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a b s t r a c t

Greening, or Huanglongbing (HLB), poses a severe threat to global citrus cultivation,
affecting various citrus species and compromising fruit production. Primarily transmitted
by psyllids during phloem feeding, the bacterium Candidatus Liberibacter induces detri-
mental symptoms, including leaf yellowing and reduced fruit quality. Given the limitations
of conventional control strategies, the search for innovative approaches, such as resistant
genotypes and early diagnostic methods, becomes essential for the sustainability of citrus
cultivation. The development of predictive models, such as the one proposed in this study,
is essential as it enables the estimation of the bacterium's concentration and the vulner-
ability of healthy plants to infection, which will be instrumental in determining the risk of
HLB. This study proposes a prediction model utilizing environmental factors, including
temperature, humidity, and precipitation, which play a decisive role in greening epide-
miology, influencing the complex interaction among the pathogen, vector, and host plant.
In the proposed modeling, it addresses non-linear relationships through cubic smoothing
splines applications and tackles imbalanced categorical predictor variables, requiring the
use of a random-effects regression model, incorporating a random intercept to account for
variability across different groups and mitigate the risk of biased predictions. The model's
ability to predict HLB incidence under varying climatic conditions provides a significant
contribution to disease management, offering a strategic tool for early intervention and
potentially reducing the spread of HLB. Using climatological and environmental data, the
research aims to develop a predictive model, assessing the influence of these variables on
the spread of Candidatus Liberibacter asiaticus, essential for effective disease management.
The proposed flexible model demonstrates robust predictions for both training and test
data, identifying climatological and environmental predictors influencing the
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dissemination of Candidatus Liberibacter asiaticus, the vascular bacterium associated with
Huanglongbing (HLB) or greening.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Phytobacteriosis, known as citrus greening or Huanglongbing (HLB), represents a significant threat to global citriculture,
affecting various citrus species and compromising citrus fruit production. It is mainly transmitted by psyllids during feeding
in the phloem of plants, and the bacterium Candidatus Liberibacter causes detrimental symptoms, such as leaf yellowing and
reduced fruit quality. Given the limitations of conventional control strategies, researchers are increasingly focusing on
innovative approaches, including resistant genotypes and early diagnostic methods, which are important for citriculture
sustainability.

Several authors have conducted research on phytobacteriosis in recent years. For example, Cifuentes-Arenas et al. (2018)
investigated the impact of citrus shoot ontogeny on the development of the psyllid species Diaphorina citri, developing a six-
stage scale. Their findings suggested that considering shoot ontogeny and flow density could optimize psyllid control stra-
tegies, helping to determine multiplication risks in citrus orchards. Bassanezi et al. (2019) conducted a comprehensive
analysis aiming to update the characteristics of HLB epidemics, urging farmers and phytosanitary defenders to adopt quar-
antine measures to prevent HLB entry into unaffected regions. The study emphasizes the importance of regional control
strategies. Graham et al. (2020) highlighted the lack of effective HLB control in the USA due to limited tools against the vector
Diaphorina citri and the transmission of Candidatus Liberibacter asiaticus, advocating for the removal of infected trees and
presenting experiences from Florida, Texas, and California.

Moreover, Raiol-Junior et al. (2021) investigated the lateral movement of Candidatus Liberibacter asiaticus (Las) in citrus
and concluded that the bacterium primarily moves through the phloem, especially in fully girdled plants. Their study also
highlighted the importance of protecting new shoots to minimize pathogen transmission, as starch accumulation occurred
above the girdling site, possibly due to changes in phloem sap flow. Cifuentes-Arenas et al. (2022) conducted a five-year study
on ‘Femminello’ Sicilian lemons to assess the impact of severe Asian HLB forms, noting that symptoms increased over time,
resulting in significant production reductions and an increase in budding. The study called for the removal of diseased trees
and preventive control of the Asian citrus psyllid. Most recently, Dutt et al. (2023) evaluated ‘Valencia’ orange trees grafted
with grapefruit rootstock and Swingle interstock, revealing that HLB-tolerant grapefruit interstocks can promote vigorous
tree growth and tolerance to susceptible canopies. Ojo et al. (2024) developed an automated, drill-free trunk injection system
to treat Huanglongbing (HLB) in citrus trees, improving application efficiency and reducing environmental impact. Chuang
et al. (2024) evaluated individual protective covers (IPCs) and found they effectively excluded Asian citrus psyllids and
prevented huanglongbing in young citrus trees, though they increased issues with sooty mold and spider mites, reflective
mulch and kaolin treatments did not outperform the grower standard.

With mathematical and statistical modeling, researchers seek effective control strategies for this global threat. Taylor et al.
(2019) developed methods to estimate the fundamental thermal niche of pests and pathogens, applying these to HLB, and
produced global maps indicating areas at higher risk of disease based on temperature. Zhang et al. (2020) developed a
mathematical model analyzing HLB transmission between citrus trees and the Asian citrus psyllid, showing that eliminating
infected ACP is essential for controlling HLB spread. They found that optimal control strategies were more effective and
economical than constant control strategies. Ajene et al. (2020) used species distribution models to predict the current and
future distribution of citrus greening pathogens Las in Africa and Laf globally, emphasizing the need for proactive monitoring.
Heit et al. (2020) estimated the potential distribution of HLB in South America using climate models, highlighting the
importance of integrating results for decision-making. Luo et al. (2021) formulated a disease model considering insecticide-
resistant vectors, exploring optimal control strategies. Alves et al. (2022) analyzed HLB presence and absence data in Minas
Gerais, Brazil, over 13 years, identifying temperature as inversely related to disease prevalence. Tang et al. (2023) developed
an HLB transmission model, calculating the basic reproduction number (R0) and proposing an optimal control model to
minimize control costs.

Environmental factors also play a significant role in understanding greening dynamics. Temperature, relative humidity,
and precipitation affect disease spread and epidemiology. Temperature, in particular, is critical for greening incidence and
development, as warmer conditions favor psyllid reproduction and accelerate pathogen life cycles. In high temperatures,
disease symptoms may intensify, affecting crop metabolism. Relative humidity influences vector ecology, aiding psyllid
survival and reproduction, while precipitation affects psyllid population dynamics and disease spread.

In statistical modeling, nonlinear relationships between covariates and response variables present challenges for tradi-
tional linear models. To address this complexity, spline smoothing has emerged as a useful strategy for capturing these in-
teractions accurately. Santos et al., (2024) employed a heteroscedastic semiparametric regression model using the Gamma
distribution (GA), this model integrated vegetation indices, accumulated precipitation, treatments applied during two years
of field experiments, including dosages of $ytext{P}_{2}ytext{O}_{5}$ fertilizer and liquid inoculant {yit Bacillus} strains,
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among other covariates, to predict sugarcane yield. Another common modeling issue is an imbalanced categorical predictor
variable. To handle this, regressionmodels with random effects on the intercept are often employed, allowing the intercept to
vary randomly across groups. Vasconcelos, Ortega, Vila, and Cancho (2023) used an extended partially linear regressionmodel
to account for bimodal and correlated data. Vasconcelos, Ortega, Kluge, et al. (2023) applied a flexible partially linear
regression model with random effects to study lychee fruit respiratory rates under varying temperature levels.

In addition to statistical approaches, machine learning models have also been widely employed in the study of HLB. Deng
et al. (2019) developed a non-destructive hyperspectral reflectance method to detect HLB in Shatangju tangerines, using
machine learning algorithms to identify optimal bands for early detection. This method was effective in reducing dimen-
sionality and demonstrated the potential of reflectance data for early disease detection. Lan et al. (2020) used UAV-mounted
multispectral cameras to detect HLB in large citrus orchards, finding that the combination of vegetative index features and
original values yielded high accuracy in disease detection. Finally, Weng et al. (2021) employed machine learning models to
study the effects of HLB on citrus leaves, identifying disruptions in photosynthesis and distinguishing HLB symptoms from
magnesium deficiencies. Menezes et al. (2023) used hyperspectral imaging and convolutional neural networks to auto-
matically detect HLB disease in citrus trees, achieving 92.86% classification accuracy. This method offers an efficient alter-
native to traditional, labor-intensive detection techniques. Yang et al. (2024) developed 1D-CNN models for detecting HLB
disease in citrus using micro-FTIR spectroscopy, achieving 98.65% accuracy in the lab and 91.21% in the field, based on callose
accumulation.

In this context, this study aims to develop a predictive model using climatological and environmental data to evaluate the
influence of predictor variables on the spread of Candidatus Liberibacter asiaticus. Understanding the role of these factors is
vital for developing effective disease management strategies. By integrating climatological, environmental, epidemiological,
and agronomic data, this research seeks to enhance disease spread anticipation, improve preventive measures, and optimize
HLB control in various cultivation conditions.

The remainder of the article is organized as follows. Section 2 outlines the methods and materials used in the study,
including the field experiments conducted to monitor the bacterium Candidatus Liberibacter asiaticus, the relevant climatic
variables for its epidemiology, and the proposed statistical model, Normal partially linear regression with random effects, for
analyzing the collected data. Section 3 details the application of the proposed model, illustrating how it captures the rela-
tionship between climatic variables and the quantity of Candidatus Liberibacter asiaticus. This section emphasizes themodel's
accuracy and effectiveness in forecasting and interpreting the data. Finally, Section 4 presents the concluding remarks.

2. Material and methods

2.1. Field trials

The experiments discussed here refer to the repeated measures of log Las (Candidatus Liberibacter asiaticus) cell g�1 from
orange trees at 10 locations in the southeastern region of Brazil (Table 1).

2.2. Climatic variables relevant to Candidatus Liberibacter asiaticus

The meteorological variables considered were temperature, relative humidity, and accumulated precipitation due to their
known influence on the ecological dynamics of the pathogen, vector, and citrus plants (Carvalho et al., 2021; Lopes et al., 2017;
Zorzenon et al., 2021). Thismethodological approach aims to provide amore precise and comprehensive understanding of the
environmental factors underlying the epidemiology of this bacterium in specific ecosystems. Additionally, the K€oppen-Geiger
climate classification was incorporated as a “climate type” variable, which condenses temperature and precipitation sea-
sonality patterns and can serve as a generalizing factor to apply the final model to other regions. In this system, the classi-
fication is based on specific criteria for each study location, using distinct codes such as Aw, Cfa, and Cwa to represent,
respectively, humid tropical climates, humid subtropical climates, and humid subtropical climates with dry winters (Alvares
et al., 2013).
Table 1
Locations where the samples were taken for monitoring Las titers in citrus trees.

City State Latitude Longitude

Agudos S~ao Paulo �22.4691 �48.9895
Altair S~ao Paulo �20.5204 �49.0534
Analândia S~ao Paulo �22.1267 �47.6637
Colina S~ao Paulo �20.7162 �48.5457
Comendador Gomes Minas Gerais �19.7319 �49.0654
Frutal Minas Gerais �20.0197 �48.9194
Guaimbê S~ao Paulo �21.9108 �49.8975
Guapiaçu S~ao Paulo �20.7958 �49.2206
Itaí S~ao Paulo �23.414 �49.0927
Rinc~ao S~ao Paulo �21.5875 �48.0679
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2.3. Model structuring

The Normal, or Gaussian, distribution is widely used in statistical modeling due to its symmetry around the mean. This
bell-shaped distribution is essential in various fields, providing a solid understanding of variability and probability in random
processes.

Consider f(y) as a probability density function (PDF), defined by:

f ðyjm; sÞ ¼ 1
s
ffiffiffiffiffiffi
2p

p exp

"
� ðy� mÞ2

2s2

#
ð1Þ

for �∞ < y < ∞, �∞ < m < ∞, and s > 0. The parameters m and s represent the mean and standard deviation, respectively.
2.3.1. Normal regression with random effect
In research with unbalanced repeated measures, the inclusion of a random effect in the intercept is essential for dealing

with unexplained variations and heterogeneity between experimental units. This method becomes essential, especially in
covariates with unbalanced factors, ensuring a robust approach in estimating fixed effects. However, the validity of inferences
depends on checking the model assumptions and interpreting considering its specific properties. We adopt the following
structure as a guide to ensure accurate and reliable analysis.

Let a sample be partitioned intoN groups and let Yij denote the response variable of the j-th object in the i-th group, where
i ¼ 1, …, N, and j ¼ 1, …, ni. Note that there are ni repeated measures within each group.

Consider the scenario where the response variable is associated with fixed covariates xij ¼ ðxij1;…; xijpÞu, and all in-
dividuals within the same group share common random effects (denoted as wi). Assuming that each individual's response
includes a common random effect and these random effects are unobserved randomvariables, themodel for the parameter mij
can be expressed as

mij ¼ xuij bþwi; ð2Þ

where b ¼ ðb1;…;bpÞu represents the vector of unknown parameters, and wi denotes the random effects for the ith group.
Each group in Equation (2) possesses a random effect wi, which is represented by independent and identically distributed
random variables. These random effects are assumed to be independent of the response variable.

When incorporating a random effect into the regression model (2), certain assumptions are made.

� Conditional on wi, the observations yij are normally distributed: yijjwi ~ Normal(mij, s), with the conditional probability
density function (pdf) given by

f ðyijjwiÞ ¼
1

s
ffiffiffiffiffiffi
2p

p exp

264� ðyij � mijÞ2
2s2

375: ð3Þ

� The random effects wi are normally distributed: wi � Normalð0;s2aÞ, with the pdf expressed as

gðwi; saÞ ¼
1ffiffiffiffiffiffiffiffi

2 p
p
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exp

 
� 1
2
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i
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!
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The variances of wi are given by VarðwiÞ ¼ s2a.

� Likelihood Function

Considering the response variable vector Yi ¼ ðYi1;…;Yini
ÞT associated with each group i, the conditional probability

function to the random effects for the observations of group i is expressed as follows:
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LiðyijjwiÞ ¼
Yni

j¼1

f ðyijjwiÞ; ð5Þ

where f(yijjwi) represents the probability density function defined in Equation (3). Assuming that, conditional on the random
intercept wi, the responses Yij are independent, group i contributes with:Z

LiðyijjwiÞ gðwi; saÞdwi;

where g(,) represents the probability density function of the random effects as defined in equation (4), and Li(yijjwi) is
expressed by (5).

Since independence is assumed between the groups N, the marginal likelihood function for the parameter vector
q ¼ ðbT

; s; saÞu reduces to

LðqÞ ¼
YN
i¼1

Z Yni

j¼1

f ðyijjwiÞ gðwi; saÞdwi: ð6Þ
It follows from a dataset of n¼ n1 þ/ þ nN observations, (y11, x11),…, ðy1n1
;x1n1

Þ,…, ðyN1
;xN1

Þ,…, ðyNnN
;xNnN

Þ, considering
yij as the response variable and xij as the vector of predictor variables associated with object j of group i, the logarithm of the
marginal likelihood (6) is expressed as:
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where q ¼ ðbT
;s; saÞT is the parameter vector.

The maximum likelihood estimation (MLE) ðbqÞ for the set of unknown parameters can be obtained bymaximizing the log-
likelihood (7). We use the gamlss (Stasinopoulos & Rigby, 2008) library in the R software to calculate the estimate bq.
2.3.2. Normal partially linear regression with random effects

Consider t as the set of predictor variablewith a nonlinear effect on the response variable, where i¼ 1,…,N and j¼ 1,…, ni.
In this section, we examine the expanded systematic component as follows:

mij ¼ xTijbþwi þ hðtijÞ; ð8Þ< x> <
.
x>

where b ¼ ðb1;…; bpÞT represents the set of unknown parameters, h(,) denotes an arbitrarily unknown smoothing function
associated with tij, and it is emphasized that tij is a predictor variable that has a nonlinear effect on yij.

To formulate the penalized log-likelihood, it is essential to specify the smoothing function. In this study, we adopt the cs(,)
function for smoothing, as described by Stasinopoulos et al. (2017), which is based on a cubic spline smoothing function,
notably smooth. spline(,). For a deeper understanding of cubic spline smoothing, refer to Hastie and Tibshirani (1990), Green
and Silverman (1993), and Wood (2017).

Let (y11, x11), …, ðy1n1
;x1n1

Þ, …, (yN1, xN1), …, ðyNnN
; xNnN

Þ be a set of observations, where yij denotes the response variable
and xij is the vector of explanatory variables. The expression for the penalized log-likelihood for the vector ðqT ;hT ÞT of model
(8) is:

lpðq;hÞ ¼ lðqÞ þ l

2
hTKh; ð9Þ< x> <

�
x>

where q ¼ ðbT
; s; saÞT represents the parameter vector related to the parametric part, l(q) is defined in equation (7), l > 0

represents a scale parameter to control the quality of the fitted curve, h ¼ ðhðt1Þ;…;hðtqÞÞT is the set of smoothed functions,
where q indicates the number of distinct and ordered observations of the non-parametrically controlled explanatory variable.
The matrix K ¼ QV�1QT is a positive definite matrix of size q � q, where Q is a matrix of order q � (q � 2) and V is a matrix of
order (q � 2) � (q � 2). For additional information, refer to Green and Silverman (1993). Thus, q and h are calculated by
optimizing Equation (9).
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2.4. Statistical model of observational information

2.4.1. Objective of the climatological influence experiment
The objective of the experiment was to verify if climatological variables have any influence on the titer of Candidatus

Liberibacter asiaticus (log Las cell g�1) (yij).
The values of the predictor variables were obtained during the 10 days prior to the collection of log Las cell g�1, as follows.

� xij1: number of occurrences of temperatures lower than 18 �C (Celsius);
� xij2: number of occurrences of temperatures between 18 �C (inclusive) and less than 32 �C (exclusive);
� xij3: number of occurrences of temperatures greater than or equal to 32 �C (inclusive);
� xij4: number of occurrences of relative humidity less than or equal to 30%;
� xij5: number of occurrences of relative humidity greater than or equal to 80%;
� xij6: accumulated precipitation. Note that the measurements j ¼ 1, …, ni of the orange trees are associated with the i-th
climatic classification i, i ¼ 1, 2, 3.
2.4.2. Regression analysis with systematic component
The systematic component of mij for the Normal partially linear regression with random effects is:

mij ¼ wi þ b0 þ b1xij1 þ b2xij2 þ b3xij3 þ b4xij4 þ b5xij5 þ hðxij6Þ ð10Þ< x> <
.
x>

where wi denotes the random effects, and h(,) is an arbitrarily unknown smooth function associated with the predictor
variable xij6 (for j ¼ 1, …, ni and i ¼ 1, 2, 3).

To assess the model performance, the dataset was divided into two different subsets (70% training set and 30% test set).
Thus, the proposed model was trained using the training set and subsequently tested using the test set to verify the model's
adequacy in predicting the Las cell g�1 titre. The total sample size was 118, representing the number of unique observations.
The counts within each climatic classificationwere aggregated over a 10-day period and include all recorded occurrences, not
individual samples.
3. Results and discussion

3.1. Descriptive analysis of the complete dataset

The basic statistics for the complete dataset of the response variable log Las cell g�1(yij), representing the quantity of
Candidatus Liberibacter asiaticus, indicate an average of 2.0800 units g�1 with a symmetrical distribution, indicated by the
proximity between the mean (2.0800) and median (2.0980). However, the presence of minimum values (0.0000) and a
negative kurtosis (�0.5068) reveal variability and a flatter distribution. This analysis is fundamental to understanding the
variability in the concentration of Candidatus Liberibacter asiaticus in samples, providing information about its presence,
distribution, and behavior.
Fig. 1. Bar graph for occurrences of temperatures (a) and relative humidities (b) in different ranges.
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The bar graph representing the occurrences of temperatures and relative humidities in different ranges can offer signif-
icant information in an exploratory analysis. Fig. 1(a) displays the graphical representation revealing the distribution of
temperatures in the 10 days prior to sample collection for the variable “log Las cell g�1” in the southeastern region of Brazil.

It was observed that temperatures below 18 �C occurred approximately 5000 times, indicating a significant incidence of
lower temperatures in this period. The range from 18 �C to 32 �C recorded over 15,000 occurrences, evidencing a high fre-
quency of moderate temperature cases. In contrast, temperatures equal to or above 32 �C were observed about 2500 times,
pointing to less frequent but still present heat events in the region. Fig. 1(b) bar graph reveals distinct patterns of relative
humidity also in the 10 days prior to sample collection for the variable log Las cell g�1 in the southeastern region of Brazil. It
was observed that in approximately 1000 instances, Relative Humidity was �30%, indicating low humidity conditions during
this period. Conversely, in over 12,500 instances, Relative Humidity was �80%, suggesting a substantial frequency of high
humidity in this time interval.

It is important to note that while this study focused on extreme humidity conditions (�30% and �80%), future research
will include a more detailed analysis of the intermediate humidity ranges. This will provide a more comprehensive under-
standing of how varying levels of relative humidity influence the behavior and distribution of Candidatus Liberibacter
asiaticus.

Both analyses provide a preliminary view of the relationship between climatic variables (temperature and relative hu-
midity) in the southeastern region of Brazil. The importance of considering these environmental factors in understanding the
dynamics of Candidatus Liberibacter asiaticus population in citrus plants is highlighted, offering essential perspectives for in-
depth climatological studies and the development of management strategies in affected areas.

The descriptive analysis of values over 10 days of the response variable Candidatus Liberibacter asiaticus, expressed as log
Las cell g�1, in relation to the K€oppen-Geiger climatic classification in locations in the southeastern region of Brazil was
performed. The climatic classification variable is a factor with three levels: Aw, Cfa, and Cwa, each with different mean and
standard deviation (SD) values (Aw: mean ¼ 1.3829, SD ¼ 0.8834; Cfa: mean ¼ 2.8922, SD ¼ 0.9806; Cwa: mean ¼ 2.2227,
SD ¼ 1.0137).

It is important to note that these groups have different sample sizes: 52, 40, and 26, respectively. The total sample size is
118, representing the number of unique observations. The number of occurrences refers to the sum of counts within the
defined temperature and humidity intervals across all collection points, not the number of individual samples. Each data line
reflects aggregated observations over a 10-day period for different locations and climatic classifications. Thus, the total of
25,000 occurrences does not correspond to the number of individual samples but rather the sum of counts recorded within
these intervals. Bar graphs are used to represent these distributions to clearly visualize the frequency of occurrences in each
interval, aiding in data analysis and interpretation.

From a biological point of view, it is observed that the different levels of climatic classification may reflect different
environmental conditions in which the orange trees are inserted.

These conditions, such as temperature, humidity, and climatic classifications, can directly influence the presence and
expression of the response variable. Therefore, understanding how variability in climatic classification relates to biological
response is paramount for a deeper interpretation of the results.

Considering this biological perspective and the disparity in sample sizes, it becomes even more relevant to evaluate a
regression model with random effect on the intercept for the climatic classification variable. This statistical approach, in
addition to incorporating the underlying biological complexity, allows for robust handling of sample inequality and in-
corporates variability between different orange trees. This more realistic and robust modeling contributes to more reliable
results and a precise interpretation of the relationships between the response variable and the climatic classification,
enriching the biological understanding of the studied phenomenon.

The motivation for employing a partially linear model in this study lies in the clear evidence of a nonlinear relationship
between the variable of interest, log Las cell g�1, and the accumulated precipitation collected in the 10 days prior to the
collection of the response variable (Fig. 2). The complexity of this relationship suggests that a strictly linear model may not be
adequate to capture the full variation in the data. Opting for a partially linear model, a particular case of the semiparametric
model, allows for flexibility in modeling, as it admits the presence of both linear and nonlinear components simultaneously.
Thus, the partially linear model offers a more comprehensive approach to representing the intricate nature of the association
between the variables, enabling a more precise and refined interpretation of the underlying patterns in the data.
3.2. Evaluation and modeling on the training data

3.2.1. Detailed view of the training data
In the more specific analysis of the training data for the response variable log Las cell g�1(yij), an average of 2.193 units g�1

is observed. The distribution of the training datamaintains an evident symmetry, highlighted by the proximity betweenmean
(2.193) and median (2.205). However, aspects such as the presence of minimum values (0.0000) and a negative kurtosis
(�0.5627) indicate variability and a slightly flatter distribution.

In the analysis of the training data in the southeastern region of Brazil, similar patterns to the complete data were
identified, as shown in Fig. 3(a). The occurrence of temperatures below 18 �C was approximately 4000 times, between 18 �C
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Fig. 2. Scatter plot between log Las cell g�1(yij) and accumulated precipitation (xij6) in 10 days.

Fig. 3. Occurrences of temperatures (a) and relative humidities (b) in the last 10 days for log Las cell g�1 in the southeastern region of Brazil (training data).
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and 32 �C about 12,500 times, and temperatures above 32 �C about 2500 times. Regarding relative humidity, Fig. 3(b) shows
that low humidities (�30%) were recorded in about 500 occasions, while high humidities (�80%) occurred in over 8000
instances. These results indicate consistency in the relationships between climatic variables and the concentration of Can-
didatus Liberibacter asiaticus.

Considering the preliminary analysis of the training data, we observed patterns similar to the complete data regarding the
K€oppen-Geiger climatic classification in the southeastern region of Brazil. The climatic groups (Aw, Cfa, and Cwa) exhibited
distinct means and standard deviations, indicating variations in the biological response of Candidatus Liberibacter asiaticus.
The Aw group, with 38 observations, had a mean of 1.4352 and standard deviation of 0.9437, while the Cfa group, with 28
observations, recorded a mean of 2.9657 and standard deviation of 0.8807. The Cwa group, composed of 15 observations,
showed a mean of 2.6708 and standard deviation of 0.6195. Although similar patterns were observed in the training data
compared to the complete data, it is important to highlight specific nuances of the climatic groups.

Focusing on the training data, we observed preliminary evidence of the non-linear relationship between the variable of
interest, log Las cell g�1, and the accumulated precipitation in the 10 days prior to the collection of the response variable
(Fig. 4). These indications suggest that as the accumulated precipitation increases, there is a tendency for a reduction in log
Las. This initial observation reinforces the motivation for using a partially linear model, as the relationship between the
variables seems to involve both linear and non-linear components simultaneously.
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Fig. 4. Scatter plot between log Las cell g�1(yij) and accumulated precipitation (xij6) during the 10 days prior to collection (training dataset).
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3.2.2. Tests for multicollinearity, normality, and homogeneity of variances
Before delving into the analyses, we subjected the dataset to a meticulous evaluation. Initially, we conducted formal tests

to assessmulticollinearity among the predictor variables, a conditionwhose presence could compromise the interpretation of
the results. Concurrently, we performed thorough tests for normality and homogeneity of variances of the residuals, aiming to
validate the fundamental assumptions of the statistical models under consideration.

The multicollinearity tests indicated that the explanatory variables are not related, allowing for the inclusion of all var-
iables in the model. The residuals follow a normal distribution, enabling the use of a partially linear regression model with a
random intercept effect. Homogeneity of variances of the residuals was observed, eliminating the need to model the
dispersion parameter. These results ensure the robustness of the analyses and the validity of the inferences based on the
results.

3.2.3. Modeling results - training data
Understanding the parameters b associated with the predictor variables is essential for interpreting the impact of these

variables on the response variable yij (log Las cell g�1) in the model's context. It is worth noting the statistical significance of
the predictor variables xij3 (temperature �32 �C) and xij5 (relative humidity �80%) (Table 2). An in-depth analysis of these
parameters, b3 and b5, provides valuable understanding of the substantial impact of these significant variables on the vari-
ability of the response variable.

3.2.3.1. Interpretation of b3. The negative estimate of b3 suggests that an increase in temperature equal to or greater than 32 �C
is associated with a reduction in the levels of the bacterium Candidatus Liberibacter asiaticus (log Las cell g�1), indicating a
negative influence of xij3 on yij. The specific value of the coefficient b3 ¼ �0.0159 indicates that for each one-unit increase in
xij3 (measured in occurrences of temperatures equal to or greater than 32 �C), there is an average decrease of 0.0159 in yij (log
Las cells g�1), highlighting the sensitivity of the bacterium Candidatus Liberibacter asiaticus to high temperature variations.

3.2.3.2. Interpretation of b5. The positive coefficient b5 suggests that high relative humidities (�80%) are associated with an
increase in the levels of the bacterium Candidatus Liberibacter asiaticus (log Las cell g�1). The estimate of the parametercb5 ¼
Table 2
Estimates of the parameters, Standard Error (SE), and p-value of the partially linear Normal regression model with random effect adjusted for the training
data. The notation (*) denotes the statistical significance of the variables, indicating p-value < 0.05.

Effects Parameter Estimate SE Value-p

Intercept b0 1.7759 0.2893 <0.0001
xij1 b1 �0.0014 0.0026 0.5869
xij2 b2 0.0012 0.0024 0.6237
xij3 b3 �0.0159 0.0053 0.0035*
xij4 b4 0.0051 0.0088 0.5658
xij5 b5 0.0095 0.0029 0.0021*

log(s) �0.4341 0.0786 <0.0001
sa 0.3956
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0:0095 indicates that for each one-unit increase in xij5 (measured in occurrences of relative humidity equal to or greater than
80%), there is an average increase of 0.0095 in yij (log Las cells g�1). Therefore, each additional occurrence of relative humidity
equal to or above 80% is associated with a corresponding increase in the levels of the bacterium Candidatus Liberibacter
asiaticus, highlighting that although xij5 has a positive effect on yij, this increase in the bacterium's levels is undesirable.

Additionally, Table 2 displays the estimate sa ¼ 0.3956 associated with the random effects on the intercept for different
climatic classifications (Aw, Cfa, Cwa). The estimate sa represents the standard deviation of the random effects on the
intercept, indicating themagnitude of the unobserved variation in the mean cell densities of Candidatus Liberibacter asiaticus
(log Las cell g�1) among the climatic groups. This estimate highlights considerable variability in bacterial means, unexplained
by the fixed explanatory variables in the model. Interpretatively, the substantial influence of climatic classification on the
average variability of Candidatus Liberibacter asiaticus (log Las cell g�1) is evident. The continuation of this variability un-
derscores the practical relevance of unobserved climatic influences on the dynamics of bacterial load, evenwhen considering
already known explanatory variables.

As previously mentioned, the predictor variable xij6 (cumulative precipitation) did not show a linear trend with the
response variable. Thus, a spline smoothing function was assigned, a statistical technique that offers flexibility in modeling
complex relationships between variables. Unlike point estimates, the smoothed curve allows capturing nonlinear patterns,
adapting locally to the data, and providing an intuitive visual interpretation through smoothed curves. This approach is
particularly valuable when the relationship between variables cannot be adequately represented by simple linear functions.
Therefore, due to the lack of a direct interpretation for the numerical estimate associated with xij6, its interpretation was
performed via a graph. In Fig. 5, when examining the smoothed curve in the graph, where the shaded region represents the
95% confidence band for the adjusted smoothed curve, specific nonlinear variations in the relationship between the bacterial
load of Candidatus Liberibacter asiaticus and xij6 (accumulated rainfall) are noted, with a general decrease in the bacterial load.
This decrease is generally evident in the accumulated rainfall ranges between 0 and 30 mm (approximately) and 60e100 mm
(approximately). This overall analysis suggests a consistent downward trend in the presence of the bacterium in response to
these specific rainfall conditions, indicating a significant influence of climatic conditions on the dynamics of the bacterial load.

In Table 3, the indicators R2 (coefficient of determination), MAE (Mean Absolute Error), RMSE (Root Mean Square Error),
and %RMSE (percentage Root Mean Square Error) that analyze the performance of the partially linear regression model with
random effect on the intercept demonstrate its effectiveness. The analysis reveals that the proposedmodel was able to explain
70% of the variation in the data, as indicated by R2 (Nagelkerke et al., 1991). Furthermore, bothMAE and RMSE, which translate
the average error of the predictive model in relation to the original data (observed values), exhibit reduced values. Following
the considerations of Li et al. (2013), the accuracy of the model can be categorized as excellent for %RMSE < 10%, good for 10%
< %RMSE < 20%, fair for 20% < %RMSE < 30%, and unsatisfactory for %RMSE �30%. The adjusted model demonstrates a fair
accuracy (Table 3), as evidenced by the following indicators: MAE ¼ 0.53, RMSE ¼ 0.65, and %RMSE ¼ 0.29%. These results
indicate that the model's projections consistently exhibit low mean and squared errors compared to the actual values,
demonstrating an adequate ability of the model to adapt to the observed data.

Fig. 6 presents a scatter plot contrasting the predicted values (green points) by the proposed model with the observed
values (black points) in the training data. The notable proximity between these sets, evidenced by the striking overlap of
points, strengthens the consistency and accuracy of the predictions in relation to the real data. This congruence is supported
by the coefficient of determination (R2), as discussed earlier.

Fig. 7 displays a worm plot (Buuren & Fredriks, 2001) of quantile residuals to assess the model's adequacy. The absence of
vertical or horizontal trends, as well as the lack of concentrated points within the elliptical regions, suggests that the partially
Fig. 5. Smoothed curve analysis of the impact of rainfall on the load of Candidatus Liberibacter asiaticus: training data.
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Table 3
Evaluation metrics of the partially linear regression model with random effect
on the intercept for the training data.

Statistical measures Performance of the models

R2 70%
MAE 0.53
RMSE 0.65
% RMSE 0.29%
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linear regression model with random intercept is appropriately fitted to the training data. This uniform and seemingly
random distribution of residuals enhances confidence in the model's ability to capture and explain the underlying com-
plexities of the data, thus validating its robustness and effectiveness in representing the studied phenomenon.
3.3. Generalization evaluation on test data

3.3.1. Detailed view of test data
When analyzing the test data for the response variable log Las cell g�1(yij), we observe an average of 1.8311 units g�1. The

distribution of the test data also maintains an evident symmetry, highlighted by the proximity between the mean (1.8311)
and median (1.7899). Aspects such as the presence of minimum values (0.0000) and a positive kurtosis (0.17838) indicate
variability and a slightly more concentrated distribution. These additional nuances offer a more refined perspective on the
concentration of Candidatus Liberibacter asiaticus in the test data, complementing the analyses performed on the complete
dataset and the training data.

In the analysis of the test data in the southeastern region of Brazil, we observe in Fig. 8 the occurrence of temperatures
below 18 �C in about 1500 instances, between 18 �C and 32 �C in approximately 6000 occurrences, and temperatures equal to
or higher than 32 �C in about 1000 instances. Regarding relative humidity, low humidities (�30%) were recorded in about
4000 instances, while high humidities (�80%) occurred in over 8000 instances. These results indicate consistent patterns in
the relationships between climatic variables and the concentration of Candidatus Liberibacter asiaticus in the test data.
Compared to previous analyses of the complete dataset and training data in the southeastern region of Brazil, the patterns
identified in the test data show consistency in the relationships between climatic variables and the concentration of the
response variable, reinforcing the relevance of these factors in understanding the phenomenon under study.

The detailed analysis of the test data for the Candidatus Liberibacter asiaticus response variable, considering the K€oppen-
Geiger climate classification in the southeastern region of Brazil, revealed specific patterns in the climatic groups (Aw, Cfa, and
Cwa), showing variations in biological response. The results demonstrate distinct means and standard deviations for each
group, enriching the understanding of the relationship between climate classification and the concentration of Candidatus
Liberibacter asiaticus in orange trees. This analysis complements the perspectives of the complete and training datasets,
providing a comprehensive view of the climatic influence on this biological dynamic.

During the analysis of the test data, we identified patterns suggestive of a nonlinear relationship between the variable of
interest, log Las cell g�1, and the accumulated precipitation in the 10 days prior to collection. Fig. 9 visualizes these patterns,
indicating that as the accumulated precipitation increases, there is a tendency for a reduction in log Las. This observation
highlights the complexity in the relationship between the variables and reinforces the choice of a partially linear model,
following the same approach adopted in the analysis of the complete and training data. This strategy allows for the incor-
poration of linear and nonlinear components simultaneously, seeking to more accurately capture the patterns in the in-
teractions between log Las cell g�1 and accumulated precipitation in the test data.

3.3.2. Modeling results - test data
The tests confirmed the absence of multicollinearity, the normality of the residuals, and the homogeneity of variances,

providing a solid basis for analysis. The modeling results for the test data were consistent with those of the training data,
highlighting the influence of the predictor variables on the dynamics of the bacterial load of Candidatus Liberibacter asiaticus.
This consistency reinforces the robustness of the model and the validity of the conclusions.

In Table 4, the performance indicators of the partially linear regressionmodel applied to the test data reveal reliable results
that make the model more robust from the adopted approach. The coefficient of determination R2 reaches a remarkable level
of 71%, highlighting the model's remarkable ability to explain the variation in the response variable. This result not only
validates the robustness of the model structure but also highlights its distinctive ability to capture patterns underlying the
test data.

When analyzing the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE), essential precision indicators,
we find exceptionally low values. The MAE, with an average absolute error of only 0.48, reveals exceptional precision in
modeling projections relative to the actual data. Similarly, the RMSE, with a value of 0.66, denotes remarkable precision in
assessing the standard deviation of model errors. These metrics not only point to remarkable precision but also highlight the
model's unique ability to make highly accurate projections. The %RMSE, a key measure reflecting the percentage of the root
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Fig. 6. Scatter plot: comparison between predicted and observed values for the training dataset.

Fig. 7. Worm plot of quantile residuals: assessment of the quality of fit of the partially linear regression model with random intercept for the training data.

Fig. 8. Bar chart for occurrences of temperatures (a) and relative humidities (b) in different ranges in the test data in the southeastern region of Brazil.
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Fig. 9. Relationship between log Las cell g�1 and accumulated precipitation in 10 days: test dataset.

Table 4
Metrics for evaluating the partially linear regression model with random
intercept effect for test data.

Statistical measures Performance of the models

R2 71%
MAE 0.48
RMSE 0.66
% RMSE 0.36%

Fig. 10. Scatter plot: comparison between predicted and observed values for the test dataset.
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mean square error relative to themean of the response variable, reveals extraordinarily satisfactory performance, with a value
of 0.36%. This result, falling into the “excellent” category according to Li et al. (2013), highlights that the model's projections
have consistently negligible mean and squared errors compared to the actual values in the test data.

Fig. 10 highlights the effectiveness of the partially linear regression model with random intercept effect by displaying a
scatter plot between the predicted values (green dots) and the observed values (black dots) in the test data. The notable
proximity between these points, supported by the high coefficient of determination (R2), indicates consistency and accuracy
in the predictions compared to the actual data.

Fig. 11 displays a worm plot (Buuren& Fredriks, 2001) of the quantile residuals, a useful tool for assessing the adequacy of
the model to the test data. The absence of vertical or horizontal trends, as well as the uniform dispersion of the points,
suggests that the partially linear regression model with random intercept is well-fitted to the test data. The apparently
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Fig. 11. Worm plot of quantile residuals: evaluation of the fit quality of the partially linear regression model with random intercepts for test data.
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random distribution of the residuals enhances confidence in the model's ability to capture and explain the underlying
complexities of the data.

These robust results solidify confidence in the predictive ability of the model, demonstrating its exceptional accuracy and
adaptability to the test data.

4. Conclusions

The Normal partially linear regression model with random effects has proven effective in predicting Candidatus Lib-
eribacter asiaticus bacterial load, explaining around 70% of the variability. This model effectively incorporates climatic var-
iables, such as temperatures above 32 �C and relative humidities above 80%, highlighting their significant impact on bacterial
presence. The use of spline smoothing addressed the nonlinear relationship between precipitation and bacterial load, while
random intercept accounted for unobserved variability among different climatic groups. The model's approach, considering
the K€oppen-Geiger climate classification, underscores the importance of including unobserved climatic influences for ac-
curate predictions. The results suggest that future research should expand to diverse climatic regions and contexts, including
other major orange-producing countries such as China, the European Union, Mexico, Egypt, the USA, and Turkey, as well as
additional regions within Brazil, to enhance model accuracy and generalizability. This model could aid in developing targeted
disease control strategies based on specific weather conditions. In summary, addressing themodel's limitations and exploring
further research are fundamental for advancing our understanding and management of Candidatus Liberibacter asiaticus.
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