefficient of the perovskite
material were extracted using ellipsometry optical analysis. The optical properties of only
the deposited perovskite were accurately extracted by excluding the optical properties
of the ITO and glass substrates of the manufactured specimen using the optical model
defined above. The extracted refractive index and extinction coefficient were divided into
the compositional ratios according to the stoichiometric ratio.

To confirm the reliability of the optical properties of the perovskite extracted in this
study, they were compared with the optical properties published in a previous study.
Figure 7 shows the comparison between the literature data and measurement results for two
compositions, MAPbI3 and MAPbBr3, which are typically used in quaternary perovskite.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4. Analysis of the cross-sectional structure of quaternary perovskite specimens using SEM:
(a) FAPbI3, (b) FAPbBr3, (c) FA0.5MA0.5PbI3, (d) FA0.5MA0.5PbI1.5Br1.5, (e) FA0.5MA0.5Br3, (f) MAPbI3,
(g) MAPbBr3.
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Figure 5. Measurement results using ellipsometry analysis of quaternary perovskite materials
and optical simulation results: (a) FAPbI3, (b) FAPbI1.5PbBr1.5, (c) FAPbBr3, (d) FA0.5MA0.5PbI3,
(e) FA0.5MA0.5PbI1.5Br1.5, (f) FA0.5MA0.5Br3, (g) MAPbI3, (h) MAPbI1.5Br1.5, (i) MAPbBr3.
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Figure 6. Analysis of optical properties through ellipsometry analysis of quaternary perovskite
materials: (a) refractive index, (b) extinction coefficient.
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Figure 7. The optical property measurement results of the ellipsometry analysis of quaternary per-
ovskite materials in this study were compared with the reference data from previously reported
papers a−e [37,46–49]. (a) refractive index of MAPbI3, (b) extinction coefficient of MAPbI3, (c) refrac-
tive index of MAPbBr3, (d) extinction coefficient of MAPbBr3.

3.2. AI Training Results

As shown in Figure 3b, AI learning of 200 epochs was performed using the defined
data set. In the learned refractive index prediction AI, the loss of the training data set and
the validation loss using the validation data set were 3.1652 × 10−4 and 6.7654 × 10−4,
respectively. As can be seen in Figure 3e, in the case of the extinction coefficient prediction
AI, the loss of the training data set and the validation loss using the validation data set were
3.4941 × 10−4 and 2.2626 × 10−4, respectively. As summarized in Figure 8, the prediction
results obtained with artificial intelligence learned using the big data constructed in this
study were compared with the experimental results for changes in the composition. To
predict the optical information related to the change in stoichiometric ratio by using artificial
intelligence, a continuous input data matrix was created in the format of the input neuron
data shown in Table 2 and extracted for the entire spectrum.
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Figure 8. Refractive index and extinction coefficient through ellipsometry analysis of the qua-
ternary perovskite material and comparison of the results of hyperregression analysis using
artificial intelligence models: (a) FAPbI3, (b) FAPbI1.5PbBr1.5, (c) FAPbBr3, (d) FA0.5MA0.5PbI3,
(e) FA0.5MA0.5PbI1.5Br1.5, (f) FA0.5MA0.5Br3, (g) MAPbI3, (h) MAPbI1.5Br1.5, (i) MAPbBr3.

As shown in Figure 9, the optical properties of the quaternary perovskite were pre-
dicted using the learned AI. As confirmed in Figure 8, the results of the refractive index
spectrum predicted through AI are summarized in Figure 9c. When confirmed in three-
dimensional space, it appears in the form of Figure 9d, and a constant spectrum deformation
pattern is observed. The results shown in Figure 9e were obtained using the learned AI to
estimate the interpolation value between the measured optical properties. We obtained the
refractive index information predicted from the compositions of FA0.8 MA0.2 PbBr3 and
FA0.2 MA0.8 PbBr3, which were not produced in this study. Thus, the interpolation value
between the experimentally measured values was more finely defined to obtain dense
refractive index information, as shown in Figure 9f.

We predicted the fine optical information in the same way for the remaining extinction
coefficients. Within the stoichiometric composition range of the perovskite, the optical
properties, including the composition without actual specimens, were predicted and are
summarized in Figures 10–13. By using the learned artificial intelligence model, 11 con-
ditions were defined according to the addition ratio of MA and Br3, and the refractive
index and extinction coefficient were predicted for a total of 121 compositions. The graphs
that summarize the predicted results according to the MA addition ratio are shown in
Figures 10 and 11, and 11 graphs were obtained according to the increase in the composi-
tion of Br3. The prediction results by adding Br3 are presented in Figures 12 and 13.
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Figure 11. Prediction result of refractive index and the extinction coefficient spectrum pattern according to the stoichiometric
ratio in the direction of increasing MA composition of quaternary perovskite using hyperregression analysis with artificial
intelligence , (a,d) refractive index of AI expectation for experimental optical data on FA1−xMAxPbBr3 with 2D and 3D
plot, (b,e) refractive index of hyperregression result on interpolation between experimental optical data of FA1−xMAxPbBr3

with 2D and 3D plot, (c,f) refractive index of finer hyperregression result on interpolation between experimental optical
data of FA1−xMAxPbBr3 with 2D and 3D plot, (g,j) extinction coefficient of AI expectation for experimental optical data on
FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot, (h,k) extinction coefficient of hyperregression result on interpolation between
experimental optical data of FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot, (i,l) extinction coefficient of finer hyperregression
result on interpolation between experimental optical data of FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot.

(g)
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Figure 11. Prediction result of refractive index and the extinction coefficient spectrum pattern according to the stoichiometric
ratio in the direction of increasing MA composition of quaternary perovskite using hyperregression analysis with artificial
intelligence , (a,d) refractive index of AI expectation for experimental optical data on FA1−xMAxPbBr3 with 2D and 3D
plot, (b,e) refractive index of hyperregression result on interpolation between experimental optical data of FA1−xMAxPbBr3

with 2D and 3D plot, (c,f) refractive index of finer hyperregression result on interpolation between experimental optical
data of FA1−xMAxPbBr3 with 2D and 3D plot, (g,j) extinction coefficient of AI expectation for experimental optical data on
FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot, (h,k) extinction coefficient of hyperregression result on interpolation between
experimental optical data of FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot, (i,l) extinction coefficient of finer hyperregression
result on interpolation between experimental optical data of FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot.
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Figure 11. Prediction result of refractive index and the extinction coefficient spectrum pattern according to the stoichiometric
ratio in the direction of increasing MA composition of quaternary perovskite using hyperregression analysis with artificial
intelligence , (a,d) refractive index of AI expectation for experimental optical data on FA1−xMAxPbBr3 with 2D and 3D
plot, (b,e) refractive index of hyperregression result on interpolation between experimental optical data of FA1−xMAxPbBr3

with 2D and 3D plot, (c,f) refractive index of finer hyperregression result on interpolation between experimental optical
data of FA1−xMAxPbBr3 with 2D and 3D plot, (g,j) extinction coefficient of AI expectation for experimental optical data on
FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot, (h,k) extinction coefficient of hyperregression result on interpolation between
experimental optical data of FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot, (i,l) extinction coefficient of finer hyperregression
result on interpolation between experimental optical data of FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot.
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Figure 9. Prediction result of refractive index and the extinction coefficient spectrum pattern accord-
ing to the stoichiometric ratio in the direction of increasing MA composition of quaternary perovskite
using hyperregression analysis with artificial intelligence: (a,d) refractive index of AI expectation
for experimental optical data on FA1−xMAxPbBr3 with 2D and 3D plot, (b,e) refractive index of
hyperregression result on interpolation between experimental optical data of FA1−xMAxPbBr3 with
2D and 3D plot, (c,f) refractive index of finer hyperregression result on interpolation between ex-
perimental optical data of FA1−xMAxPbBr3 with 2D and 3D plot, (g,j) extinction coefficient of AI
expectation for experimental optical data on FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot, (h,k) ex-
tinction coefficient of hyperregression result on interpolation between experimental optical data of
FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot, (i,l) extinction coefficient of finer hyperregression result
on interpolation between experimental optical data of FA1−xMAxPbI1.5Br1.5 with 2D and 3D plot.
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Figure 10. Prediction result of the refractive index spectrum pattern according to the stoichiometric ratio
in the direction of increasing MA composition of quaternary perovskite using hyperregression analysis
with artificial intelligence: (a) FA1−xMAxPbI3Br0, (b) FA1−xMAxPbI2.7Br0.3, (c) FA1−xMAxPbI2.4Br0.6,
(d) FA1−xMAxPbI2.1Br0.9, (e) FA1−xMAxPbI1.8Br1.2, (f) FA1−xMAxPbI1.5Br1.5, (g) FA1−xMAxPbI1.2Br1.8,
(h) FA1−xMAxPbI0.9Br2.1, (i) FA1−xMAxPbI0.6Br2.4, (j) FA1−xMAxPbI0.3Br2.7, (k) FA1−xMAxPbI0Br3.
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Figure 11. Prediction result of the extinction coefficient spectrum pattern according to the stoi-
chiometric ratio in the direction of increasing MA composition of quaternary perovskite using hy-
perregression analysis with artificial intelligence: (a) FA1−xMAxPbI3Br0, (b) FA1−xMAxPbI2.7Br0.3,
(c) FA1−xMAxPbI2.4Br0.6, (d) FA1−xMAxPbI2.1Br0.9, (e) FA1−xMAxPbI1.8Br1.2, (f) FA1−xMAxPbI1.5Br1.5,
(g) FA1−xMAxPbI1.2Br1.8, (h) FA1−xMAxPbI0.9Br2.1, (i) FA1−xMAxPbI0.6Br2.4, (j) FA1−xMAxPbI0.3Br2.7,
(k) FA1−xMAxPbI0Br3.



Nanomaterials 2022, 12, 932 19 of 27

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.4

1.6

1.8

2.0

2.2

2.4

2.6
#1 FA1.0 MA0.0 Pb I3.0 Br0.0
#2 FA1.0 MA0.0 Pb I2.7 Br0.3
#3 FA1.0 MA0.0 Pb I2.4 Br0.6
#4 FA1.0 MA0.0 Pb I2.1 Br0.9
#5 FA1.0 MA0.0 Pb I1.8 Br1.2
#6 FA1.0 MA0.0 Pb I1.5 Br1.5
#7 FA1.0 MA0.0 Pb I1.2 Br1.8
#8 FA1.0 MA0.0 Pb I0.9 Br2.1
#9 FA1.0 MA0.0 Pb I0.6 Br2.4
#10 FA1.0 MA0.0 Pb I0.3 Br2.7
#11 FA1.0 MA0.0 Pb I0.0 Br3.0

(a)

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.6

1.8

2.0

2.2

2.4

2.6
#12 FA0.9 MA0.1 Pb I3.0 Br0.0
#13 FA0.9 MA0.1 Pb I2.7 Br0.3
#14 FA0.9 MA0.1 Pb I2.4 Br0.6
#15 FA0.9 MA0.1 Pb I2.1 Br0.9
#16 FA0.9 MA0.1 Pb I1.8 Br1.2
#17 FA0.9 MA0.1 Pb I1.5 Br1.5
#18 FA0.9 MA0.1 Pb I1.2 Br1.8
#19 FA0.9 MA0.1 Pb I0.9 Br2.1
#20 FA0.9 MA0.1 Pb I0.6 Br2.4
#21 FA0.9 MA0.1 Pb I0.3 Br2.7
#22 FA0.9 MA0.1 Pb I0.0 Br3.0

(b)

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.6

1.8

2.0

2.2

2.4

2.6

#23 FA0.8 MA0.2 Pb I3.0 Br0.0
#24 FA0.8 MA0.2 Pb I2.7 Br0.3
#25 FA0.8 MA0.2 Pb I2.4 Br0.6
#26 FA0.8 MA0.2 Pb I2.1 Br0.9
#27 FA0.8 MA0.2 Pb I1.8 Br1.2
#28 FA0.8 MA0.2 Pb I1.5 Br1.5
#29 FA0.8 MA0.2 Pb I1.2 Br1.8
#30 FA0.8 MA0.2 Pb I0.9 Br2.1
#31 FA0.8 MA0.2 Pb I0.6 Br2.4
#32 FA0.8 MA0.2 Pb I0.3 Br2.7
#33 FA0.8 MA0.2 Pb I0.0 Br3.0

(c)

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.6

1.8

2.0

2.2

2.4

2.6

#34 FA0.7 MA0.3 Pb I3.0 Br0.0
#35 FA0.7 MA0.3 Pb I2.7 Br0.3
#36 FA0.7 MA0.3 Pb I2.4 Br0.6
#37 FA0.7 MA0.3 Pb I2.1 Br0.9
#38 FA0.7 MA0.3 Pb I1.8 Br1.2
#39 FA0.7 MA0.3 Pb I1.5 Br1.5
#40 FA0.7 MA0.3 Pb I1.2 Br1.8
#41 FA0.7 MA0.3 Pb I0.9 Br2.1
#42 FA0.7 MA0.3 Pb I0.6 Br2.4
#43 FA0.7 MA0.3 Pb I0.3 Br2.7
#44 FA0.7 MA0.3 Pb I0.0 Br3.0

(d)

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.4

1.6

1.8

2.0

2.2

2.4 #45 FA0.6 MA0.4 Pb I3.0 Br0.0
#46 FA0.6 MA0.4 Pb I2.7 Br0.3
#47 FA0.6 MA0.4 Pb I2.4 Br0.6
#48 FA0.6 MA0.4 Pb I2.1 Br0.9
#49 FA0.6 MA0.4 Pb I1.8 Br1.2
#50 FA0.6 MA0.4 Pb I1.5 Br1.5
#51 FA0.6 MA0.4 Pb I1.2 Br1.8
#52 FA0.6 MA0.4 Pb I0.9 Br2.1
#53 FA0.6 MA0.4 Pb I0.6 Br2.4
#54 FA0.6 MA0.4 Pb I0.3 Br2.7
#55 FA0.6 MA0.4 Pb I0.0 Br3.0

(e)

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.4

1.6

1.8

2.0

2.2

2.4 #56 FA0.5 MA0.5 Pb I3.0 Br0.0
#57 FA0.5 MA0.5 Pb I2.7 Br0.3
#58 FA0.5 MA0.5 Pb I2.4 Br0.6
#59 FA0.5 MA0.5 Pb I2.1 Br0.9
#60 FA0.5 MA0.5 Pb I1.8 Br1.2
#61 FA0.5 MA0.5 Pb I1.5 Br1.5
#62 FA0.5 MA0.5 Pb I1.2 Br1.8
#63 FA0.5 MA0.5 Pb I0.9 Br2.1
#64 FA0.5 MA0.5 Pb I0.6 Br2.4
#65 FA0.5 MA0.5 Pb I0.3 Br2.7
#66 FA0.5 MA0.5 Pb I0.0 Br3.0

(f)

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.4

1.6

1.8

2.0

2.2

2.4 #67 FA0.4 MA0.6 Pb I3.0 Br0.0
#68 FA0.4 MA0.6 Pb I2.7 Br0.3
#69 FA0.4 MA0.6 Pb I2.4 Br0.6
#70 FA0.4 MA0.6 Pb I2.1 Br0.9
#71 FA0.4 MA0.6 Pb I1.8 Br1.2
#72 FA0.4 MA0.6 Pb I1.5 Br1.5
#73 FA0.4 MA0.6 Pb I1.2 Br1.8
#74 FA0.4 MA0.6 Pb I0.9 Br2.1
#75 FA0.4 MA0.6 Pb I0.6 Br2.4
#76 FA0.4 MA0.6 Pb I0.3 Br2.7
#77 FA0.4 MA0.6 Pb I0.0 Br3.0

(g)

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.6

1.8

2.0

2.2

2.4 #78 FA0.3 MA0.7 Pb I3.0 Br0.0
#79 FA0.3 MA0.7 Pb I2.7 Br0.3
#80 FA0.3 MA0.7 Pb I2.4 Br0.6
#81 FA0.3 MA0.7 Pb I2.1 Br0.9
#82 FA0.3 MA0.7 Pb I1.8 Br1.2
#83 FA0.3 MA0.7 Pb I1.5 Br1.5
#84 FA0.3 MA0.7 Pb I1.2 Br1.8
#85 FA0.3 MA0.7 Pb I0.9 Br2.1
#86 FA0.3 MA0.7 Pb I0.6 Br2.4
#87 FA0.3 MA0.7 Pb I0.3 Br2.7
#88 FA0.3 MA0.7 Pb I0.0 Br3.0

(h)

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.6

1.8

2.0

2.2

2.4 #89 FA0.2 MA0.8 Pb I3.0 Br0.0
#90 FA0.2 MA0.8 Pb I2.7 Br0.3
#91 FA0.2 MA0.8 Pb I2.4 Br0.6
#92 FA0.2 MA0.8 Pb I2.1 Br0.9
#93 FA0.2 MA0.8 Pb I1.8 Br1.2
#94 FA0.2 MA0.8 Pb I1.5 Br1.5
#95 FA0.2 MA0.8 Pb I1.2 Br1.8
#96 FA0.2 MA0.8 Pb I0.9 Br2.1
#97 FA0.2 MA0.8 Pb I0.6 Br2.4
#98 FA0.2 MA0.8 Pb I0.3 Br2.7
#99 FA0.2 MA0.8 Pb I0.0 Br3.0

(i)

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.6

1.8

2.0

2.2

2.4 #100 FA0.1 MA0.9 Pb I3.0 Br0.0
#101 FA0.1 MA0.9 Pb I2.7 Br0.3
#102 FA0.1 MA0.9 Pb I2.4 Br0.6
#103 FA0.1 MA0.9 Pb I2.1 Br0.9
#104 FA0.1 MA0.9 Pb I1.8 Br1.2
#105 FA0.1 MA0.9 Pb I1.5 Br1.5
#106 FA0.1 MA0.9 Pb I1.2 Br1.8
#107 FA0.1 MA0.9 Pb I0.9 Br2.1
#108 FA0.1 MA0.9 Pb I0.6 Br2.4
#109 FA0.1 MA0.9 Pb I0.3 Br2.7
#110 FA0.1 MA0.9 Pb I0.0 Br3.0

(j)

Wavelength(um)

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Br3 
rat
io

0.0
0.2

0.4
0.6

0.8
1.0

R
ef
ra
ct
iv
e 
in
de

x(
n)

1.6

1.8

2.0

2.2

2.4 #111 FA0.0 MA1.0 Pb I3.0 Br0.0
#112 FA0.0 MA1.0 Pb I2.7 Br0.3
#113 FA0.0 MA1.0 Pb I2.4 Br0.6
#114 FA0.0 MA1.0 Pb I2.1 Br0.9
#115 FA0.0 MA1.0 Pb I1.8 Br1.2
#116 FA0.0 MA1.0 Pb I1.5 Br1.5
#117 FA0.0 MA1.0 Pb I1.2 Br1.8
#118 FA0.0 MA1.0 Pb I0.9 Br2.1
#119 FA0.0 MA1.0 Pb I0.6 Br2.4
#120 FA0.0 MA1.0 Pb I0.3 Br2.7
#121 FA0.0 MA1.0 Pb I0.0 Br3.0

(k)

Figure 12. Prediction result of the refractive index spectrum pattern according to the stoichiometric ratio
in the direction of increasing Br3 composition of quaternary perovskite using hyperregression analysis
with artificial intelligence: (a) FA1MA0PbI3−yBry, (b) FA0.9MA0.1PbI3−yBry, (c) FA0.8MA0.2PbI3−yBry,
(d) FA0.7MA0.3PbI3−yBry, (e) FA0.6MA0.4PbI3−yBry, (f) FA0.5MA0.5PbI3−yBry, (g) FA0.4MA0.6PbI3−yBry,
(h) FA0.3MA0.7PbI3−yBry, (i) FA0.2MA0.8PbI3−yBry, (j) FA0.1MA0.9PbI3−yBry, (k) FA0MA1PbI3−yBry.
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Figure 13. Predictionresult of the extinction coefficient spectrum pattern according to the stoichio-
metric ratio in the direction of increasing Br3 composition of quaternary perovskite using hyper-
regression analysis with artificial intelligence: (a) FA1MA0PbI3−yBry, (b) FA0.9MA0.1PbI3−yBry,
(c) FA0.8MA0.2PbI3−yBry, (d) FA0.7MA0.3PbI3−yBry, (e) FA0.6MA0.4PbI3−yBry, (f) FA0.5MA0.5PbI3−yBry,
(g) FA0.4MA0.6PbI3−yBry, (h) FA0.3MA0.7PbI3−yBry, (i) FA0.2MA0.8PbI3−yBry, (j) FA0.1MA0.9PbI3−yBry,
(k) FA0MA1PbI3−yBry.

4. Discussion
4.1. Ellipsometry Measurement

As shown in Figure 4, the perovskite material was deposited on the uppermost layer; a
thickness distribution of 350–1058 nm was confirmed depending on the specimen prepara-
tion conditions. It can be seen that the thickness of the perovskite layer changes according
to the stoichiometric ratio of the specimen and the crystallization conditions, and the
shape and surface roughness of the produced crystals vary. As can be confirmed from



Nanomaterials 2022, 12, 932 21 of 27

these measurement results, it is difficult to produce perovskite of the same thickness even
when the specimen is manufactured under the same conditions. Further, it can be seen
that the state of the surface varies greatly depending on the environmental factors. Other
researchers attempting to reproduce the same conditions to fabricate the specimens may
not achieve the same thickness of the perovskite and shape of the crystals. In summary,
because it is difficult to consistently achieve the same stoichiometric ratio of the perovskite,
it is necessary to create an artificial intelligence model to predict changes in the physical
properties according to the change in the composition of the perovskite within the limits of
the chemical composition used.

Figure 5 shows the ellipsometry results of the optical properties of the fabricated
perovskite specimens. Because the specimens had the same structure and properties except
for the perovskite, the changes in the patterns of ψ and ∆ depending on the wavelength can
be compared according to the change in the stoichiometric ratio. From Figure 5a–c, it can be
seen that the patterns of ψ and ∆ change dramatically as the addition of Br3 increases. On
the contrary, it can be seen that the patterns of ψ and ∆ do not change significantly as the
added quantity of MA increases. Moreover, it is confirmed from Figure 5a–g that the peak
positions appearing in the 400, 500, and 750 nm wavelengths were maintained similarly.
As can be seen from the color of the fabricated perovskite shown in Figure 1c, this change
is similar; although the addition of FA does not change the color noticeably, a significant
color change is observed because of Br3. Based on the above trends, it was verified that the
ellipsometry measurement results achieved in this study well reflect the optical properties
of the fabricated specimens.

Because the results measured using ellipsometry include the information of all thin-
film layers shown in Figure 1a, an optical model of the form shown in Figure 1b was
constructed and simulated for comparison with the calculation results. Through the optical
model, all the information generated from the perovskite specimen was analyzed; the
information of the ITO film could be separated from that of the glass substrate so that the
physical properties of the perovskite bulk thin-film layer could be accurately calculated. As
shown in Figure 5, the information of the perovskite specimen measured using ellipsometry
and the simulation result using the optical model were compared, and consistent results
were obtained for all perovskite specimens. The refractive index of the perovskite extracted
using the ellipsometry optical model is shown in Figure 6a; it can be seen that the refractive
index is in the range of 1.4–2.7 for wavelengths between 300–900 nm. Figure 6a also shows
that the extinction coefficient of perovskite is 0.0–1.4 for wavelengths between 300–900 nm.

Because the refractive index is maintained uniformly at all wavelengths, reflection
from the thin film may occur in the entire range of visible light during the process of
manufacturing a perovskite solar cell. To minimize this reflection, it is necessary to adjust
the stacking order and thickness in consideration of the refractive index of the thin film
in contact with the perovskite. Because the optical properties of the thin-film layer can
be calculated using the transfer matrix method, knowledge of the correct refractive index
for each wavelength can help design the thin-film structure of the perovskite solar cell. In
contrast, it can be seen that the extinction coefficient of perovskite has a high value in the
300–500 nm region, which is consistent with the generally known absorption characteristics
of perovskite in the short-wavelength range. The size of the solar spectrum absorbed by
the upper cell in the multi-junction solar cell can be predicted because the peak position at
which light absorption is maximized is located in the short-wavelength band. Because the
refractive index and extinction coefficient change in an irregular pattern according to the
change in stoichiometric composition of the quaternary perovskite material, analysis of the
optical characteristics is necessary for all compositions to design a structure with optimal
optical characteristics according to the composition.

To confirm the reliability of the ellipsometry analysis of the perovskite analyzed in this
study, Figure 7 compares the optical properties such as the refractive index and extinction
coefficient with those reported in the literature. As shown in Figure 7a, the results measured
in this study are between those reported for bulk and thin-film perovskite materials in the
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literature. Thus, it can be seen that the value of the refractive index changes significantly
with change in the thickness of the perovskite. Compared with the results of this study,
the characteristic peaks generated in the 400, 500, and 750 nm wavelength bands were
found to be similar to those in the referenced literature. As shown in Figure 7b, the results
of the extinction coefficient analysis are also judged comparable to those in literature,
showing a smaller difference than the refractive index. In addition, it was confirmed that
the characteristic absorption peak was observed in the wavelength range around 380 nm,
and the pattern of the extinction coefficient decreased with increasing wavelength.

As shown in Figure 7c, in the case of MAPbBr3, the results observed in this study and
those reported in the referenced studies are very similar. In particular, characteristic peaks
in the wavelength range of 550 nm can be confirmed in all measurement results, and it can
be verified that the shapes of the peaks found at 300 and 400 nm are the same. Figure 7d
shows that the measurement result of the extinction coefficient has a pattern similar to that
in the referenced literature. The characteristic absorption peaks in the wavelength range of
300 and 550 nm observed in the results of this study were found to have the same patterns
as those in the referenced papers. The patterns depict a similar decrease in the absorption
rate with increasing wavelength.

A comparison of the results with the referenced literature, depicted in Figure 7, shows
that the results of perovskite materials with the same stoichiometric ratio are comparable,
but not entirely consistent, because of the difference in the environmental conditions during
fabrication. Because it is impossible to accurately reproduce the research results owing to the
difference in the optical properties, the construction of an artificial intelligence model that
can predict the change in the optical properties according to the stoichiometric ratio applied
in the research environment of different researchers is considered absolutely necessary.

As shown in Figure 6, the optical properties corresponding to the stoichiometric ratio
of the perovskite material were evaluated to have an irregular pattern. However, to find a
regularity in these patterns, the change in the optical properties with the addition of Br3
and MA is shown in Figures 14 and 15. As can be seen in Figure 14a, in FAPbI3 with Br3, the
position of the characteristic peak in the 550 nm wavelength band shifted to approximately
350 nm, and the value of the refractive index decreased. This trend was confirmed in
Figure 15a–c, where the change due to the addition of MA shows a similar tendency as in
the case of FAPbI3. As can be seen in Figure 14d, the change in optical properties due to the
addition of Br3 shows that the position of the maximum absorption peak near 380 nm was
shifted to a shorter wavelength and the absorption size decreased.
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Figure 14. Results of optical properties with Br ratio of quaternary perovskite material: (a–c) refractive
index, (d–f) extinction coefficient.
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Figure 15. Results of optical properties with MA ratio of quaternary perovskite material:
(a–c) refractive index, (d–f) extinction coefficient.

In conclusion, the variation in the optical properties depending on the addition ratio
of Br3 can be extracted through the interpolation value between the three perovskite
compositions shown in Figure 14a. Although such interpolation values can be inferred,
mathematical methods for extracting the accurate patterns are very limited and require
complex operations. The construction of a predictive model using complex calculations for
researchers wishing to study the optimal composition to improve the perovskite properties
is not efficient. Therefore, it is important to develop an artificial intelligence model that
can be configured with a small number of specimens by learning the measurement results
using machine learning.

4.2. AI Training Results

To construct a hyperregression model, we predicted the optical properties of unmod-
ified perovskite materials in the 300–900 nm range using learned artificial intelligence.
Deep learning was performed using the ANN structure shown in Figure 2, and an artificial
intelligence model with an optimized weighting bias was constructed. The ratios of MA,
FA, I3, Br3, and wavelengths within the range of 300–900 nm were continuously input into
the constructed AI model, and the predicted refractive index and extinction coefficient for
each wavelength were compared with the measurement results. As compared in Figure 8,
the results of the refractive index were the same for the eight stoichiometric composition
ranges, but it can be seen that there was a slight difference in the case of MA0.5FA0.5PbBr3.
As verified from Figure 8, in the case of the extinction coefficient, the results predicted
through the learned artificial intelligence model were identical to the measured results.
As can be seen in Figure 3b,e, the loss values of the training data set are similar to these
results. However, the loss of the validation data set is 6.7654 × 10−4 and 2.2626 × 10−4 for
the refractive index and extinction coefficient, respectively, and the prediction accuracy
is improved by 66.5% in the extinction coefficient prediction AI. It is determined that
some errors in the refractive index occurred due to the difference in the loss values of
these verification data sets. It is judged that this error increases as the number of irregular
patterns of the optical characteristic spectrum increases, and in the case of refractive index,
since the irregularity of this spectrum is larger than the extinction coefficient, it is thought
that it can be improved by collecting more specimen information. It is judged that the
learning result will become increasingly accurate as the number of manufactured specimens
increases. In addition, because the results discussed thus far show a very high concordance
rate, we predicted the optical properties of the unmodified perovskite composition by
using the trained artificial intelligence model. As shown in Figure 8, a learnt refractive
index prediction AI that can calculate results similar to the experimentally analyzed optical
properties was constructed. If the experimentally analyzed refractive index composition
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and wavelength range are input to the AI learned in this study, the results shown in Fig-
ure 9d can be obtained. These results generally have the same form as pattern recognition
performed by the AI. However, in the AI model built using the hyperregression method,
the interpolation value between the actually measured optical patterns can be calculated.
As can be seen in Figure 9e, the refractive indices were predicted from the compositions of
FA0.8MA0.2PbBr3 and FA0.8MA0.2PbBr3, which were not produced in this study. If the input
composition is densely configured in the same way, the refractive index can be predicted
in the FA0.9MA0.2PbBr3–FA0.1MA0.9PbBr3 range, as shown in Figure 9e. The refractive
index information extracted in this way can predict changes in optical properties that
depend on changes in composition, and can help determine the direction of the search for
properties of an appropriate composition. As shown in Figure 9l, even in the case of the
extinction coefficient, prediction is possible through the learned AI. Since the extinction
coefficient has relatively few optical pattern irregularities, it can be seen that the result
change of material FAMAPbI1.5Br1.5 predicted using the AI prediction model is not large.
In addition, the AI model shows that the position of the characteristic peak generated
near 300 nm of the MAPbI1.5Br1.5 specimen moves in the short wavelength direction as
the MA composition decreases. It can be seen that the pattern of the increasing extinction
coefficient seen at 700 nm or more of the MAPbI1.5Br1.5 specimen gradually decreases as
the MA ratio increases. As shown in Figure 10, when examining the result of the addition
of Br3, wherein a noticeable change in the optical characteristic is observed, it can be seen
that the interpolation value of the intermediate composition is well expressed by following
the irregular curve shape that occurs as the characteristic peak position changes. It can be
confirmed from Figure 10a that the position of the characteristic peak of FAPbI3, occurring
near 560 nm, shifts to approximately 350 nm with the addition of Br3. The magnitude of
the refractive index for the maximum peak also shows a continuous decrease; hence, it can
be seen that the interpolation value of the intermediate composition is well predicted for
the experimental value shown in Figure 14a. As depicted in Figure 11a, the characteristic
peak position occurring near 370 nm of FAPbI3 is shifted in the direction of 300 nm with the
addition of Br3, and the change in the extinction coefficient, which decreases with increase
in the wavelength, is predicted to decrease while maintaining the slope.

From the above results, it was possible to predict the optical properties of perovskite
according to the composition through hyperregression analysis by using a trained artificial
intelligence model that computes a natural interpolation value from a human cognition
perspective. The variation in the optical properties of perovskite according to the stoi-
chiometric ratio, generated through artificial intelligence, shows a very complex change
in pattern, which is difficult to interpret with a general regression method. This change
is well maintained even during rapid changes in the pattern according to the chemical
composition. After establishing the individual hyperregression analysis model, it is possi-
ble to determine the preferred chemical composition range of the perovskite material to
optimize the optical properties of the perovskite solar cell. The proposed approach has
the advantage that it does not necessitate experimenting with various compositions and
identifies the optimal condition within a short time by preferentially experimenting in the
target composition range. In addition, the amount of big data used for the hyperregression
analysis can be increased by conducting experiments with the predicted composition, and
a more sophisticated predictive model can be created by performing additional learning
using the newly collected data.

5. Conclusions

In this study, the optical properties of perovskite materials according to the stoichio-
metric ratio were measured using ellipsometry, and the measured results were analyzed
using an optical simulation model. The refractive index and extinction coefficient extracted
through the ellipsometry analysis showed a tendency consistent with the color change
of the specimen, and had shapes similar to those reported in the literature. The machine
learning method was used for hyperregression analysis of the data with five variables:
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four compositional variables of the perovskite material and one wavelength variable. An
ANN structure was constructed to enable hyperregression analysis of n-dimensional vari-
ables, and deep learning was performed by updating the weights and bias values of the
neural network structure by using gradient descent and error backpropagation methods.
Finally, by inputting the actually fabricated stoichiometric ratio and wavelength range to
the learned artificial intelligence model, it was confirmed that the optical properties were
similar to those measured with an ellipsometer. However, the loss of the validation data
set is 6.7654 × 10−4 and 2.2626 × 10−4 for the refractive index and extinction coefficient,
respectively, and the prediction accuracy is improved by 66.5% in the extinction coefficient
prediction AI. It is judged that this error increases as the number of irregular patterns of
the optical characteristic spectrum increases, and in the case of the refractive index, since
the irregularity of this spectrum is larger than the extinction coefficient, it is thought that it
can be improved by collecting more specimen information. When the optical properties of
unmodified perovskite were predicted using the verified artificial intelligence model, a very
complex pattern change was observed, which was impossible to analyze using a general
regression method. This change is well maintained, even in a pattern that rapidly changes
according to the change in composition. In conclusion, hyperregression analysis with n-
dimensional variables can be performed using a simple big data construction method
for the spectral patterns of thin-film materials. This analytical technique is considered
to greatly reduce the parameters in future experiments because it is possible to perform
hyperregression analysis and spectral analysis with a single parameter, such as energy
band gap or electron affinity.
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