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Predicting surgical outcomes 
for chronic exertional compartment 
syndrome using a machine learning 
framework with embedded trust 
by interrogation strategies
Andrew Houston1,2*, Georgina Cosma 1, Phillipa Turner3 & Alexander Bennett2,4,5

Chronic exertional compartment syndrome (CECS) is a condition occurring most frequently in the 
lower limbs and often requires corrective surgery to alleviate symptoms. Amongst military personnel, 
the success rates of this surgery can be as low as 20%, presenting a challenge in determining whether 
surgery is worthwhile. In this study, the data of 132 fasciotomies for CECS was analysed and using 
combinatorial feature selection methods, coupled with input from clinicians, identified a set of key 
clinical features contributing to the occupational outcomes of surgery. Features were utilised to 
develop a machine learning model for predicting return-to-work outcomes 12-months post-surgery. 
An AUC of 0.85 ± 0.08 was achieved using a linear-SVM, trained using 6 features (height, mean 
arterial pressure, pre-surgical score on the exercise-induced leg pain questionnaire, time from initial 
presentation to surgery, and whether a patient had received a prior surgery for CECS). To facilitate 
trust and transparency, interrogation strategies were used to identify reasons why certain patients 
were misclassified, using instance hardness measures. Model interrogation revealed that patient 
difficulty was associated with an overlap in the clinical characteristics of surgical outcomes, which was 
best handled by XGBoost and SVM-based models. The methodology was compiled into a machine 
learning framework, termed AITIA, which can be applied to other clinical problems. AITIA extends 
the typical machine learning pipeline, integrating the proposed interrogation strategy, allowing 
to user to reason and decide whether to trust the developed model based on the sensibility of its 
decision-making.

Chronic exertional compartment syndrome (CECS) is a condition occurring most frequently in the lower limbs1–4 
and is prevalent in individuals who partake in activities such as walking, running and marching whilst carrying 
load5. Symptoms related to CECS include severe pain in the affected compartment, occurring around 15 min 
after the onset of exercise6,7. For military personnel, particularly infantry soldiers, this presents a challenge and 
can often result in an inability to perform their job.

Surgical interventions in the form of compartment-specific fasciotomies have become a prominent method of 
treating CECS8,9. Whilst fasciotomies have proven successful amongst civilian populations, enabling more than 
75% of athletes to return to sport10–15, the same cannot be said for military personnel who have been described 
as having less reliable outcomes16. Audits suggest that less than 45% of UK military personnel manage to return 
to a fully-fit state17, with most recent evidence showing this number to be as low as 22%18.

Despite the problem of poor outcomes in military populations, only one study, to date, has sought to identify 
reasons as to why patients fail to have good surgical outcomes19. Waterman et al.19 applied binary logistic regres-
sion analysis to a large dataset of active military personnel, to identify variables that are associated with surgical 
failure. Results revealed significant associations between surgical failure and perioperative complications, activity 
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limitations and the chronicity of the CECS. Although factors that are associated with surgical outcomes were 
identified, the predictive value of these factors was not evaluated. Furthermore, whilst methods such as logistic 
regression are suitable for identifying relationships and performing basic predictions, through the application 
of machine learning, generalised linear models can be outperformed20.

The application of machine learning within orthopaedic medicine is a growing area, showing promise in treat-
ment outcome prediction20,21. However, despite the promising status of machine learning, literature applying it to 
tackle orthopaedic problems remains relatively surface-level limiting the evaluation of models to global perfor-
mance estimates such as overall accuracy and area under the receiver operating characteristic curve (AUC)22–24. 
The use of global estimates of performance makes it impossible to understand how a model performs on patients 
across the difficulty spectrum. Patient difficulty is derived from instance hardness, a term first defined by Smith 
et al.25 as the likelihood of an instance being misclassified and can be the result of factors such as class overlap, 
i.e. where the characteristics of each treatment outcome or group overlap25,26. Clinically, this definition can be 
translated as a patient whose presentation and outcome do not align, posing a unique challenge in machine learn-
ing problems. Given that classifiers employ different decision functions, their suitability for handling difficult 
patients will vary depending on the source of difficulty27. Furthermore, to instigate trust in developed models, 
an analysis of patient difficulty and its source can help to examine whether misclassifications arise from sensible 
assumptions of the model or whether they are a result of bias present within the dataset. From an applicabil-
ity perspective, trust is imperative in the design of machine learning models for healthcare prognosis, and so, 
understanding the decision-making process of a prediction model is imperative to instil said trust.

This paper presents the development of a machine learning model to predict the return-to-work outcomes 
of military personnel following a corrective fasciotomy for CECS, using routinely collected pre-surgical patient 
data from a military rehabilitation facility. Combinatorial feature selection methods were coupled with the 
domain knowledge of clinicians to identify the best predictors. Thereafter, a battery of machine learning models 
were evaluated for the classification task. The computational novelty of this paper is the interrogation of model 
performance that was used to facilitate trust in the model development process characterising difficult patients 
using instance hardness, identifying the source of difficulty that was most affecting classification performance 
and identifying which models were best equipped to deal with this challenge. Lastly the proposed methods are 
compiled into an Artificial Intelligence with Trust by InterrogAtion framework termed, AITIA, for developing 
and interrogating the machine learning models to identify the trustworthiness of their decision-making.

Results
Throughout this paper, data associated with a single surgery will be referred to as a ‘record’. The database of the 
Defence Medical Information Capability Program was queried against the inclusion-exclusion criteria defined 
in the ‘Online methods’ section, returning 132 records from 119 patients. Of the 132 records, a total of 6 records 
were identified as being outliers and were removed, resulting in a final dataset containing 97 records with a 
poor surgical outcome and 29 records with a good surgical outcome. Post-processing the dataset contained 23 
features and the descriptive statistics, grouped according to outcome, are presented in Supplementary Table S2.

Statistical analysis.  To determine whether the dataset has been drawn from a normally distributed popula-
tion the normality of each feature was assessed using the Kolmogorov–Smirnov and Shapiro–Wilk tests. Results 
revealed a non-normal distribution across the majority of features in this dataset (Supplementary Table  S1. 
Therefore, non-parametric tests were used throughout.

To identify the between-group differences between surgical outcomes, a Mann–Whitney U test was performed 
on the ordinal data and Chi-square test on the categorical data (Supplementary Table S2). The results of the 
Mann–Whitney U test showed that patients with a successful outcome were significantly younger (Z = − 1.972, 
p = 0.049), taller (Z = − 2.717, p = 0.007) and had a lower body mass index (BMI) (Z = − 2.179, p = 0.029) 
than patients with an unsuccessful outcome. Patients with a successful outcome also had significantly shorter 
chronicity (Z = − 4.071, p < 0.001), time from presentation to treatment (TTT) (Z = − 4.657, p < 0.001), time 
from presentation to diagnosis (TTD) (Z = − 4.579, p < 0.001), and time spent medically downgraded (TDG) 
(Z = − 3.628, p < 0.001). Results of the Chi-square tests showed an association between successful outcomes and 
both lack of inpatient rehabilitation prior to surgery ( χ2 = 6.133, p = 0.018) and previous surgeries for CECS 
( χ2 = 4.865, p = 0.041).

Spearman’s rank correlation was applied to measure the strength of association between pairs of features 
within the dataset and to identify co-linearities within the dataset (Fig. 1). The inclusion of co-linear features can 
result in an unpredictable variance of a model’s performance. Results revealed the following 8 co-linear pairs, 
defined by a correlation coefficient greater than 0.5: age and rank ( ρ = 0.507), height and weight ( ρ = 0.521), 
weight and BMI ( ρ = 0.854), diastolic blood pressure and mean arterial pressure (MAP) ( ρ = 0.654), systolic 
blood pressure and general blood pressure ( ρ = 0.846), chronicity and TTT ( ρ = 0.710), chronicity and TTD ( ρ = 
0.682), and TTD and TTT ( ρ = 0.953). Co-linearity will be considered in the selection of statistical and domain 
knowledge derived feature subsets being tested in the final model, and a minimum redundancy, maximum 
relevancy fitness function used in the genetic algorithm-based feature selector.

Using the results of the Mann–Whitney U and Chi-square tests, 9 feature sets were created using three alpha 
thresholds ( α = 0.05, 0.01, 0.001), including all features where significance exceeded each threshold, avoiding 
co-linear pairs being included in the same feature set (Supplementary Table S3).

Feature selection.  To identify a small set of clinically relevant features that are predictive of the surgical 
outcomes, feature selection was applied. Aside from identifying features relevant to the classification problem, 
feature selection reduces the dimensionality of the dataset, simplifying the problem, thereby improving model 
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stability and generalisability. Feature selection was performed using a filter-based tabu asexual genetic algorithm 
(TAGA)28 and the knowledge of clinical experts.

As previously mentioned the results of the statistical analysis of the dataset was used to generate 9 features 
sets. The TAGA then generated an additional 9 features sets, shown in Supplementary Table S3. The optimally 
performing feature set from each approach was identified by ranking the performance of each feature set, in terms 
of AUC, for each classifier, and taking the feature set with the lowest summed rank (Supplementary Table S4). 
The features included in the optimally performing statistically-derived feature set (Stats 6) and the optimal 
performing TAGA-derived feature set (TAGA 9) were presented to the clinical team who created a final feature 
set (STAT + TAGA + Expert) comprised of height, MAP, pre-surgical score on the exercise-induced leg pain 
questionnaire (EILP), TTT, TDG and prior surgeries. The performance of the feature set derived by the clinical 
teams was determined for each classifier.

The best performing subset for each classifier was identified using AUC (Supplementary Table S4). Where ties 
existed, the feature set which performed optimally across all classifiers was chosen. For all models, barring the 
sequential model, STAT + TAGA + Expert proved optimal. The sequential model performed best using Stats 6.

Classification performance.  The classification performance of each tuned model, using their optimal fea-
ture set is presented in Table 1. A Friedman’s test was carried out to identify whether performance significantly 
differed between models for each metric and post-hoc comparisons were carried out using a Wilcoxon signed-
rank test. A summary is presented below, with full results shown in Supplementary Table S7.

The support vector machine (SVM) offered the best classification performance in terms of accuracy (0.80 
± 0.07). In comparison with other models, SVM proved significantly better than k-nearest neighbours (KNN), 
random forest, the ensembled KNN and the sequential model, achieving accuracy scores of on average 6%, 3%, 
4% and 2% higher than each model, respectively, when evaluated on the test set. With regards to sensitivity, the 
ensembled KNN proved best at identifying those who returned to work within 12-months of surgery (0.83 ± 
0.16). Compared to other models, the ensembled KNN’s classifications were significantly more specific than 
SVM (+ 2%), random forest (+ 9%), extreme gradient boosting (XGBoost) (+ 11%) and the sequential model (+ 
5%). That said, despite the ensemble KNN proving to be highly sensitive, its performance in terms of specificity 
was the second weakest of the tested models (0.74 ± 0.10), demonstrating it was not as capable of accurately 
identifying records of patients that had good surgical outcomes. The inverse can be said for XGBoost, which was 
the most specific model (0.82 ± 0.08), performing significantly better than all other models, however, it was the 
weakest model in terms of sensitivity (0.72 ± 0.20).

With regards to both AUC and the true positive rate at the optimal point of the receiver operating charac-
teristic curve (TPR), the SVM performed the best, achieving an AUC of 0.85 ± 0.08 and TPR of 0.81 ± 0.12. 
Compared to the remaining models, SVM’s AUC was significantly higher than all remaining models, barring 
the ensembled SVM. Furthermore, SVM’s TPR was significantly greater than both KNN (+ 4%) and random 

Age

Job Rank
Height

Weight

BP systolic

BP diastolic
MAP BMI BP

Smoking Status

Alcohol S
tatus

FAAM
EILP

Chronicity TTP
TTT

TTD

Wait T
ime

TDG

Co-m
orbiditie

s

Prior in
juries

Prior fa
sciotomies

Prior in
patient re

habilita
tion

Age

Job Rank

Height

Weight

BP systolic

BP diastolic

MAP

BMI

BP

Smoking Status

Alcohol Status

FAAM

EILP

Chronicity

TTP

TTT

TTD

Wait Time

TDG

Co-morbidities

Prior injuries

Prior fasciotomies

Prior inpatient rehabilitation

0.51

0.05

0.24

-0.03

0.3

0.15

0.24

0.06

0.09

-0.04

0.08

0.15

0.18

-0.17

0.34

0.3

0.16

0.29

0.07

0.16

0.17

0.13

0.09

0.08

-0.11

0.19

-0.04

0

0.01

0.01

-0.15

0.01

-0.02

0.08

-0.17

0.15

0.13

0

0.05

0.18

0.08

-0.01

0.08

0.52

0.09

0.06

0.04

0.04

0.15

0.11

-0.01

0.02

0.12

-0.09

-0.1

-0.12

-0.08

0.16

0.24

0.24

0.3

0.74

0.28

-0.06

0

0.14

0.06

-0.12

0.08

0.08

0.03

0.01

-0.11

0.25

-0.15

-0.14

0.23

0.46

0.23

0.01

0.11

0.01

-0.11

0.03

-0.12

-0.14

-0.02

-0.09

0.03

0.06

-0.01

-0.11

0.65

0.29

0.4

-0.05

-0.09

-0.12

0.04

0.1

0.1

0.06

0.04

0.04

0.03

-0.02

0.15

-0.07

-0.03

0.31

0.37

-0.07

-0.08

-0.11

0.05

0.07

0.14

0.02

0

0.04

0.07

-0.02

-0.01

-0.01

-0.03

0.27

-0.13

-0.18

-0.12

0.01

0.15

-0.07

0.18

0.19

0

0.13

0.02

0.24

-0.03

0.03

0.06

0.08

0

-0.12

-0.02

-0.11

-0.14

-0.04

-0.16

-0.01

0.07

0

-0.12

0.01

0.06

-0.03

0.1

0.09

0.06

0.09

0.12

0.09

-0.03

-0.07

0.11

0.01

0.06

0.12

-0.02

0.08

-0.07

-0.06

-0.08

0.02

0.13

-0.01

0.09

0.13

0.41

0.02

-0.01

0.01

0

-0.02

0.11

0.09

-0.01

0.05

0.18

0.16

0.02

0.15

0.12

0.01

0.03

0.12

0.05

0.1

0.07

0.49

0.71

0.68

0.31

0.26

0.09

-0.1

0.23

0.28

-0.01

-0.02

0.15

-0.05

0.07

-0.11

0.14

0.14

0.25

0.46

0.06

-0.04

0.24

0.31

0.12

0.44

0.08

-0.05

0.15

0.27

0.16

-0.05

-0.03

0.32

0.15

0.12

0.05

0.33

0.36

0

0.23

0.11

-0.03

0.08 0.37

1

1

1

-0.2

-0.23

-0.27

-0.28

-0.26

1

-0.23

1

0.85

-0.19

1

1

1

1

-0.21

1

1

1

1

1

1

1

0.95 1

1

1

1

1

1

1

-0.2

0

0.2

0.4

0.6

0.8

1

NaN

Figure 1.   The Spearman’s rank correlation matrix used to identify co-linear features within the dataset. Cells 
with darker shades of red reflect a positive relationship between the two features associated with that cell, and 
cells with darker shades of blue reflect a negative relationship between the two associated features. A correlation 
of 1.0 indicates a perfect positive correlation, and a correlation of − 1.0 indicates a perfect negative correlation. 
Relationships with a correlation coefficient of greater than 0.5 were deemed to be co-linear and were accounted 
for when generating the candidate feature sets.
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forest (+ 3%). Logistic regression had the lowest false positive rate at the optimal point of the receiver operating 
characteristic curve (FPR) (0.19 ± 0.09), which was significantly lower than KNN (− 5%), random forest (− 5%) 
and the sequential model (− 2%).

Machine learning model interrogation.  The purpose of this analysis is to interrogate the performance 
of each of the 8 developed machine learning models, providing reasoning for misclassified records and to under-
stand how each model performs on more difficult records, in addition to performance on the dataset as a whole.

A Spearman’s rank correlation was applied to identify which hardness measures were strongest associated 
with instance hardness and therefore, best explain the source of misclassifications in the data. Results revealed a 
moderate positive correlation between instance hardness and k-disagreeing neighbours (KDN) ( ρ = 0.661), and 
a moderate negative correlation between instance hardness and class likelihood difference (CLD) ( ρ = − 0.595). 
Demonstration of these correlations is presented in Fig. 2. Both disjunct size (DS) and disjunct class percentage 
(DCP) showed moderate negative correlations with instance hardness ( ρ = − 0.532 and − 0.524, respectively). 
Therefore, results demonstrate that the primary reason for misclassifications was due to globalised and localised 
class overlap, due to KDN and CLD being the two measures, most correlated with instance hardness.

To examine each model’s performance on records of high and low difficulty, AUC was calculated using the 
mean probability predicted for each record from the 30 iterations of the nested cross-validation, incrementally 
adding or removing records based on their KDN and CLD scores. This process was conducted, firstly with the 
least difficult records, characterised as having a KDN score < 0.3 and a CLD score > 0.0027, incrementally adding 
records with higher KDN scores and lower CLD scores. When all records were included, the least difficult records 
were incrementally removed until only the most difficult records remained (KDN > 0.5 and CLD < − 0.0191). The 
thresholds for the least and most difficult records were due to the requirement of having both classes present in 
the dataset to calculate AUC, and so, when the threshold increased/decreased to where only one class remained, 
this was deemed to be the limits of the analysis. The results of this process demonstrated that XGBoost and 
random forest performed marginally worse than the remaining models on records of low difficulty. As difficulty 
increases, XGBoost demonstrated superior performance than the remaining models (Fig. 3). In contrast, both 
KNN models show weaker performance on more difficult records (Fig. 3). Both SVM-based models and the 
logistic regression, perform similarly regardless of record difficulty and therefore in a single-classifier model 
make for good candidate classifiers.

Proposed artificial intelligence with trust by interrogation (AITIA) framework.  A common 
avenue for facilitating trust in AI solutions is to improve the transparency of a model’s decision making by 
embedding interpretability measures, such as feature importance, feature contributions and counterfactual 
explanations. However a recent evaluation of the effects of such measures found that whilst existing methods are 
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Figure 2.   Results of the misclassification analysis applied to the SVM model’s performance demonstrating the 
relationship between class overlap and instance hardness. As class overlap increases, denoted by a reducing CLD 
and increasing KDN, instance hardness increases, resulting in more misclassifications by the SVM model.
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successful in improving an end user’s understanding, minimal evidence supported the idea that they empower 
the end-user to trust a model appropriately29. A needs analysis, conducted by Tonekaboni et al. revealed the 
desire of clinicians to understand on which patients an AI solution performs poorly, recognising that most 
models are unlikely to be perfect30. Quantification of these areas of poor performance and associated sources 
may go some way to engender trust in a developed model. Based on the outcomes of the experiments performed 
in this study, identifying the primary source of misclassifications and evaluating the performance of different 
models across the difficulty spectrum, the methods were compiled into an Artificial Intelligence with Trust by 
InterrogAtion framework, termed AITIA (Greek: cause and reason). The AITIA framework extends the typical 
machine learning pipeline of data cleaning → pre-processing → feature selection → model development and 
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evaluation, by including a novel model interrogation process. A diagram of the proposed framework is presented 
in Fig. 4.

The rationale for the inclusion of clinicians in the feature selection process stems from the idea that their 
knowledge can provide valuable insights that may be missed by computational methods. Contrarily, the sole 
reliance on the knowledge of experts can adversely affect model performance through the introduction of bias31. 
The proposed framework combines the knowledge of clinicians with combinatorial feature selection methods, 
producing a set of features to be tested. This approach capitalises upon the knowledge of clinicians, whilst miti-
gating the risks of unwanted bias.

The model interrogation process was motivated by the fact that dataset-level measures of model performance 
cannot reveal why errors occur. Furthermore, the demand for trustworthy machine learning models is unlikely 
to be satisfied without a robust means of evaluating why a model predicts some patients incorrectly. Although a 
perfect model would be ideal, this is oftentimes unrealistic, particularly in fields such as orthopaedic medicine 
where treatment outcomes can be affected by a multitude of factors. Therefore, model interrogation was used to 
assess whether to trust the decision-making process of the model, even when its prediction is wrong. The code 
for performing the model interrogation proposed in this study is publicly available at https://​github.​com/​andre​
whous​ton113/​Machi​ne-​Learn​ing-​Model-​Inter​rogat​ion.

Comparison with automated frameworks.  Given the time and costs associated with including domain 
expertise in the development process of a predictive model, it is important to understand whether this inclusion 
results in a performance lift compare to automated approaches, thereby, justifying the additional commitment. 
This section compares the performance of the AITIA framework (Fig. 4) to three well-known and publicly avail-
able automated machine learning frameworks, to identify whether a framework with domain knowledge results 
in better classification performance.

Given the superiority of SVM in terms of accuracy, AUC and TPR (Table 1), in addition to it being both 
sensitive and specific, with a low FPR and proving capable of handling difficult records (Fig. 3), the SVM was 
identified as the optimal classifier produced by the proposed framework. Therefore, the performance of the SVM-
based model was compared to three automated frameworks—a Tree-based Pipeline Optimization Tool (TPOT)32, 
Auto-Sklearn33 and AutoPrognosis34—using a Wilcoxon signed-rank test on each performance metric for each 
of the test sets. The 150 test sets, derived using the methods described in the “Performance comparison with 
automated machine learning frameworks” section of the ‘Online methods’, were used to evaluate the performance 
of each automated framework were identical for all frameworks, enabling a fair comparison.

Auto-Sklearn was shown to be the most accurate and specific model, achieving an accuracy score of 0.83 ± 
0.07 and a specificity score of 0.89 ± 0.08, although sensitivity was limited (0.62 ± 0.22). Whilst Auto-Sklearn 
outperformed the proposed method in this paper from an accuracy perspective, the automated approaches 
have failed to generate a solution capable of accurately identifying records of patients who had a good surgical 
outcome, denoted by the low sensitivity. Class imbalance was present in the data set, having 29 and 97 records 
of patients with good and poor surgical outcomes, respectively. Experimentally, it was found that by applying an 
up-sampling method, in this case, SMOTE, the effects of class imbalance, notably low sensitivity, were mitigated 
(Supplementary Table S6 vs. Table 1). The assumption could therefore be made that the methods included in 
each of the automated frameworks were insufficient in dealing with the class imbalance in the dataset, and as 
such, are unable to identify the records in the minority class with a high degree of accuracy (Table 2). In terms 
of the other performance metrics, the proposed framework outperformed all other automated approaches across 
AUC, FPR and TPR (Table 2).

Discussion
Clinical relevance of selected features.  The results of the feature selection process and identification 
of the optimal model/feature set combinations revealed 6 features that proved optimal across all models, bar-
ring the sequential model. This is a strength of this study in that the selected features are not biased towards a 

Figure 4.   AITIA: An extended form of the traditional machine learning framework with integrated ‘trust by 
interrogation’ strategies that characterise the difficulty of each record, provide reasoning for individual record 
misclassification and give an insight into how each model performs on records of varying degrees of difficulty.

https://github.com/andrewhouston113/Machine-Learning-Model-Interrogation
https://github.com/andrewhouston113/Machine-Learning-Model-Interrogation
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particular classifier, owing to their promise as markers of surgical outcomes. These features were height, MAP, 
EILP, TTT, TDG and prior surgeries.

With regards to the use of height as a predictive feature, anatomical findings have shown height to be a 
discriminatory variable between patients with CECS and healthy controls, with CECS patients being shorter in 
stature35,36. Whilst the literature remains undecided as to whether this is an aetiological factor for the develop-
ment of CECS, the findings of this study justify that rationale, given that the anatomical predisposition to CECS 
would likely result in higher recurrence rates, hampering return-to-work prospects.

Evidence has shown lifestyle factors to be associated with musculoskeletal pain37–39 and are intrinsically linked 
with the development of hypertension38,40. Given that MAP was identified as valuable for outcome prediction, 
patients with higher blood pressure could be less likely to return to work due to lifestyle factors inhibiting them 
from making a full recovery. Additionally, they may be less engaged in post-surgical rehabilitation. However, 
how MAP relates to surgical outcomes in CECS, specifically, is yet to be determined.

Only one other study to date has identified risk factors for surgical failures in military CECS patients, sug-
gesting that failure rates were higher in patients with high levels of chronicity and physical activity limitations19. 
In concurrence, the present study also found similar outcomes, with TTT and TDG being identified as predic-
tive of surgical outcomes. Reasoning behind TTT outperforming general chronicity as a predictor likely lies in 
the poor reporting of symptom onset, with patients often estimating when their symptoms started, rather than 
being able to provide an actual date. The inclusion of prior surgeries as a predictor is supported by the work of 

Table 1.   Results of the nested cross validation for each model, trained using their respective optimal feature 
set. Cells highlighted in bold reflect the model identified as being superior with respect to the outcome 
measure associated with that cell.

Model Set Accuracy Sensitivity Specificity AUC​ Fpr Tpr

Logistic regression

Train 0.81 ± 0.03 0.83 ± 0.05 0.81 ± 0.03 0.86 ± 0.03 0.18 ± 0.03 0.82 ± 0.04

Validation 0.79 ± 0.06 0.79 ± 0.15 0.79 ± 0.07 0.84 ± 0.08 0.21 ± 0.10 0.80 ± 0.12

Test 0.80 ± 0.07 0.81 ± 0.18 0.80 ± 0.08 0.84± 0.09 0.19 ± 0.09 0.81 ±0.11

SVM

Train 0.83 ± 0.04 0.86 ± 0.06 0.82 ± 0.04 0.88 ± 0.03 0.16 ± 0.04 0.84 ± 0.05

Validation 0.80 ± 0.06 0.80 ± 0.15 0.80 ± 0.08 0.84 ± 0.08 0.20 ± 0.11 0.80 ± 0.11

Test 0.80 ± 0.07 0.80 ± 0.17 0.80 ± 0.08 0.85 ± 0.08 0.20± 0.11 0.81 ± 0.12

KNN

Train 0.77 ± 0.04 0.88 ± 0.06 0.74 ± 0.05 0.89 ± 0.03 0.19 ± 0.04 0.82 ± 0.06

Validation 0.74 ± 0.07 0.82 ± 0.13 0.72 ± 0.09 0.81 ± 0.09 0.24 ± 0.08 0.78 ± 0.12

Test 0.74 ± 0.08 0.81 ± 0.15 0.72 ± 0.10 0.80± 0.09 0.24 ± 0.08 0.77 ± 0.11

Random Forest

Train 0.79 ± 0.04 0.80 ± 0.08 0.79 ± 0.05 0.86 ± 0.03 0.21 ± 0.04 0.80 ± 0.05

Validation 0.77 ± 0.07 0.72 ± 0.17 0.78 ± 0.09 0.83 ± 0.08 0.24 ± 0.08 0.76 ± 0.11

Test 0.77 ± 0.08 0.74 ± 0.20 0.78 ± 0.10 0.82± 0.09 0.24 ± 0.09 0.78 ± 0.12

XGBoost

Train 0.81 ± 0.03 0.73 ± 0.07 0.83 ± 0.03 0.85 ± 0.03 0.20 ± 0.04 0.79 ± 0.05

Validation 0.80 ± 0.06 0.69 ± 0.16 0.83 ± 0.07 0.83 ± 0.07 0.22 ± 0.09 0.78 ± 0.11

Test 0.79 ± 0.07 0.72 ± 0.20 0.82 ± 0.08 0.83 ± 0.09 0.20± 0.10 0.79 ± 0.1

Ensembled SVM

Train 0.82 ± 0.04 0.85 ± 0.06 0.81 ± 0.04 0.87 ± 0.03 0.17 ± 0.04 0.83 ± 0.04

Validation 0.80 ± 0.06 0.80 ± 0.14 0.79 ± 0.08 0.84 ± 0.08 0.20 ± 0.10 0.81 ± 0.12

Test 0.80 ± 0.07 0.81 ± 0.16 0.79 ± 0.08 0.85± 0.09 0.19 ± 0.11 0.80 ± 0.12

Ensembled KNN

Train 0.78 ± 0.04 0.89 ± 0.06 0.75 ± 0.05 0.89 ± 0.03 0.17 ± 0.04 0.83 ± 0.04

Validation 0.76 ± 0.07 0.84 ± 0.13 0.73 ± 0.09 0.83 ± 0.08 0.21 ± 0.09 0.79 ± 0.12

Test 0.76 ± 0.08 0.83 ± 0.16 0.74 ± 0.10 0.82 ± 0.08 0.21 ± 0.10 0.80 ±0.12

Sequential

Train 0.81 ± 0.03 0.83 ± 0.06 0.80 ± 0.04 0.87 ± 0.03 0.19 ± 0.03 0.81 ± 0.04

Validation 0.78 ± 0.06 0.77 ± 0.16 0.79 ± 0.07 0.83 ± 0.08 0.22 ± 0.09 0.79 ± 0.11

Test 0.78 ± 0.07 0.78 ± 0.17 0.78 ± 0.09 0.83± 0.09 0.21 ± 0.09 0.78 ± 0.11

Table 2.   Comparison of the proposed framework compared to automated machine learning frameworks. 
Cells highlighted in bold reflect the framework identified as being superior with respect to the outcome 
measure associated with that cell.

Method Accuracy Sensitivity Specificity AUC​ FPR TPR

AITIA (proposed) 0.80 ± 0.07 0.80 ± 0.17 0.80 ± 0.08 0.85 ± 0.08 0.20 ± 0.11 0.81 ± 0.12

TPOT 0.72 ± 0.09 0.49 ± 0.22 0.79 ± 0.12 0.71 ± 0.11 0.24 ± 0.14 0.64 ± 0.13

Auto-Sklearn 0.83 ± 0.07 0.62 ± 0.22 0.89 ± 0.08 0.82 ± 0.10 0.21 ± 0.15 0.77 ± 0.12

AutoPrognosis 0.78 ± 0.09 0.65 ± 0.22 0.82 ± 0.12 0.80 ± 0.11 0.24 ± 0.14 0.75 ± 0.13
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Waterman et al.19, which showed only 14% of surgical revisions in military personnel go on to experience a full 
resolution of symptoms.

Model performance and interrogation.  The optimal model, developed using the proposed framework 
was the SVM, achieving an accuracy score of 0.80 ± 0.07 and AUC of 0.85 ± 0.08. The findings of the model inter-
rogation demonstrate the misclassifications that occur are most often the result of class overlap, given that KDN 
and CLD were the two measures shown to be most associated with instance hardness ( ρ = 0.661 and − 0.595, 
respectfully). This speaks to the sensibility of the model’s decision making, in that, when errors are made, this is 
due to those records being more aligned with the opposite outcome, rather than from improperly learning the 
trends in the data. This finding in combination with the selected feature’s alignment with the literature, allow the 
user to trust that the model’s decision-making is sensible.

Further to examining the performance of the developed models, the proposed model interrogation can shed 
light on strategies to improve model performance. Class overlap is oftentimes cited as a primary reason for the 
increasing difficulty of a record25 and as demonstrated in this and other studies is handled poorly by KNN-based 
models41. The model interrogation also revealed that XGBoost was adept in handling difficult records, but was 
weaker with easier records. Given that different models proved optimal at each end of the difficulty spectrum, 
methods such as multiple classifier systems42 or hybrid trees43 may be suitable techniques for improving classifica-
tion performance. In Termenon et al.44 a two-stage sequential ensemble was employed, whereby the first classifier 
made a prediction, giving an estimation of uncertainty, instances exceeding a given threshold of uncertainty 
were then passed to a second classifier, specialised in handling more complex instances. Findings showed this 
approach to achieve superior performance than single classifier systems. Similarly, dynamic classifier selection 
approaches, which select the most appropriate classifier or ensemble of classifiers for the feature space an instance 
falls within, have been shown to achieve superior performance in harder instances41. Future investigations into 
the application of multiple classifier systems to clinical problems such as this, with a focus on maintaining accept-
able levels of trust and interpretability, should be evaluated.

Limitations and future works.  The primary limitation of this study is the dataset that was used to train 
and test the developed models. Having only 132 records, restrictions were likely placed on the classification per-
formance capable of being achieved with so few data points. As a result, it is evident that the developed models 
suffer from a degree of variability that is to be expected when sample sizes are smaller. Furthermore, whilst the 
results of a deep learning model are presented, it was always unlikely that this approach would prove optimal, 
given deep learning’s dependency on data45. However, it is expected that as the dataset increases in size, these 
limitations will be minimised.

Secondly, the dataset used in this study is comprised of retrospective data from a single medical facility and 
therefore limits the generalisability of the findings of this study and the applicability of the developed model. 
Furthermore, the surgery for which the data refers to were performed by only a 5 different surgeons, all using 
similar surgical techniques. In that respect, the developed model is suited for the setting in which is was devel-
oped. In considerations of these limitations, prior to deployment in a real-world setting, external validation would 
be required to confirm the selected features and quantify model performance on a truly unseen, prospective 
set of patients.

Lastly, our comparison with automated frameworks demonstrated the superiority of AITIA. But before this 
finding can be generalised, additional experiments will need to be conducted, comparing the performance of 
the frameworks across additional datasets. Furthermore, AITIA provides a novel model interrogation strat-
egy designed to improve an end users level of trust in the model development process. However, an end user 
evaluation was not included as part of this work and should form the focus of future investigations. Therefore, 
future works include: (1) validating the performance of the developed model in a prospective group of patients, 
independent to the data used in this study. (2) an investigation comparing the model interrogation outputs 
with explainable methods such as feature importance, feature contributions and counterfactual explanations 
to establish how its inclusion influences an end users trust in and understanding of a model’s decision making. 
(3) a study to compare the proposed framework to other automated and non-automated frameworks across 
multiple datasets.

Implications and conclusions.  This study provided an interrogation of a real-world medical dataset, com-
prised of military CECS patients undergoing surgical intervention. The contributions of this study are both 
clinical and computational. Clinically, results highlight key patient characteristics that should be considered 
when referring a patient for a fasciotomy for CECS. The slow referral speed for surgery was identified as a key 
modifiable feature that was useful in discriminating between good and poor surgical outcomes, and should be a 
focus for care improvement. Whilst the presented findings must be prefaced with the need for further prospec-
tive validation, the presented model could enable better treatment planning and overall improvement of surgical 
outcomes.

Computationally, this study proposed a machine learning framework, shown in Fig. 4, that: (1) identifies a 
small set of clinically relevant features that are predictive of the treatment outcome, combining the knowledge 
of clinicians with computational approaches to achieve an informed result; (2) proposes a model for predicting 
CECS using the selected features; (3) proposes strategies for interrogating the performance of machine learn-
ing models using a misclassification analysis providing potential reasons as to why certain patients cannot be 
correctly classified and identifies which models are best suited for dealing with challenging patient profiles, 
facilitating the planning of strategies for improving model performance; (4) proposes AITIA, a framework with 
embedded ‘trust by interrogation’ strategies that can be used for any clinical problem requiring machine learning.
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Methods
Dataset description.  The raw dataset contained the following 19 features, taken at the time of surgery: age, 
job rank, height, weight, systolic and diastolic blood pressure ( BPsystolic and BPdiastolic , respectively), cigarettes 
smoked/day, units drank/week, scores of the Foot and Ankle Ability Measure (FAAM) and Exercise Induces Leg 
Pain questionnaire (EILP), date of symptom onset, date of first presentation to the medical pathway, date of diag-
nosis, date the patient had first been medically downgraded, whether the patient had any prior injuries, surger-
ies, inpatient rehabilitation or co-morbidities, a disidentified surgeon ID, and the patient’s treatment outcome.

All methods were carried out in accordance with relevant guidelines and regulations. Data was collected and 
anonymised by the clinical teams at the Defence Medical Rehabilitation Centre (DMRC) before being provided 
to the research team. Due to the retrospective nature of the study, informed consent was waived by Ministry of 
Defence Research Ethics Committee. Approval was granted for the use of the data contained in the database by 
the clinical director and Caldicott Guardian of the Defence Medical Rehabilitation Centre. CC1 approval was 
gained for the publication of this study (CC1-20210174).

Inclusion and exclusion criteria.  The Defence Medical Information Capability Program was queried 
against the following inclusion and exclusion criteria: records of patients were included if they had received 
a corrective fasciotomy, between 01/01/2014 and 31/12/2019, following a positive diagnosis for CECS, using 
the criteria specified in Roscoe et al.46, defined as an intramuscular compartment pressure of greater than 105 
mmHg, during an exercise protocol consisting of carrying a 15-kg backpack, the treadmill incline increased to 
5%, and walking pace set at 6.5 km/h for 5 min. Records were excluded if they had refused surgery, encountered 
a new lower-limb injury the year post-surgery, received a second surgery within the year following the first, or 
left the military less than 1 year post-surgery.

Surgical outcome definition.  Records were split into two groups according to their treatment outcome, 
which was used as the classification target. A successful outcome was defined as a return to full deployability 
status within 1 year post-surgery and an unsuccessful outcome was defined as a sustained status of ‘medically not 
deployable’ or ‘limited deployability’. Given that a patient may injure another area of their body within that time 
frame, only the lower-limb portion of the deployability status was considered. One year has been recommended 
as the optimal follow-up time given that it allows sufficient time to recover from surgery, as well as enabling the 
identification of re-occurrences47,48. Deployability status was assessed by a local medical officer or the occupa-
tional medical board and judged against the UK Joint Service Medical Deployment Standards (JSP-950).

Outlier detection and removal.  Outlier identification and removal were employed to ensure that trained 
models were more capable of appropriately characterising the data. Failure to remove outliers could result in 
their presence skewing the data distributions, resulting in misrepresentation of the relationships contained 
within the dataset. To detect outliers, all features were firstly min–max normalised to avoid the impact of features 
with large ranges biasing the distance calculation. An outlier score was calculated for each record using a relative 
density approach49, reflecting the “outlierness” of a record relative to their nearest 10 neighbours. A threshold 
of 1.5 interquartile ranges above the upper quartile of outlier scores was the cut-off point for removing records.

Grouping of features.  The raw features were grouped according to public health guidelines, published 
literature or data distribution (Supplementary Table S2). The motivation for grouping features was due to the 
nature of the dataset being small and therefore requiring simplification of the contained data to improve the 
robustness of the trained models and prevent overfitting.

Age was binned into three groups based on the distribution of the dataset. The groups were age ≤  25, 25 < age 
≤ 30 and age > 30. Job rank is already ordinal, however, the frequencies of ranks greater than 3 become sparse and 
could introduce bias into the predictions, hence jobs ranks of 2 and greater were collectively grouped to account 
for this. Height and weight were grouped into three and four groups, respectively, based on the distribution of 
the dataset. For height, groups were height < 170 cm, 170 cm ≤ height, < 180 cm, height ≥ 180 cm. For weight, 
groups were weight < 75 kg, 75 kg ≤ weight, < 85 kg, 85 kg ≤ weight, < 95 kg, weight ≥ 96 kg. BMI was calculated 
using height and weight, and grouped according to the recommendations of the World Health Organisation50 
and National Heart, Lung, and Blood Institute51.

BPsystolic and BPdiatolic were grouped into four and three groups respectively, using the thresholds outlined by 
the American Heart Association52. A third variable was created giving an overall categorisation of blood pressure 
(BP) as ‘Normal’, ‘Elevated’, ‘Stage 1 high BP’ or ‘Stage 2 high BP’, according to the thresholds outlined by the 
American Heart Association52. Mean Arterial Pressure (MAP) was calculated using BPsystolic and BPdiatolic and 
split into categories of MAP < 60, 60 ≤ MAP < 100 and MAP ≥ 100 which have been identified as predisposing 
patients to greater risks during and following surgical procedures53,54.

In determining the categories of smoking, this study looked to literature relating to smoking and muscu-
loskeletal injuries55,56, and smoking and general health57–59. Heavy smoking was generally regarded as over 20 
cigarettes per day55,58,59 and a review of the health effects of light and moderate smoking57 revealed that generally 
light smoking in musculoskeletal conditions was classified as < 10 cigarettes per day55,56. Therefore, smoking 
was categorised into ‘Non-Smoker’, ‘Light’ (< 10/day), ‘Moderate’ (10–20/day) and ‘Heavy’ (> 20/day). Alcohol 
is measured in units per week and was binarised into ‘Binge drinker’ (>14 units/week) and ‘Non-binge drinker’ 
( ≤ 14 units/week) to reflect the United Kingdom alcohol consumption guidelines60.

Both the FAAM61 and EILP62 questionnaires are patient-reported outcomes that are routinely used in clinical 
settings that manage CECS patients, and measure the impact of musculoskeletal pain on a patient’s daily life and 
were grouped according to the categories incorporated in the questionnaires themselves; extremely affected (< 
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20%), very affected (20% to < 40%), moderately affected (40% to < 60%), slightly affected (60% to < 80%) and 
unaffected ( ≥ 80%). FAAM and EILP were the only two variables to have missing values, with 20% and 22% of 
records missing pre-surgical values, respectively. Missing data were imputed by applying group-level median 
imputation, replacing the missing value with the median of the treatment outcome group to which that record 
belongs. Features relating to co-morbidities, prior injuries, prior fasciotomy and prior inpatient rehabilitation 
were binarised into ‘Yes’ and ‘No’, due to the low number of records having more than one in any of these 
variables.

Six pathway variables relating to the timings of the injury and interventions were calculated in months, as 
follows:

•	 Chronicity: time from date of symptom onset to date of surgery
•	 Time-to-Present (TTP): time from date of symptom onset to date of first presentation to a medical facility
•	 Time-to-Diagnose (TTD): time from date of first presentation to a medical facility to date of diagnosis
•	 Time-to-Treat (TTT): time from date of first presentation to a medical facility to date of surgery
•	 Time Downgraded (TDG): time from date of medical downgrade due to symptoms to date of surgery
•	 Wait Time: time from date of diagnosis to date of surgery

Features relating to the timings of the injury and interventions were grouped following consultation with the 
clinical lead for CECS at DMRC Stanford Hall and guided by the dataset distribution.

The result of pre-processing and feature engineering is a matrix of 126 records × 23 processed features that 
is used in the statistical analysis, feature selection and model development.

Statistical analysis of the processed dataset.  To determine whether the dataset has been drawn from 
a normally distributed population the normality of each feature was assessed using the Kolmogorov–Smirnov 
and Shapiro–Wilk tests. To identify the between-group differences between those having a poor vs. good surgi-
cal outcome, a Mann–Whitney U test was performed on the ordinal data and a Chi-square test for the categorical 
data. A correlation analysis was performed to identify co-linearities within the dataset using a Spearman’s rank 
correlation measuring the strength of association between pairs of features within the dataset. An alpha thresh-
old on 0.05 was set for all statistical tests within the analysis and all tests were two-sided.

Identifying candidate feature sets for the prediction of surgical outcomes.  To identify a small set 
of clinically relevant features that are predictive of the surgical outcomes of CECS, feature selection was applied. 
Aside from identifying features relevant to the classification problem, feature selection reduces the dimensional-
ity of the dataset, simplifying the classification problem, thereby improving model stability and generalisability. 
Feature selection was performed using a filter-based genetic algorithm and the knowledge of clinical experts.

A Tabu Asexual Genetic Algorithm (TAGA)28 was used to generate 9 feature sets (Supplementary Table S3). 
TAGA takes an m × n matrix, where m is the number of samples and n is the number of features and calculates 
a Fisher’s score. The top 12 features, based on their Fisher score, were entered into a genetic-based combinato-
rial optimisation process, outputting the desired number of features ( � ) that maximise the relevant information 
within the selected features towards the classification target, whilst reducing redundancy. This process was con-
ducted for � = 2, 3, . . . , 10 . The benefit of applying TAGA as opposed to other genetic-based feature selectors 
is that TAGA applies a tabu list, avoiding the algorithm getting stuck in a locally optimal solution, by storing a 
fixed amount of recently tested mutation swaps to be avoided in future mutations. Furthermore, the absence of 
a classifier in the selection process results in a set of features that are not biased towards any specific classifier, 
thus improving generalisability. Given that genetic algorithms can produce different results each time they are 
run, this process was repeated 30 times, outputting the selected � features for each iteration. Thereafter, the selec-
tion of final subsets of features for each cardinality was determined by calculating the relative frequency of each 
feature occurring in the selected subset and selecting those with the highest relative frequency.

A final set of potential features were created in consultation with the clinical team at DMRC. The team was 
presented with the list of features appearing in the optimally performing TAGA and statistically-derived feature 
sets and asked to create a combination of features that they would deem ‘sensible’ for the prediction of surgical 
outcomes (STAT + TAGA + Expert).

Model development and evaluation.  To identify which machine learning model would be most suit-
able for the task of predicting the surgical outcome, 8 classifiers were investigated. These models were logistic 
regression, support vector machines (SVM) and K-nearest neighbours (KNN), ensembled approaches (random 
forest, extreme gradient boosting (XGBoost), ensembled-KNN and ensembled-SVM), and a sequential model.

To evaluate the performance of each classifier, a repeated nested cross-validation was applied, as described 
in Algorithm 1. Firstly, inputs are defined, including the dataset, A, comprised of an m× n matrix, where m is 
the number of records in the training set and n is the number of features (Line 1) and a set of H hyperparameter 
combinations are specified for each model (Line 2). Dataset A is then split into 5 stratified folds to ensure that 
each fold has a similar distribution of groups as the whole dataset (Line 5). The number of folds was chosen 
due to the minority class comprising only 23% out of 126 records. Therefore, to have sufficient records of good 
surgical outcomes included in the test and validation sets to adequately evaluate a model in terms of sensitivity, 
fivefolds were chosen. Furthermore, fivefolds was viewed as a means of managing the bias associated with fewer 
folds and the variance associated with a large number of folds.
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For each fold in the fivefold cross-validation, onefold is selected as the test set (Line 7), meaning its data will 
not be used to train or tune the model. Thereafter, hyperparameter tuning commences in the form of a fourfold 
stratified cross-validation, training a model on three of the remaining folds and validating the performance of 
hyperparameters h on the fourth remaining fold. Hyperparameter tuning was performed using a grid search and 
the optimal hyperparameter settings of each model are shown in Supplementary Table S5. Following the fourfold 
cross-validation, the mean performance overall fourfolds is calculated for each hyperparameter combination 
(Line 13), and the optimal combination is identified (Line 15). Performance was measured in terms of mean 
AUC on the validation set. Subsequently, the model is then retrained on all four folds using the optimal hyper-
parameters (Line 18), and tested on the fifth fold that was held out at the beginning of the outer loop (Line 19). 
The outer loop continues until each of the fivefolds has acted as the test set. This process is repeated 30 times 
to capture the variation in performance of an optimal model, resulting in 150 different train and test sets being 
evaluated for each classifier (Line 22). Random seeds were employed to ensure that the train and test sets were 
identical for all models, to enable a fair comparison between models (Line 3). 

To tackle class imbalance, having only 29 records of patients with a good surgical outcome vs 97 records of 
patients with a poor surgical outcome, the minority class of the training set, i.e. records of patients with good 
surgical outcomes, was up-sampled using a synthetic minority over-sampling technique (SMOTE)63, as shown 
in lines 9 and 15 of Algorithm 1. SMOTE was not applied to the whole dataset to limit data leaking from the 
training set to the testing set. Furthermore, SMOTE was not applied to the testing set because the test set would 
no longer reflect the true distribution that exists in real life. The classification performance of each model, with 
and without the use of SMOTE is presented in Tables 1 and 2, respectively. It is clear that without SMOTE a 
highly imbalanced classifier results, characterised by high specificity and low sensitivity, meaning the classifiers 
are unable to accurately classify the minority class compare to the majority class in the dataset.

The performance of each classifier and feature set was measured using a number of evaluation metrics. The 
metrics employed included: accuracy, sensitivity, specificity and area under the receiver operating characteristic 
(ROC) curve (AUC), optimal false positive rate (FPR) and optimal true positive rate (TPR).

Accuracy is defined as the ratio of correct predictions compared to incorrect predictions. Sensitivity is defined 
as the percentage of positive cases being correctly identified. Specificity is defined as the percentage of negative 
cases being correctly identified. Accuracy, sensitivity and specificity are calculated by:

where TP refers to a patient who returned to work being predicted as a returning to work, FN refers to a patient 
who returned to work being predicted as not returning to work, FP refers to a patient who did not return to work 

(1)Accuracy =
TP + TN

TP + FP + TN + FN

(2)Sensitivity =
TP

TP + FN

(3)Specificity =
TN

TN + FP
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being predicted as a returning to work and TN refers to a patient who did not return to work being predicted 
as a returning to work.

A Receiver Operating Characteristic (ROC) curve was constructed and the optimal operating point was 
identified as the intersection of the true positive rate and 1 minus the false positive rate. The false and true posi-
tive rates at the optimal operating point were identified as the model’s FPR and TPR, respectively. Lastly, the 
area under the ROC curve (AUC) was recorded as it reflects the model’s capability of discriminating between 
patients returning to work and those who do not.

A statistical comparison between models was conducted for each performance metric using Friedman’s 
paired samples tests to identify whether performance in each metric significantly differed between models. If a 
significant difference was found, a post-hoc analysis was conducted using a Wilcoxon signed-rank test, adjusting 
the significance threshold using the Bonferroni correction, to establish between which pair of models differences 
were significant. The analysis was conducted on the outputs of the outer loop of the nested cross-validation, 
reflecting model performance on unseen data. Given that a fivefold outer loop, repeated 30 times, was used, 
the classification performance of each model on 150 test sets was compared across the 6 performance metrics.

Model interrogation methods.  The intention of the model interrogation stage was employed to go 
beyond mean measures of overall model performance, digging deeper into identifying which model was best 
suited for the current classification problem. Model interrogation involved characterising each record from a dif-
ficulty perspective, then identifying sources of difficulty using associative testing and establishing which models 
are best suited to mitigate the effects of said sources of difficulty. To characterise a record in terms of its diffi-
culty, an instance hardness score was calculated, reflecting the number of trialled classifiers capable of correctly 
predicting the outcome of each record. Instance hardness was derived using (4), as proposed by Smith et al.25:

where x refers to a record in the dataset, N refers to the number of classifiers and the function incorrect(CLi , x) 
returns 1 if the record x is incorrectly classified by classifier CLi.

To determine why a record may have been misclassified, from a data perspective, four instance-level hardness 
measures were calculated: K-disagreeing neighbours (KDN), disjunct size (DS), disjunct class percentage (DCP) 
and class-likelihood percentage (CLP). The hardness measures are calculated as follows:

KDN measures the local overlap of the nearest neighbours of each instance, KDN represents the percentage 
of neighbours that do not share the same class as the current instance, and is derived using (5).

DS measures the complexity of the decision boundary, and is derived using (6).

DCP represents the overlap of an instance based on a subset of its features, and is derived using (7).

CLD represents the global overlap of an instance against the rest of the dataset using all features, and is 
derived using (8).

where the function KNN(x) returns the nearest k neighbours to record x, t(x) returns the class label of record x, 
the function disjunct(x) returns the disjunct that covers record x, D refers to the entire dataset, Y represents the 
number of classes in the dataset, y represents all records returned by the functions KNN(x) and disjunct(x) and z 
represents the records returned by the functions KNN(x) and disjunct(x) belonging to the same class as record x, 
the function CL(x) returns the probability of an instance belonging to a certain class, and is derived using Eq. (9):

where |x| is the number of features of instance x and xi is the value of x’s ith feature.
To establish which harness measures best explain the difficulty of each record within the dataset, Spearman’s 

correlations were used, identifying the strength of association between instance hardness and each hardness 
measure. The measures with the largest correlation coefficients were carried forward to establish which model 
was best suited at handling the negative effects of each measure on classification performance.

To examine each model’s performance on records of high and low difficulty, AUC was calculated using the 
mean probability predicted for each record from the 30 iterations of the nested cross-validation, beginning with 
a set of records with low hardness measure scores. Incrementally, records with greater hardness measure scores 
were added until the entire dataset was included, at which point the records with the lowest hardness measure 

(4)instance hardness(x) =

∑N
i incorrect(CLi , x)

N

(5)KDN(x) =
|{y : y ∈ KNN(x) ∧ t(y) �= t(x)}|

k

(6)DS(x) =
|disjunct(x)| − 1

maxy∈D|disjunct(y)| − 1

(7)DCP(x) =
|{z : z ∈ disjunct(x) ∧ t(z) = t(x)}|

|disjunct(x)|

(8)CLD(x) = CL(x, t(x))− argmaxCL(x, y)
y∈Y−t(x)

(9)CL(x) = CL(x, t(x)) =

|x|∏

i

P(xi|t(x))
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scores were removed until AUC was unable to be calculated due to the absence of one group from the dataset. In 
applying this approach, how each model performs on records with the characteristics associated with increased 
difficulty can be established. Therefore enabling an informed decision as to which classifier is most appropriate 
for deployment.

Performance comparison with automated machine learning frameworks.  The classification per-
formance of the proposed framework was compared to three automated machine learning frameworks; Auto-
Sklean33, TPOT32 and AutoPrognosis34. Both Auto-Sklearn and TPOT use frequentist tree-based structures to 
model the sparsity of a pipeline’s hyperparameter space. To optimise the derived pipeline, Auto-Sklearn applies 
Bayesian optimisation using tree-based heuristics, TPOT uses a tree-based genetic approach, and AutoProgno-
sis uses Gaussian process-based Bayesian optimisation with structured kernel learning. Both Auto-Sklearn and 
AutoPrognosis automate the processes of missing data imputation, data pre-processing, feature selection, and 
classifier selection and tuning (Supplementary Table S8). Therefore, for both frameworks, the raw, unprocessed 
data was input into the frameworks. TPOT performs all aforementioned processes with the exception of missing 
data imputation, therefore, the raw data was imputed before it was input into the TPOT framework. Imputation 
was performed using group-level median imputation, as performed in AITIA. All frameworks were evaluated 
using the same approach that was applied for evaluating the performance of AITIA as described in the “Model 
development and evaluation” section of the ‘Online methods’. To compare the framework proposed in this study 
with the automated frameworks, a pairwise analysis was carried out on the performance of each framework on 
the 150 test sets, across all 6 evaluation metrics, using Wilcoxon signed-ranks tests.

Data availability
Accession codes The code for performing the model interrogation proposed in this study is publicly available at 
https://​github.​com/​andre​whous​ton113/​Machi​ne-​Learn​ing-​Model-​Inter​rogat​ion.
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