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Abstract: Industrialization has been widely regarded as a sustainable construction method in terms
of its environmental friendliness. However, existing studies mainly consider the single impact of
greenhouse gas emissions or material consumption in the construction process of industrialized
buildings, and pay less attention to ecological pollution and community interest, which leads
to an insufficient understanding. There is an urgent need to systematically carry out accurate
assessment of comprehensive construction environmental impact within industrialized building
processes. Various methods, including face-to-face interviews, field research and building information
modeling (BIM), were used for data collection. Four categories selected for the study included
resource consumption, material loss, ecological pollution, and community interest. A life cycle
assessment (LCA) model, namely input-process-output model (IPO), is proposed to analyze the
construction environmental impact of the standard layer of industrialized buildings from four life
cycle stages, namely, transportation, stacking, assembly and cast-in-place. The monetization approach
of willingness to pay (WTP) was applied to make a quantitative comparison. Results reveal that the
assembly stage has the largest impact on the environment at 66.13% among the four life cycle stages,
followed by transportation at 16.39%, stacking at 10.29%, and cast-in-place at 7.19%. The key factors
include power consumption, noise pollution, material loss, fuel consumption and component loss,
which altogether account for more than 85% of the total impact. Relevant stakeholders can conduct
their project using the same approach to determine the construction environmental performance and
hence introduce appropriate measures to mitigate the environmental burden.

Keywords: evaluation; environmental impact; industrialized building; building information
modeling (BIM)

1. Introduction

China is experiencing rapid urbanization. The Chinese government plans to increase China’s
urbanization level to 60% by 2030 [1]. Consequently, China now supports one of the largest construction
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industries in the world [2]. However, construction is not an environmentally friendly process. Buildings
are responsible for over a third of global energy-related carbon dioxide (CO2) emissions, accounting
for roughly 33% of the total global CO2 emission [3]. Dong and Ng [4] calculated that the carbon
emissions amount to 637 kg CO2 equivalent per square meter of the gross floor area. In fact, the Chinese
construction industry accounted for 20% of the total energy consumption in 2015 [5,6], with the
construction stage alone contributing over 70% of the total energy-related CO2 emission in the building
sector [7]. This has caused serious environmental issues [8,9]. To meet these challenges, the Chinese
government has implemented key strategies in energy conservation and pollution reduction, with the
industrialization of building construction being a main component of that strategy.

Industrialization is an innovative process in which building components are produced in a
controlled environment, transported to the construction site and assembled into buildings [10].
The construction method of industrialized buildings is distinct from conventional construction,
in which raw or preliminary processed materials, such as iron, timber and concrete, are transported
to the construction site directly and cast in situ. A variety of inter-changeable terms are used to refer
to a building that uses industrialized construction technology, such as prefabrication, preassembly,
modularization, off-site fabrication, off-site production in other countries, and industrialized building
and off-site construction in mainland China. Nowadays, the key question remains as to whether
industrialization can really achieve the objectives of controlling the negative environmental impacts
of creating a sustainable developmental alternative to the traditional building and urbanization
process. There has been interest from academia in attempting to assess the environmental issues
related to the construction sector. The life cycle assessment (LCA) method as a universal technology of
environmental impact assessment has been widely recognized and applied by scholars, which can be
process-based, input–output (I-O) and hybrid. For instance, Dong et al. [11] established an LCA model
that determined that one cubic meter of prefabricated concrete reduced carbon emissions by 10%.
Hong et al. [12] investigated the life-cycle energy use of prefabricated components and found that the
recycling process could achieve 16–24% energy reductions, and save 4–14% of total life-cycle energy
consumption. Teng et al. [13] found an embodied energy reduction of 15.6%, and operational carbon
reductions of 3.2% were achieved from prefabrication. These studies have confirmed that industrialized
construction can provide advantages in energy saving and carbon reduction as compared to site-based
traditional method.

Although the environmental impact of industrialized buildings has been studied to some degree
from both theoretical and practical perspectives, a comprehensive knowledge of the environmental
impact of construction activities remains insufficient. As we all know, industrialization has greatly
changed the traditional construction process, with materials manufactured in multiple off-site,
environments [10], then requiring logistically complex, long-distance transportation to multiple
target sites [12], ultimately impacting a greater extent of the surrounding community fabric than
traditional construction does. While several studies evaluating the environmental impact of traditional
construction have been reported to date [14], only a limited number of works on prefabricated
construction are available. Li et al. [15] focused on construction equipment and ancillary materials.
Fuertes et al. [16] developed an environmental impact causal model to improve the performance of
construction processes in regard to workplace, equipment, material, worker and task factor. In respect
to prefabricated construction, Cao et al. [17] conducted a comparative study finding that prefabricated
technology can reduce resource consumption by 20.49%, resource depletion by 35.82%, damage to
health by 6.61%, and damage to the ecosystem by 3.47%. Based on the literature review, a research gap
can be identified in previous studies that are limited to activities on the construction site itself, but do
not include the broader community environmental impacts that are warranted for consideration given
that an industrialized process is undertaken across a much larger domain. Moreover, current research
lacks a systematic and objectively quantitative assessment of the environmental impact of construction
activities as they specifically take place in industrialized buildings.
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In creating a comprehensive evaluation of the construction environmental impact of the
industrialized building, this paper considers the cumulative impact of four factors: resource
consumption, material loss, ecological pollution and community impact. Furthermore, this study
employs a building information model (BIM) as an auxiliary data collection tool and uses monetization
as a quantitative measure.

2. Literature Review

Various agencies have developed methodologies for evaluating the environmental performance
of construction, such as the U.S. Green Building Council [18], the Building Environment Assessment
Method, the Leadership in Energy and Environment Design, the Evaluation Standards for Green
Building, and the Green Building Evaluation System of China, among others [19,20]. However,
many of these models mainly uses qualitative scoring methods, which are generally subjective and
may not provide a comprehensive analysis. Since the parameters used are different, they cannot be
compared directly. As an alternative method, LCA is defined as the “compilation and evaluation of
the inputs, outputs and potential environmental impacts of a product or process throughout its life
cycle” [13,21]. Previous studies have examined building LCA in different life cycles, ranging from raw
material extraction to final disposal. The different life cycles include: from cradle to gate, from cradle
to site, from cradle to grave and the closed-loop life cycles from cradle to cradle. The method can
quantitatively evaluate the environmental impact of a building based on many recognized impact
categories. Moreover, LCA can be divided into process-based [22], input–output and hybrid [23,24].
Considering the complexity of the construction environment and the similarity between characteristics
of industrialized buildings and outputs from the manufacturing industry, an input-process-output [25]
model (a hybrid LCA-based system) was proposed for this study. The model can analyze and describe
the construction environmental impact in the industrialized building process, across the life cycle from
transportation through to the construction site.

Moreover, a monetization approach can be adopted to visualize the impact value in the
industrialized building process. This is based on the social willingness to pay (WTP) theory in
environmental economics [26,27]. In other words, a developer would need to pay a certain amount
of money in order to offset the negative impact on the environment, such as energy consumption,
ecological damage and pollution, and compensation to an affected community caused by, for example,
the impact of additional noise and crowded road conditions. The monetization of carbon emissions can
be obtained by calculating the weight of environmental impact factors, calculated as the impact potential
factor multiplied by the monetary factor. These data are available in government reports, research
papers, and certain databases. For material consumption and community influence, monetization can
be calculated using bill of quantities (BOQ) analysis, and through field research.

Additionally, a BIM approach provides an effective platform for overcoming the difficulties of
acquiring building data [8]. BIM is established at the design stage, with relevant information added to
the model, including material category, reinforcement type, dimensions, volume, weight, supplier,
and so on. During the construction process, the BIM model can provide detailed project information to
improve management decisions, speed and accuracy.

3. Method

To achieve the research objective of systematically carrying out accurate assessment of the
environmental impact of comprehensive construction within industrialized building processes,
two major research methods are employed in this study: (1) inventory analysis approach; and (2) case
study. The inventory analysis application of LCA framework includes four distinct analytical steps:
defining the goal and scope, creating the life-cycle inventory, assessing the impact and interpreting the
results. After analyzing the characteristics of industrialized building construction, a hybrid LCA-based
system is developed with a proposed input-process-output model (IPO) to assessment the construction
environmental impacts, and three objectives are addressed: (1) to determine the scope of activities
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that characterize industrialized buildings, (2) to identify the environmental impact factors; and (3) to
quantify those impact factors.

Four steps are carried out to achieve these objectives:

(i) Identification of the research boundary;
(ii) Proposing the input-process-output model (IPO) of industrialized building construction;
(iii) Calculating the evaluation impacts by using a monetization approach;
(iv) Exploration of study strategies.

Figure 1 shows the framework of research adopted in this study.
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3.1. Identification of Research Boundary

A literature review and field survey were used to identify the research boundary of the construction
environmental impacts in construction processes for industrialized buildings.

Generally, the construction stage was divided into three sub-processes, including material
manufacturing, transportation, and on-site construction work [24]. However, in this research,
the construction stage is divided into transportation of components, stacking, assembling and the
cast-in-place four stages. The reasons are as follows. (i) The production of prefabricated components
is in an off-site factory-based activity [28,29], where the working conditions are controlled for its
environmental impacts, and are relatively independent of on-site activities. As a result, the production
stage within the off-site factory is not assessed to be within the range of the present research. (ii) The
main difference between traditional construction and industrialized buildings relate to the manner
of field assembly. Thus, in order to ensure timely execution of the construction schedule, stacking
of components becomes essential [4]. Finally, (iii) a cast-in-place stage must be included to ensure
structural integrity. Raw materials are the composition of the industrialized building structure itself,
which is not considered in the environmental impact evaluation of the production process.

3.2. The IPO Frame Model of Industrialized Building

3.2.1. Analyzing the Characteristics of Industrialized Building

Compared with traditional methods of site-based construction, industrialized building has brought
out many changes, including the construction process and output performance [30]. Analyzing the
characteristics of industrialized buildings is a key precondition step to identify impact factors, which can
be summarized as follows: (i) transportation from an off-site factory to the construction site [12].
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Prefabricated logistics requiring heavy transport to be used in shipping prefabricated components
of large volume and weight, where route planning is required; (ii) vertical and horizontal hoisting
using large construction machines is needed to position and fix prefabricated components; (iii) if the
construction site is in a community within a city, there will be some disruptive influences such as noise
pollution [31], traffic congestion, etc. Overall however, industrialized technology offers a potential
reduction in time, environmental impact, and a consequent increase in predictability [32,33].

3.2.2. Proposing the IPO Model

Based on the research boundary analysis of industrialized building, an LCA model was proposed;
specifically, the construction processing IPO model of industrialized building, shown in Figure 2.
The procedure can be summarized as follows:
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(1) Analysis of the flow path

The IPO model is divided into three categories defined by the research boundary. These are the
input of resources and energy, prefabricated components, and raw materials; the process of assembly
construction; the output of a standard layer of an industrialized building. Clearly, this flow path of
construction activities will have environmental implications.

(2) Analysis of the dynamic exchange system

The construction process involves a dynamic exchange system, requiring significant amounts of
manpower and material input, yet the final delivered product does not contain the totality of energy
inputs. According to the law of conservation of energy, some energy will be dissipated into the external
environment. The external environmental impacts are usually negative, involving such consequences
as consumption of resources and energy, losses of materials, ecological pollution, and disruptions to
the surrounding cultural or community environment. Ecological pollution is defined as when the
ecological environment has been greatly damaged due to pollution; the pollution usually includes
global warming, acidification, airborne suspended particles and solid waste [17].

(3) Building up the construction processing IPO model

Based on the above analysis, two significant areas can be distinguished: closed and open.
The closed part represents the construction process of a standard layer of an industrialized building
while the open part represents the environment.
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3.2.3. Inventory Analysis of Impact Factors

This research set a four-stage research boundary to analyze the impacts of a standard assembly
layer on the external environment during the construction sub-processes. The impact categories were
retrieved from the literature review, field research, and face-to-face structured interviews.

The construction environmental impacts were divided into four categories including consumption
of resources and energy [18], loss of materials (Lm) [34], ecological pollution (Pe), and adverse
effects on the cultural or community environment (Qc). The inventory analysis of impact can be
summarized as follows: (i) in the transportation stage, which refers to the fuel consumption of
the transporter, component losses resulting from shipping and improper loading measures, vehicle
exhaust, the damage of fixed components. (ii) In order to ensure the smooth implementation of
the construction progress some components need to be stacked ahead of schedule. At the stacking
stage, the impact factors include component loss of stacking, placing piece loss, fuel consumption of
re-handling, occupation of land resources. (iii) In the construction process, the assembling work gives
rise to major impacts. The resource inputs include large tower cranes, electric power, professional
workers, and others. These inputs impact the environment through such events as prefabricated
component loss, fuel consumption, exhaust of vertical cranes, solid waste, noise pollution, etc. (iv) The
key node cast-in-place is an important practice for ensuring building safety, and the connection points
include composite floor casting and beam column connection. The main environmental impacts
include wastewater, fuel consumption and the exhaust of the ready-mix concrete truck.

Finally, a face-to-face structured interview method was adopted to correct and refine these impact
factors, by inviting several construction site management personnel to add their expertise.

3.3. Calculating the Evaluation Impacts

The construction environmental impact refers to the social and environmental costs of the
industrialized construction process, not including a consideration of the building structure itself.
The magnitude of the impact is calculated using a monetization method. Based on the construction
process, a linear mathematical model is selected to calculate the evaluation result, as expressed in
Equation (1).

V = V1 + V2 + V3 + V4 (1)

where V1 is the total monetary value in the transportation stage, V2 is the total monetary value in the
stacking stage, V3 is the total monetary value in the assembly stage, V4 is the total monetary value in
the cast-in-place operation stage.

3.3.1. Transportation Stage

The prefabricated components are manufactured in an off-site factory. A transportation plan of
the construction schedule is necessary, which needs to consider the location of the off-site factory,
transport route, fixed support scheme, transport machinery, and the road conditions.

(1) Fuel consumption of the transporter (A1) is considered to be the most important part in respect
to carbon emissions [24]. It is related to the transportation distance, the unit fuel consumption of the
transport vehicle [35], and the road conditions. The monetary value of A1 can be calculated using the
following formula:

CA1 = P f u

n1∑
i=0

{
Dt ×

[
Pv +

Wci
W f

(
P f v − Pv

)]
× (1 + kr)

}
(2)

where Dt is the transportation distance; Pv is the unit fuel consumption of transport vehicles at no load;
Pfv is the unit fuel consumption at full load; Wci is the weight of the precast components in the single
batch i; Wf is the full load of the transport vehicle; kr is the roughness of transportation road; Pfu is the
unit price of oil; n1 is the number of transportation.



Int. J. Environ. Res. Public Health 2020, 17, 8396 7 of 22

(2) Component loss of transportation (A2) is caused by improper fixed measures or bad road
conditions. The losses can be divided into two types: minor repairs, with no need to return to the
factory, and heavy repairs, with a necessity to return to the factory. This paper considers the heavy
repair situation using the following formula:

LA2 =
m∑

j=0

2W j ×CA1

Wc
+

t∑
x=0

(
Pcxj ×Qcxj

) (3)

where Wj is the weight of damaged components; Pcxj is the unit price of material x of damaged
component j; and Qcxj is the consumption of material x.

(3) Automobile exhaust of the transporter (A3) includes CO2, and NOx. As these are the major
exhaust components, for simplicity, this paper only considers these two. The energy consumption and
emissions inventory analysis used are as determined by the environmental emissions factors listed by
the Intergovernmental Panel on Climate Change [36]. Moreover, the carbon trading price used is as
per the data provided by China’s carbon emissions trading network of 2018. Thus, the monetary value
can be calculated using following formula:

PA3 = Pc ×
(
kCEF−CO2 + kCEF−NOX

)
×

n1∑
i=0

{
Dt ×

[
Pv +

Wci
W f

(
P f v − Pv

)]
× (1 + kr)

}
(4)

where Pc is the carbon trading price, set at CNY 51/ton by end of 2018; kCEF is the carbon emission
monetary factor value, and according to “IPCC Guidelines for National Greenhouse Gas Inventories
(1996)”, the value of kCEF-CO2 is 0.7623, and the value of kCEF-NOx is 0.9000.

(4) Fixed components consumption (A4) refers to the consumption of the fixed steel frame on the
component transporter. The monetary value can be calculated using following formula:

CA4 =
Ps × (1 + rs)

n3
×

n2∑
i=0

Qi (5)

where Ps is the unit price of steel in the construction area; rs is the scrap rate of steel; Qi is the amount
of steel in the transporter i; n2 is the number of transporters; n3 is the number of standard layers.

(5) Traffic jams (A5) is an indicator of social ecological impact. The monetary value can be
interpreted as the willingness to pay to reduce traffic jams over the component’s transporter routes [37].
It can be calculated using following formula:

QA5 = Dt × (Qzt −Qz) ×WTPt (6)

where Qzt is the traffic flow on transport lines; Qz is the traffic flow in the absence of component
transportation; WTPt is the “willing to pay” amount for reducing the traffic jams across every kilometer
within a community.

Thus, the total monetary value in the transportation stage (V1) can be calculated using
following formula:

V1 = CA1 + LA2 + PA3 + CA4 + QA5 (7)

3.3.2. Stacking Stage

In order to ensure the integrity of the construction schedule, it is necessary to deliver a certain
number of prefabricated components in advance. However, adding this intermediate link between the
transportation and assembling stage will create negative impacts.

(1) Component loss or damage due to stacking (B1) are accidental contingency events. Based on
field studies, the extent of damage can be divided into two types. The first requires heavy repairs,
where components need to be returned to the factory. The second involves local small-scale damage,
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where components can be repaired on the construction site. This paper considers heavy damage,
and the monetary value can be calculated using following formula:

LB1 =
1
f

m∑
j=0

t∑
x=0

(
Pcxj ×Qcxj

)
(8)

where f is the conditional probability of heavy repairs compared to site repairs, derived from estimations
offered by experienced workers through field study.

(2) Placing piece loss (B2) refers to the loss of items used in fixing construction components into
the building. This paper hypothesizes that a placing piece is disposable and need not be replaced. So,
the monetary value can be calculated using following formula:

LB2 =
Ps

n3
× (1− k1) ×

m1∑
j=0

Q j (9)

where k1 is depreciation rate of wasted steel; m1 refers to the type of placing piece.
(3) Fuel consumption of components re-handling (B3) refers to the consumption required for short

distance small mechanical transport. The machinery types include forklifts and load transport vehicles,
with the assumption that vehicles are always operate in a full-load condition. So, the formula can
be followed:

CB3 = 2P f u ×

n4∑
i=0

(
Dt−ri × P f v−ri

)
(10)

where Dt-ri is the distance in kilometers travelled regarding short distance re-handing; Pfv-ri is the unit
fuel consumption at full load in the re-handing process; n4 is the number of re-handling events.

(4) Occupation of land resources (B4) refers to the land resource used at the stacking stage.
This indicator can be measured by the opportunity cost of land use, which takes on the unit price of
local warehousing as the equivalent. So, the monetary value can be calculated using following formula:

QB4 = Ss × T1 ×
k2 × Poc

30
(11)

where Ss is the area of the prefabricated components stacking yard; T1 is the construction time of a
standard layer; k2 is the conversion coefficient, as given by the given by developer; Poc is the opportunity
cost for renting a local warehouse.

(5) Exhaust of the handing vehicles (B5) refers to the vehicle exhaust generated in the re-handing
process. So, the monetary value can be calculated using the formula:

PB5 = 2Pc ×
(
kCEF−CO2 + kCEF−NOX

)
×

n4∑
i=0

(
Dt−ri × P f v−ri

)
(12)

Thus, the total monetary value in the stacking stage (V2) can be calculated using following formula:

V2 = LB1 + LB2 + CB3 + QB4 + PB5 (13)

3.3.3. Assembling Stage

Assembling work is a complex and systematic activity impacting directly on the construction
environment in such areas as power consumption, solid waste generation, machine wear, noise pollution,
and the safety of workers.

(1) Component loss of hoisting (C1) is caused by improper or incorrect operation, such as occurs
when using an incorrect lifting point, in large hoisting undulation, heavy wind, or as a result of
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accidents, all of which may have serious outcomes. So, the monetary value can be calculated using
following formula:

LC1 =
m∑

j=0

t∑
x=0

(
Pcxj ×Qcxj

)
(14)

(2) Power consumption of assembly (C2) refers to the consumption of large tower cranes for
industrial use, and other machines. The electric consumption can be obtained using an electricity
meter. So, the monetary value can be calculated using the following formula:

CC2 = Pe ×

n5∑
i=0

(Pci ×Hei) (15)

where Pe is the local price of electricity; Pci is the engine power of machine i; Hei is the total working
time; n5 is the number of machines.

(3) Solid waste produced as a result of assembly (C3) refers to the construction waste generated
from reinforcement, formwork and concrete works. So, the monetary value of C3 can be calculated
using following formula:

PC3 = Sh ×Qw × Pw (16)

where Sh is the covered area of a standard layer; Qw is the quantity of refuse produced per unit area;
Pw is the construction waste disposal fee, which in Beijing is priced at CNY 40 per ton [38].

(4) Consumption of mechanics (C4) refers to machine maintenance and depreciation charges.
The data used were obtained from field research, with depreciation charges calculated using a
units-of-production method. So, the monetary value can be calculated using following formula:

CC4 =

n5∑
i=0

[
Fmi ×

T1

T
+

Qsi

Qti
× Poi × (1− roi)

]
(17)

where Fmi is maintenance charge of mechanical machinery i; T is the construction period of the structure;
Qsi is the workload in a standard layer of construction for mechanical machinery i; Qti is the total
workload in over the construction period of major structure for the mechanic machinery i; Poi is
the lease or hire price of fixed assets of the mechanical machinery i; roi is the estimated net salvage
value rate.

(5) Noise pollution (C5) refers to machine engine, installation, material processing noise, and the
like. Quantification of noise pollution is problematic, and this paper uses the WTP method to calculate
the monetary value. It can be calculated using following formula:

QC5 = Mn ×

n6∑
i=0

(Fni ×WTPni) (18)

where Mn is days of compensation payment; Fni is the number of households at i distance; WTPni is
the amount of money a family is willing to pay, at i distance; n6 is the number of different kinds
of distances.

(6) The safety of workers (C6) focuses on the construction risk arising from the need to lift large
volumes of prefabricated components. This paper uses the WTP method to measure the safety of (risk
to) workers, using the concept of risk exposure [39,40]. So, the monetary value of workers safety can
be calculated as following formula:

QC6 = Puo × Luo × (1 + kuo) (19)

where Puo is the probability of occurrence of a safety risk; Luo is potential loss value; kuo is the
environmental complexity risk coefficient.
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Thus, in summary, taking into account the whole set of above considerations, the total monetary
value at the assembly stage (V3) can be calculated using following formula:

V3 = LC1 + CC2 + PC3 + CC4 + QC5 + QC6 (20)

3.3.4. Cast-In-Place Stage

The main impact of cast-in-place processes in industrialized buildings arises from wastewater,
fuel consumption, and vehicle exhaust. The magnitude of the impact is calculated as follows.

(1) Wastewater (D1) refers to the water resources needed for construction processes, along with
water resources used by construction machinery. The consumption can be obtained through water-meter
statistics. The monetary value can be calculated as the following formula:

PD1 =
T1

T
×Qw × Pw (21)

where Qw is the water consumption of the structure under construction; Pw is the unit price of
industrial water.

(2) Fuel consumption of a concrete transporter (D2) resulting from the use of commercial concrete.
The monetary value can be calculated using following formula:

CD2 = 2P f u × P f v−t ×Dt ×
∏(

Qtc

Qc

)
(22)

where Pfv-t is the unit fuel consumption of a concrete transporter; Qtc is the total concrete consumption
in a standard layer; Qc is the unit transportation volume of concrete.

(3) Vehicle exhaust of a concrete transporter (D3). The monetary value D3 can be calculated using
following formula:

PD3 = 2P f v−t ×
∏(

Qtc

Qc

)
× Pc ×Dt ×

(
kCEF−CO2 + kCEF−NOX

)
(23)

Thus, the total monetary value of the cast-in-place operation stage (V4) can be calculated using
the following formula:

V4 = PD1 + CD2 + PD3 (24)

3.4. Exploration of Study Strategies

The final stage involves understanding the impact results that exist in the construction environment
of an industrialized building, through examination of a case study. Corresponding strategies for
identifying the key environmental factors are proposed and discussed to address real-world problems.

A representative industrialized building requires a high assembly rate, and is located in
an established community. The structure is shear wall structure, which is widely used in the
promotion of industrialization construction in China. The types of prefabricated components used
include prefabricated walls, prefabricated laminated slabs, prefabricated stairs and prefabricated air
conditioning panels.

Fulfilling these requirements, a project was selected, and its general contractor is China State
Construction Engineering Corporation (CSCEC). The project locates in the Montougou district of Beijing
and exhibits the appropriate complex construction environment necessary for case study. The main
parameters of each environmental impact factor were collected from both first and second-hand
data: (i) first-hand data included the prefabricated rate and covered, and obtained from the project
department. (ii) Second-hand data included social willingness-to-pay price and monetization factors,
and were retrieved from databases, official and government websites, as well as published papers.
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4. Data Collection

4.1. Case Profile

The project consists of five buildings with a designed lifespan of 50 years. In consideration of
the construction schedule and data availability, this study looks at building #2, and specifically at the
twelfth level standard layer as the evaluation unit. Detailed information is presented in Table 1.

Table 1. Basic information on the industrialized building #2.

Target Indicators and Descriptions Units Parameters

Building type Resident - -
Structure type Shear wall structure - -

Total number of layers Above ground layers 25.00
Underground layers 4.00

Covered area A standard layer m2 303.39
Assembly rate Proportion of precast components - 0.65

Stacking yard area For a standard layer m2 200.00

Project duration Main body structure d 130.00
A standard layer d 6.00

Community population density The number of people living on land
per km2 area in the community. - 975.00

Traffic density Equal to the ratio of traffic increment
to average vehicle flow plus 1 - 1.12

Road condition Riding Quality Index (RQI) - 7.50 a

Location of factory The distance from factory to
construction site km 248.60

Climate influence b Refers to the project delayed as winter d 0.00
a When the riding quality is good then 7.0 ≤ RQI ≤ 8.5, and the road properties is Asphalt Pavement. b The climate
of Beijing is temperate monsoon climate and the main structure is assembled in winter.

4.2. Data Collection

According to the construction regulations of Beijing, the dust level needs to be highly controlled
in a construction site in order to reduce the haze environment, the studied project applied various
environmental protection strategies, such as floor wetting, car washing, and use of an automatic
sprinkler system. Thus, the impact of dust pollution is not within the scope of consideration.

The data on impact factors were collected in three ways. The first was through face-to-face
interviews with the three project managers, using a structured questionnaire. The second was
collecting detailed data, such as electricity and water consumption, and noise pollution, through field
research. Five postgraduate students were assigned to the site for a three-month stay, with the data of
the whole process of a standard layer from start to finish being tracked and recorded. The last was to
use a BIM model to export the component information.

(1) Data collection from the BIM model

The building BIM model, LOD 500, was constructed including both a prefabricated part and
cast-in-place part, achieved by using Chinese Luban software based on the BIM platform (shown
in Figure 3). Additionally, some building data can be collected using the automatic statistics and
export function, including engineering quantity information, component types, three-dimensional size,
as shown in Table 2.
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Table 2. Basic information of main components for the twelfth level standard layer.

Type NO. Parameter

Concrete wall 38 V = 27.90 m3; LC = C35
Precast concrete air conditioning panel 8 V = 3.86 m3; LC = C35

Upward double crooked hook 48 W = 46.08 kg; d = 8 mm
Downward double crooked hook 48 W = 46.08 kg; d = 8 mm

Reinforcement 16 W = 5.60 kg; d = 8 mm
Edge stirrup 34 W = 15.98 kg; d = 9 mm

Edge longitudinal tendons 28 W = 59.64 kg; d = 8 mm
Concrete slab 5 V = 20.53 m3; A = 259.43 m2; LC = C30

Prefabricated staircase 2 V = 11.60 m3; LC = C30
Concrete column 72 V = 30.92 m3; LC = C35

Precast concrete walls 12 V = 9.56 m3; LC = C30
Precast concrete floor 30 V = 12.24 m3; LC = C30

Concrete beam 48 V = 7.42 m3; LC = C30

Note: V refers to volume, A refers to area, LC refers to concrete label, W refers to weight, and d refers to diameter.
In addition, the steel label is unified as HRB400 or HPB300.

(2) Data collection from field research

Adopting face-to-face interviews and a field research method, field data were collected on resources
consumption, material loss, and community impact. The field research was conducted over a time
span of three months, with five postgraduate students staying on the construction site each day for that
period. The resulting collected data include: (i) statistics of the damaged prefabricated components
(shown in Table A1), (ii) construction organization task statistics of the twelfth level standard layer
(shown in Table A2), and (iii) prices of all kinds of materials or resources used in construction process
and others (shown in Table A3).

5. Interpretations of Results

By using Formulas (1)–(24), and the data presented in Section 3, the value of resource consumption,
ecological pollution, material loss, and the four aspects of community impact, can be calculated for
each stage of the life cycle, for a standard layer of construction in the case study project, shown in
Table 3. The specific impact factors include CO2, NOX, fuel consumption, component loss, power and
water consumption, noise pollution, worker safety, and traffic jams.

As seen in the transportation stage, resource consumption and material losses constitute the major
proportion at 66.32% and 27.81% of the single stage environmental impact, respectively. Community
accounts for only 5.45%, while ecological pollution account for a mere 0.42%. Overall, the total cost is
CNY 3305.
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Table 3. Amount and proportion of construction environmental impact in industrialized building process for a standard layer.

Stage Factor

Resource Consumption (Cre) Materials Losses (Lm) Ecological Pollutions (Pe) Community Questions (Qc)

Amount
(CNY) % Amount

(CNY) % Amount
(CNY) % Amount

(CNY) %

Transportation (V1) Total 1 2191.686 22.92 919.044 27.17 13.949 1.65 180.000 2.83
A1 1299.072 39.31 - - - - - -
A2 - - 919.044 27.81 - - - -
A3 - - - - 13.949 0.42 - -
A4 892.614 27.01 - - - - - -
A5 - - - - - - 180.000 5.45

Stacking (V2) Total 2 48.019 0.50 1921.529 56.81 23.512 2.78 80.035 1.26
B1 - - 301.600 14.55 - - - -
B2 - - 1619.929 78.14 - - - -
B3 48.019 2.32 - - - - - -
B4 - - - - - - 80.035 3.86
B5 - - - - 23.512 1.13 - -

Assembling (V3) Total 3 6534.686 68.34 541.809 16.02 145.627 17.22 6107.850 95.92
C1 - - 541.809 4.06 - - - -
C2 5708.736 42.83 - - - - - -
C3 - - - - 145.627 1.09 - -
C4 825.950 6.20 - - - - - -
C5 - - - - - - 5057.850 37.94
C6 - - - - - - 1050.000 7.88

Cast-in-place (V4) Total 4 787.097 8.24 0 0 662.493 78.35 0 0
D1 - - 469.799 32.41 - -
D2 787.097 52.30 - - - - - -
D3 - - - - 192.694 13.29 - -

Total (Adding total 1 to total 4) 9561.488 100 3382.382 100 845.581 100 6367.885 100
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In the stacking stage, resource consumption, ecological pollution and community questions
contribute much less, at 2.32%, 1.13% and 3.86%, respectively. Material losses, however, contribute the
major part with 92.69% and account for CNY 1922.

In the assembly stage, resource consumption and community question occupy a large proportion,
at 49.03% and 45.82%, respectively, while other types only contribute about 5.15%. Additionally,
the environmental cost is the largest compared with other stages, at 66.13%, or CNY 13,330.

Finally, in the cast-in-place operation stage, resource consumption is the major contributor,
accounting for 84.71%, with ecological pollution at 13.29%. The other types of construction
environmental impact are equal to zero.

6. Discussion

Compared with traditional site-based construction, the industrial construction has an obvious
advantage of environmental benefits, usually with a 20% reduction in energy consumption, a 35%
reduction in resource depletion and a 3.47% reduction in ecosystem damage

Using the monetization approach, the total construction environmental impact is calculated to be
CNY 20,157 for a standard layer of an industrialized building process, which is the compensation value
caused by the construction activities. The detailed overall result is shown in Figure 4, which indicates
that the assembly stage has the largest impact on the environment at 66.13%, which is an intuitive result
given that assembly is the major part of a construction process [16]. Next, the transportation stage
comes in at 16.39%, followed by stacking at 10.29%, and cast-in-place at 7.19%. Most of components
were pre-fabricated in an off-site factory, greatly increasing the transport workload. Cao et al. [17]
studied that transportation work of industrialized buildings increased by 57.28% compared with
traditional construction. Consequently, transportation is considered as one of the critical stages in
evaluating the environmental impact of the industrialized building process compared to stacking and
cast-in-place stages.
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Figure 4. Construction environmental impact of a standard layer.

From the perspective of the construction process, four stages generate different influencing factors
along with their roles. The impact distribution across a single stage is shown in Figure 5. It reveals that
resource consumption accounts for the largest portion in the transportation, assembly and cast-in-place
stage, at around 50%. This is far behind other construction results, indicating that applying new
materials, designs or technologies may decrease the environmental impact [15]. The material losses
are high in regard to transportation (28%) and stacking (93%). This is because transportation and
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re-handling of prefabricated components may result in destructive losses, and many ancillary materials
are used with fixed and stacked components, such as steel I-beams, that need to be maintained.
The community impact is prominent in the construction process of industrialized building, accounting
for 46% at the assembly stage, though only 6% at the transportation stage. This arises from the
operating noise of large machinery, increased traffic density and security risks, all causing a negative
environmental burden. At the cast-in-place stage, however, the community questions and material
losses both accounted for 0%, since, of course, this study is looking at industrialized buildings.Int. J. Environ. Res. Public Health 2020, 17, x 15 of 22 
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Regarding single construction environmental impact factors, Figure 6 shows that resource
consumption is the main environmental impact contributor with a monetization of CNY 9561,
for a standard layer of construction. This is consistent with previous studies focused on resource
depletion and energy consumption [17]. Community impact, however, needs to be given more
attention in regard to the industrialized building construction process, since it is usually ignored
in traditional building construction. Even so, it is evident that this problem has been magnified in
industrial buildings, and more attention must be paid if sustainable development is to be achieved.
By contrast, ecological pollution is not a prominent problem, as the major processing activities of
components were completed before entering the construction site. Finally, material losses refer to
prefabricated component destruction caused by sub-optimal managerial practices. This can be reduced
by strengthening management.
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As shown in Figure 7, the key factors of environmental impact can be identified, along with their
values, among which the power consumption is 28.32%; noise pollution, 25.09%; material loss, 12.46%;
fuel consumption, 10.59%; and component loss, 8.74%. Altogether they account for more than 85% of
the total impact among the four life cycle construction stages. This high value indicates that effective
strategies are worthy of exploration for mitigation; for example, approaches such as setting up sound
insulation to reduce the negative impact on neighboring residents. Moreover, worker safety needs
attention [15], not only for monetary value, which is set at CNY 1050, but also because of its ethical
imperative, ultimately even deciding the success or failure of a project. Finally, the machine loss,
wastewater, vehicle exhaust, traffic jams, solid waste and land consumption, also all have an impact on
the project, albeit a relatively smaller one. Even so, there remain many opportunities to reduce the
construction environmental burden, such as through, for example, regular maintenance of machines,
recycling and better utilization of water resources.
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In summary, the structure of construction environmental impact in the industrialized building
process has changed significantly as compared with traditional building construction processes.
Some control strategies to further reduce the impact were pointed out, as were aspects of the
industrialized building process in need of further attention.

7. Conclusions

Current research on LCA for the construction phrase of industrialized buildings is limited and a
consensus on methodology or approaches has not been fully developed. The environmental impact
of industrial buildings construction is unclear, and there is a lack of systematic and comprehensive
quantitative research. In this paper, a life cycle assessment (LCA) model, namely input-process-output
model (IPO), is proposed to analyze the construction environmental impact of the standard layer
of industrialized buildings from four life cycle stages, namely, transportation, stacking, assembly
and cast-in-place. Four sub-categories of construction environmental impacts including resource
consumption, material losses, ecological pollution and community impact were analyzed through a case
study. Calculation procedures were presented, by which these impacts for the specific industrialized
building project were quantified. The BIM technology was used for case data collection automatically
and the monetization approach of willingness to pay (WTP) was applied to make a quantitative
comparison. The findings clearly demonstrate that impact can be measured quantitatively by using the
proposed IPO model. This serves as an important method to understand the impacts of industrialized
construction on the environment. Specifically, it was found that the assembly stage has the largest
impact on the environment at 66.13% among the four life cycle stages, followed by transportation
stage at 16.39%, stacking at 10.29%, and cast-in-place at 7.19%. Furthermore, it was seen that the key
contributors include power consumption, noise pollution, fuel consumption, material and components
loss, which altogether account for more than 85% of the total impact. The structure of construction
environmental impact in the industrialized building process varies significantly as compared with
traditional building construction processes. Relevant stakeholders can conduct their project using this
approach to determine the construction environmental performance and hence introduce appropriate
measures to mitigate the environmental burden.

Nevertheless, some limitations of this research exist, such as the failure to inform on the scale of
the construction system by framing the data with USD or EUR currency. Additional research must be
conducted to study: (1) the application of the international databases such as GaBi or Ecoinvent for
data collection to clarity the environmental impacts assessment; (2) the construction environmental
performance of industrialized concrete buildings with varying proportions of prefabricated components.
Furthermore, more typical buildings should be involved in future research to objectively reflect the
construction environmental impacts, and the entire lifespan of industrialized buildings can be researched
using the proposed IPO model to estimate the comprehensive environmental impacts.

Author Contributions: F.Y., G.L. and K.L. conceived and planned the review. F.Y., X.D. and W.T. performed the
search and analyzed the data. F.Y. and Y.J. wrote the paper. A.S. and I.M. revised the article critically. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fundamental Research Funds for the Central Universities in China,
grant numbers 2019CDSKXYJSG0041, National Key R&D Program of China, grant numbers 2016YFC0701810 in
2016YFC0701800, Fundamental Research Funds for the Central Universities, grant numbers 2019CDJSK03PY07,
and Natural Science Foundation of China, grant numbers 71401002.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The detailed analysis data and data sources are shown in Table A1, Table A2, and Table A3.



Int. J. Environ. Res. Public Health 2020, 17, 8396 18 of 22

Table A1. Statistics of the damaged prefabricated components.

Stage Type Label Description of Damage Parameter BIM Model

Transportation Precast concrete walls NVSJ102

Wider cracks were found on the
surface, which is need to be

remanufactured. It is a serious
quality defect problem.

(1) VC = 0.80 m3; LC = C35;
WC = 1897.60 kg.

(2) VS = 8322.92 cm3; LS = HRB400; d = 6,
8, 12, and 16 mm; WS = 77.79 kg.

(3) DH = 6; MJ = 2.
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Table A2. Construction organization task statistics of the twelfth level standard layer.

Stage Name Description Parameter Data Sources

Transportation

Transporter vehicle
Heavy semi-trailer tractor, and its power type is fuel
oil. The increasing of tractor usually reduces the road

capacity (normally 1.1).

(1) The traction weight is 40,000 kg.
(2) The unit fuel consumption at no-load is 36 L/100 km

while full-load is 50 L/100 km.
(3) Actual load is 39,500 kg.

COD document

Transportation number Determined by the actual load, prefabricated
component types. The transportation number is 7 for 52 components. Field research

Fixed components The material of fixed components is steel. The model
is #25 I-beam.

(1) The total weight is 3950 kg.
(2) The scrap rate of steel is 0.35. Field research

Traffic block conditions Traffic congestion can be measured by traffic volume.

(1) The traffic volume of no transportation is 1490 veh/h
at 18:00–22:00.

(2) The transportation traffic volume is 1500 veh/h.
Society survey

Stacking
Placing piece loss The material of placing piece is steel.

(1) The total weight is 27,600 kg.
(2) The scrap rate of steel is 0.65. Field research

Components re-handling Truck crane and forklift.

(1) The re-handing number is 26.
(2) The unit fuel consumption is 30 L/100 km.
(3) The re-handing distance is 0.3 km.

COD document & Field research

Land resources Temporary land resources occupied by storage sites.
(1) The stacking area is 236 m2;
(2) The conversion coefficient is 1.5. Field research

Assembling

Hoisting machines Including tower crane QTZ7030 (55 m) and
construction elevator SC200/200.

(1) Engine power of tower crane is 70 Kw/h;
(2) Engine power of elevator is 66 Kw/h.
(3) The working time is 48 h.
(4) The net salvage rate of machines is 5%.

COD document,
Field research & Society survey

Noise pollution The bad impact on the community. The number of resident family is 4817. Society survey
Solid waste Construction waste needs transport. The average volume is 0.012 t/m2 Field research

Worker safety The economic loss of safety accidents.
(1) Probability of occurrence of safety risk is 3%.
(2) Risk coefficient of complexity of CE is 3.5%. Society survey

Cast-in-placing Resources consumption Refers to water consumption in site. The floor water consumption is 57.644 m3. Field research

Concrete tank truck Casting of composite floor slab and connecting joints.

(1) The unit fuel consumption is 42 L/100 km.
(2) The distance is 23 km. Concrete is 86.77 m3.
(3) Unit traffic volume is 15.6 m3.

Field research & BIM model

Note: COD = construction organization design; CE = construction environment.
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Table A3. Prices of all kinds of materials or resources used in construction process and others.

NO. Category Value Data Sources

1 Average price of No.0 diesel oil in Beijing area in 2018 6.79 CNY/L http://youjia.chemcp.com/beijing/

2 Commercial concrete C30 390 CNY/m3
http://www.ccement.com/

3 Commercial concrete C35 405 CNY/m3

4 HPB300 4500 CNY/t http://www.bjtxc.com/index.htm
5 HRB400 3770 CNY/t
6 Unit price of plastic wire box 6.5 CNY Field research
7 Carbon trading price by end of 2018 51 CNY/t http://www.tanjiaoyi.com/
8 Average unit price of I-beam steel with label #25 3850 CNY/t http://baojia.steelcn.cn/

9 WTP for reducing traffic congestion per kilometer and per hour of community services 0.05 CNY·h·km−1 Society research
10 Opportunity cost of land resources occupancy 1.2 CNY/m2/d Society research
11 Electricity price 0.8745 CNY/KWh http://www.beijing.gov.cn/bmfw/jmsh/jmshshjf/shjfd/dj/t1492381.html
12 Construction waste disposal fee 40 CNY/t

Field research13 Rent price of tower crane QTZ7030 (55 m) 15,000 CNY/month
14 Rent price of construction elevator SC200/200 12,000 CNY/month
15 WTP for reducing the noise pollution 0.15/0.2 CNY/d Society research
16 Unit price of industrial water 8.15 CNY/m3 http://www.bjwater.gov.cn/bjwater/300817/300819/320849/index.html
17 f - Opportunity rate for components to major repaired 50% Field research
18 Kr- Average roughness of transportation road 0.15 Field research-Road leveling, no obvious damage.

Note: Considering the dynamic change in price, the price values were obtained by calculating the average price on the 20th of each month for October, November and December 2018.

http://youjia.chemcp.com/beijing/
http://www.ccement.com/
http://www.bjtxc.com/index.htm
http://www.tanjiaoyi.com/
http://baojia.steelcn.cn/
http://www.beijing.gov.cn/bmfw/jmsh/jmshshjf/shjfd/dj/t1492381.html
http://www.bjwater.gov.cn/bjwater/300817/300819/320849/index.html
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