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Abstract

Great progress has been made in genetic dissection of quantitative trait variation during the past two decades, but many
studies still reveal only a small fraction of quantitative trait loci (QTLs), and epistasis remains elusive. We integrate
contemporary knowledge of signal transduction pathways with principles of quantitative and population genetics to
characterize genetic networks underlying complex traits, using a model founded upon one-way functional dependency of
downstream genes on upstream regulators (the principle of hierarchy) and mutual functional dependency among related
genes (functional genetic units, FGU). Both simulated and real data suggest that complementary epistasis contributes
greatly to quantitative trait variation, and obscures the phenotypic effects of many ‘downstream’ loci in pathways. The
mathematical relationships between the main effects and epistatic effects of genes acting at different levels of signaling
pathways were established using the quantitative and population genetic parameters. Both loss of function and ‘‘co-
adapted’’ gene complexes formed by multiple alleles with differentiated functions (effects) are predicted to be frequent
types of allelic diversity at loci that contribute to the genetic variation of complex traits in populations. Downstream FGUs
appear to be more vulnerable to loss of function than their upstream regulators, but this vulnerability is apparently
compensated by different FGUs of similar functions. Other predictions from the model may account for puzzling results
regarding responses to selection, genotype by environment interaction, and the genetic basis of heterosis.
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Introduction

Great progress has been made in genetic dissection of quantitative

trait variation during the past two decades, but a few puzzling results

have recurred in many QTL mapping studies. First, only a small

fraction of QTLs are detectable in any one study, regardless of the

complexity of traits and test environments [1–3]. Second, few QTLs

are detected with large and consistent effects. Third, epistasis has

been elusive, although increased power and accuracy in QTL

detection show it to contribute substantially to complex inheritance

in plants [4–19], usually occurring between complementary loci [4–

8]. Fourth, QTLs having large additive effects and those having non-

additive effects appear to behave differently in both dominance and

epistasis [5–11]. Fifth, an increasing number of large-effect QTLs

have been cloned in plants and animals and in most these cases, the

large phenotypic effects were attributed to the differences between a

functional (expressed) allele and a loss of function mutant (Table S1).

Finally, recent mapping studies were able to detect more QTLs of

small effect using large populations [20,21], but epistasis between or

among QTLs were not adequately addressed in these studies and

phenotyping large populations poses a tremendous challenge,

particularly across multiple environments.

In parallel with progress in genetic dissection of quantitative

traits, molecular studies have shown that biological processes of

multicellular organisms and their responses to external cues are

controlled by complex gene networks consisting of multiple

hierarchical signaling pathways [22,23]. For example, small

groups of signal transduction (S) genes functioning in perception

and response to specific internal or external cues may initiate

expression of larger groups of genes acting in transcriptional and

post-transcription regulation (T) of still larger numbers of

downstream genes in various biochemical pathways (B) that

ultimately affect phenotype. Thus, there are clear functional

relationships between and among genes acting within a signaling

pathway by molecular mechanisms such as protein-protein,

protein-DNA and protein-RNA interactions, etc (Fig. S1).

While gene networks controlling biological processes presum-

ably include the genetic determinants of complex trait variation,

these two important areas of study have remained largely

independent. For example, gene networks consisting of multiple

hierarchical signaling pathways might explain high-order epistasis,

but only digenic epistasis affecting complex traits has been possible

to map [24,25]. Recent modeling efforts have suggested that

epistasis might be better explained by functional relationships in
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regulatory networks [26] than the classical genetics models for

qualitative traits [27] and inclusion of the non-linear epistatic

interactions and environmental factors in the genetics model can

significantly improve the accuracy in predicting the genotype-

phenotype relationships of complex traits [28–30]. However, it

remains challenging to link the functional dependency among

genes in signaling pathways with statistical epistasis detected at the

phenotypic level. For example, how can hierarchical and non-

hierarchical relationships among members of gene networks

underlying complex traits be distinguished from one another

based on estimated QTL parameters? Moreover, what function(s)

and level(s) in the hierarchy most frequently account for allelic

variation giving rise to QTLs?

We describe a model that integrates contemporary knowledge

of signal transduction pathways with principles of quantitative and

population genetics to form a theoretical framework for improved

understanding of the genetic control of complex traits. As

examples, the model is applied to study putative genetic networks

affecting two complex traits of rice, plant height (PH) and

submergence tolerance (ST), suggesting strong links between

complex phenotypes and their underlying genes.

The molecular and quantitative genetics framework
Figure 1A shows a generalized model (1) of the relationship

between underlying genes and complex phenotypes of a

multicellular organism in a specific environment. This model has

two major parts, the genetic system (or gene networks) and

phenotypic system.

The genetic system of model (1) can be divided into five major

components:

N G(I): E1, the physical environment, subdivided into EB (the

basic requirements for an organism to live) and ES (specific

and unique physical/biological elements of the environment

that deviate from EB), that requires expression of specific

signaling pathways for the organism to acclimate or adapt;

N G(II): the epigenetic regulatory element (ER);

N G(III): the signal transduction regulatory element (S);

N G(IV): the transcriptional and post-transcriptional regulatory

element (T); and

N G(V): the biosynthesis and transport element (B).

In model (1), the genetic system can be conceptualized as a

complex network consisting of multiple signaling pathways, each

with a single S unit regulating multiple T and downstream B units.

Genes involved in levels S, T and B of the genetic network

underlying a single signaling pathway have different but well

defined functions, as briefly described above.

The phenotypic system of model (1) can also be

conceptualized as 4 related layers:

N P(I): metabolites (M) or biochemical traits;

N P(II): component traits (CT);

N P(III): integrated traits (IT); and

N P(IV): fitness, defined here as differential survival and

reproduction.

Any measurable phenotype may be affected by genes at any

level of a network. To better illustrate the relationships between

the genetic system of model (1) and their resulting phenotypes,

we tentatively define a group of functionally dependent genes

acting at each level of a signaling pathway as a functional genetic

unit (FGU) with functional alleles of all constituent loci required

for the FGU to function normally and have an effect (aij) on

phenotype (Table S2). When one or more of its member genes or

regulators are nonfunctional, an FGU may have no phenotypic

effect.

Model (1) has two different environmental elements, E1 and

E2. E1 corresponds to the conventional ‘macro-environment’,

which contains two components, EB and ES. ES accounts for the

genotype x environment (GE) interaction observed in almost all

complex phenotypes of multicellular organisms. E2 is the random

and non-heritable part of a phenotype measured in an environ-

ment that is a major component of trait heritability defined in

classical quantitative genetics theory [31–33]. Thus, a phenotype

(CTi, ITj or fitness) measured in a specific environment is the

consequence of the interaction between the genetic system and E2.

The principle of hierarchy
Molecular genetic studies indicate a general one-way functional

dependency of downstream loci on their upstream regulators.

Thus, each signaling pathway in the genetic network of model (1)
can be envisioned as having a single S unit at the top, multiple

T units in the middle, and their regulated B units such that

downstream FGUs are always dependent on functionality of an

upstream FGU. Upstream FGUs are generally few in number and

relatively conserved evolutionarily, with larger phenotypic effects

than downstream units. This principle of hierarchy in gene

number, diversity, and phenotypic effect is the foundation upon

which the theory and methodology for detecting genetic networks

underlying complex phenotypes can be developed.

Computer simulation
Simulation (1). The genetic network of model (1) consists

of multiple signaling pathways, each of which contains FGUs in

three major layers specified as model (2) (Fig. 1B, Table 1). In

model (2), a quantitative trait, X, is affected by a single signaling

pathway consisting of 3 FGU levels - a single S element that

regulates 2 T (T1 and T2) elements, each of which controls 3

downstream B elements which have phenotypic effects of 4 or 8

units on trait X. As described above, all genes within an FGU at

any level of model (2) are functionally dependent on one

another, and there is one-way functional dependency (FD) of any

gene in a downstream unit on genes in their upstream unit.

Three important questions arise: (1) how does segregation at

different loci in the genetic system of model (2) affect trait mean,

variation and heterosis in biparental populations; (2) at which

levels in model (2) can allelic differences be detected as QTLs by

conventional quantitative genetics, and (3) if they can all be

detected as QTLs, in what ways do loci at different levels of a

genetic system differ from one another?

To answer these questions, we simulated 7 scenarios under

model (2) with positive regulation (i.e. activation by regulatory

genes at levels S and T) in which different numbers of loci in the

signaling pathway are segregating in bi-parental populations with

2 alleles of one functional and one non-functional mutant at each

segregating locus (Table 1). Two types of functional relationships

exist between or among loci within model (2), each of which

mimic well known molecular mechanism(s). Type I is the one-way

FD between downstream loci on their upstream regulatory ones

mostly through protein-DNA interactions, while type II is the

mutual FD mostly through protein-protein interactions and

enzyme cooperativity (Fig. S1, [34]). Scenarios 1 and 2 represent

the typical assumption of classical quantitative genetics theory that

segregating upstream or downstream loci (respectively) are

functionally and genetically independent from one another. In

scenarios 3 and 4, a single locus at each of 2 (T and B) and 3 levels

Genetic Networks
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Figure 1. Molecular quantitative genetics models underlying expression of complex traits. (A) A generalized molecular quantitative
genetics model (1) underlying expression of complex traits. E1, S, ER, T and B represent five major levels {G(I) - G(V)} of the genetic system at the
signal transduction regulatory level, epigenetic regulatory level, transcriptional-posttranscriptional regulatory level, and biosynthesis-transportation
level. P(I), P(II), P(III) and P(IV) represent the four levels of the phenotypic system with P(I) = metabolites at the biochemical level (Mijk), P(II) =
component traits (CTs), P(III) = integrated traits (ITs), and P(IV) = fitness. SS and DS represent the two major types of selection - the stabilizing
selection and directional selection defined in the population genetics theory. E1 and E2 represent two types of environmental components. E1

represents the physical environment of a multicellular organism encounters, which contains two parts, EB (the basic or average elements in an
environment required for the organism to survive) and ES (the unique physical features of the environment that deviate from EB and require
expression of specific signaling pathways for survival). Thus, E1 is part of the genetic system. E2 is the random and non-heritable part of any
phenotypes measured in the environment [31–33]; (B) A simplified molecular quantitative genetics model (2) of a single signaling pathway
consisting of a single S unit, 2 T units, and 6 downstream B units underlying expression of trait X.
doi:10.1371/journal.pone.0014541.g001
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(S, T and B) of the signaling pathway is segregating such that only

type I FD exists between a downstream locus and its upstream

one. In scenarios 5–7 represent more complicated situations in

which one or more loci at 2 (S and T) and 3 levels (S, T and B) of

the signaling pathway are segregating such that both types I and II

FD exist between downstream and upstream loci, and between

different segregating loci within FGUs. Together, these 7 scenarios

cover most cases in which epistasis may arise from different FD

relationships between loci in a signaling pathway. The specified

segregating loci are complementary to one another in the sense

that functional genotypes can be generated from recombination of

the parental alleles, except in scenario 1 in which the parents had

the same mutant allele in unit B23. To simulate expected mid-

parent heterosis (HMP), all possible parental genetic compositions

at segregating loci were considered equally for each specified

scenario, and the expected values of F1 and HMP were calculated

under 3 classical modes of gene action [31] – complete dominance

(D) at all segregating loci, additivity (A) at all loci, and a mixed

mode of gene action (DA) where regulatory loci at levels S and T
are assumed to be completely dominant while those at level B are

additive. The simulated populations are ideal in that segregating

loci are unlinked, alternative alleles at each locus have frequencies

of 0.5, all possible multilocus genotypes occur at the expected

Hardy-Weinberg frequencies and linkage equilibrium, phenotypic

values of trait X defined in model (2) have 100% penetrance and

expressivity, and effects of different B units are additive. The

number of the expected genetic parameters of the segregating loci

in each scenario (main and epistatic effects) ranges from 2 in

scenario 1 to 22 in scenario 6, which were estimated using

conventional QTL methodology [24,25]. The mathematical

relationships between the estimated QTL main and epistatic

effects of loci at S, T and B levels of model (2) and their

corresponding pathway effects were derived based on their

expectations from the simulated results.

Simulation (2). Further, we estimated frequency shifts (FSs)

of individual segregating loci and gametic linkage disequilibria

(LDs) between segregating loci resulting from step-wise directional

selection towards either increased or decreased trait values under

each scenario using the Bennett’s method [35]. The FSs at each

locus, pairwise LDs between segregating loci, selection intensity,

population mean, and genotypic variance at each step of selection

were calculated.

Results

Theoretical expectations of heterosis and population
parameters

Figure S2 shows the phenotypic distributions of multilocus

genotypes under the 7 simulated scenarios together with their

population mean and variances. Segregation at levels S and/or T
(scenarios 1, 4 and 5) of model (2) results in a typical bimodal

phenotypic distribution in the progeny, a greatly reduced trait

mean (m) and increased trait variation regardless of the type of

gene action. In contrast, largely continuous phenotypic distribu-

tions are observed for scenarios 2, 3, 6 and 7 where many B loci

are segregating. Fig. S3 and Table S3 show the expected levels and

variation of trait heterosis for each of the 7 scenarios under 3 types

of gene action. The direction of trait heterosis is determined by

dominance at the regulatory FGUs (S and T). Contributions of

segregating loci to the level of heterosis follow the principle of

hierarchy that S loci . T loci . B loci.

Epistasis contributes greatly to the level of trait heterosis,

independent of gene action, and varies with the degree of

functional complementarity, number, and allelic distribution of

segregating loci in the parents. Across scenarios 3–7, epistasis and

dominance of both regulatory (S, T) and downstream (B) loci

contribute roughly equally to trait heterosis. The correlation

between mean heterosis and inbreeding depression is 20.974

under complete dominance, 20.540 under additivity and 0.856

under the mixed mode of gene action. Zero trait heterosis occurs

only in the 10 cases of scenarios 1, 2 (no epistasis), even though

mean heterosis is virtually zero in all scenarios under additivity. In

other words, within a single signaling pathway, negative heterosis

results only from additive epistasis (Fig. S3).

Genetic expectations of QTL parameters
Table S4 and Figure S4 show the expected QTL effects of

different segregating loci estimated in the simulated populations

using classical QTL mapping methodology [24,25] and their

expected frequency shifts from directional selection in the 7

scenarios, which led us to three important theorems.

Theorem 1. In the genetic system of a signaling pathway of

model (2) with a single upstream S unit, l T units, each of which

regulates m genetically independent downstream B units with

equivalent effects (aij ) on a complex trait, X, when only a single

locus within one or more of the B units, or T units, or their

upstream S unit, is segregating in a biparental population (rS , or

rTj
, or rBij

= 1), then the segregating B, T or S locus will be

detected as a main-effect QTL with an effect equal to its

expectation, i.e. one half of its unit effect defined in model (2)
(scenarios 1 and 2). Here, the functional genotypes are defined as

individuals that are either homozygous for the functional allele or

heterozygous at the corresponding locus in each of the S, T and B
units of model (2).

Theorem 2. In a signaling pathway of model (2), when 2 or

more loci within each level or at different levels are segregating in

a biparental population, segregating loci in different B units within

the same or different T units are genetically independent from one

another (no epistasis). Only 2 types of epistasis exist based on

functional relationships between or among loci (Table S4):

epistasis between alleles at upstream loci and their regulated

downstream loci (type I in scenarios 3, 4), and epistasis between

alleles at different segregating loci within the same unit in each

level of the system (type II in scenarios 5–7). In these cases, the

number and type of digenic and high-order epistasis can be

predicted by the number of loci segregating at different levels of

the system, r, and FD between or among the segregating loci

(Tables 1, S4). The relationships between the QTL main additive

effects (Ai) of segregating loci at any level of the signaling pathway

and the expected pathway effects (aij ) of the FGUs defined in

model (2) can be described by the general formula in Table 2:

Ai~FrS{1
Xl

j~1

FrTj

Xm

i~1

FrBij
1

2
aij

� �
for any loci in the S unit; ð1Þ

Aj~FrS

Xl

j~1

FrTj
{1
Xm

i~1

FrBij
1

2
aij

� �
for any loci in the l T units;

ð2Þ

Aij~FrS

Xl

j~1

FrTj

Xm

i~1

FrBij
{1 1

2
aij

� �
for any loci in the lm B units,

ð3Þ

where FrS , F
rTj and F

rBij are the frequencies of the functional

genotypes at the S, T and B units respectively, which is 1=2 for a RI
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(or DH) population and 3=4 for an F2 population (assuming

complete dominance at all loci involved), rS , rTj
and rBij

are the

numbers of segregating loci at the corresponding S, T and B units of

the network. In cases of mixed gene action (additivity for all B loci

and complete dominance for the S and T loci), the above formulae

remain valid except that FrS and FrTj are 3=4, and FrBij is 1=2.

Theorem 3. In a RI (DH) population or under additivity for

all loci, the estimated QTL epistatic effects, lAB, between the

upstream loci and their downstream loci (type I epistasis) are equal

to the estimated QTL main effects of the downstream loci, and the

QTL epistatic effects between different loci within the same FGU

(type II epistasis) are equal to their estimated QTL main effects.

This is true for any high order epistasis (Table S4). However, for

an F2 population (under complete dominance at all segregating

loci), the QTL epistatic effects (lAB) will equal two thirds of the

estimated QTL main effects of the downstream loci, i.e.

lAB~
2

3
AB, where A is the upstream locus and B is the

downstream one for type I epistasis, and A and B are the

different segregating loci within the same unit for type II epistasis

(Table S4). Second-order epistasis involving alleles at 3 loci will

equal two thirds of 1st order epistasis, i.e. lABC~
2

3
lAB, with

progressively smaller contributions from higher-order epistasis.

The coefficient,
2

3
of the QTL epistatic effects, is the proportion of

the heterozygote in the total functional genotypes in an F2

population (Tables 2, S4).

Impact of epistasis on the classical biometrical genetics
model

To better illustrate the two types of epistasis and compare the

difference between model (2) and the ‘infinite’ model of classical

quantitative genetics theory [31], we derived genetic expectations

of the epistatic effects and predicted phenotypes (genotypic values)

of multilocus genotypes involved in epistasis under scenario 3

(Tables S5, S6, S7). Interestingly, the QTL epistatic effects, lAB,

associated with the 4 digenic genotypes estimated by the classical

quantitative genetics method, are inversely proportional to their

expected frequencies in a population, even though the mean

epistatic effect for any epistatic gene pair averaged across the 4

digenic genotypes is identical for both models. This implies that

although model (2) and the classical biometrical genetics model

are the same in predicting phenotypic values of multilocus

genotypes in a RI (DH) population, the latter would overestimate

the trait values of all multilocus genotypes in the presence of either

type I or type II epistasis. Most importantly, the genetic

expectations of multilocus genotypes involved in any type of

epistasis in five of the 7 scenarios can be easily derived based on

model (2), providing the theoretical foundation for estimating the

effects of segregating FGUs at each level of a signaling pathway.

Also, the predicted patterns of phenotypic values associated with

multilocus genotypes in the presence of epistasis by both models in

a RI (DH) or F2 population are expected to result in greater trait

variances among multilocus genotypes and thus increased power

to detect epistasis as compared to detecting main-effect QTLs.

When the theory is extended to cover cases including two

functional alleles with differentiated phenotypic values at any

single loci in a signaling pathway of model (2), the relationships

between the mean pathway effects, �aai, and the estimated QTL

main effects, Aj are as follows:

�aai~
Xn

i~1

piai, ð4Þ

ABX
~

�aai Bxð Þ{�aai bxð Þ
2

, ð5Þ

ATy~

Pl
j~1

�aaj Tyð Þ{
Pl
j~1

�aaj tyð Þ

2
, ð6Þ

ASz~

Pm
k~1

�aak Szð Þ{
Pm

k~1

�aak szð Þ

2
ð7Þ

where the coefficient, pi, is
1

4

� �r{1

for an F2 population and

Table 2. Formula for estimating pathway effects (aij) based on QTL additive and epistatic effects (A) and their corresponding
portions in the total genotypic variance, R2

G in an ideal F2 (under complete dominance at all segregating loci) or RI (DH)
population.

F2 population RI (DH) population

A % of R2
G A % of R2

G

Ai~FrS{1
Xl

j~1

FrTj

Xm

i~1

FrBij
1

2
aij

� �
3.A2

i piqi

s2
G

Ai~FrS{1
Xl

j~1

FrTj

Xm

i~1

FrBij
1

2
aij

� �
4.A2

i piqi

s2
G

Aij~
2

3
min Ai ,Aj

� �
min s2

Ai
,s2

Aj

� 	
3s2

G

Aij~min Ai ,Aj

� �
16.A2

ijpiqipjqj

s2
G

Aijk~
2

3
min Aij ,Ajk ,Aik

� �
min s2

Aij
,s2

Ajk
,s2

Aik

� 	
3s2

G

Aijk~min Aij ,Ajk ,Aik

� �
64.A2

ijkpiqipjqjpkqk

s2
G

Aijkt~
2

3
min Aijk ,Aijt,Aikt,Ajkt

� �
min s2

Aijk
,s2

Aijt
,s2

Ajkt
,s2

Ajkt

� 	
3s2

G

Aijkt~min Aijk ,Aijt,Aikt,Ajkt

� �
256.A2

ijktpiqipjqjpkqkptqt

s2
G

s2
G is the expected genotypic variance for trait X in the population. In an F2, the QTL epistatic effects, Aij , Aijk , and Aijkt represent 1st, 2nd and 3rd order additive by

additive epistasis parameters, respectively; % of R2
G is the proportion of the total genotypic variation explained by Ai , Aij , Aijk , and Aijkt , respectively. p and q are allelic

frequencies of the two alleles at each locus involved, which is 0.5 in the ideal F2 and RI (DH) populations.
doi:10.1371/journal.pone.0014541.t002
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1

2

� �r{1

for a DH or RI population; n~4 r{1ð Þ for an F2

population and 2 r{1ð Þ for a DH or RI population; r is the number

of segregating loci in pathway i, n is the number of the specific

group of genotypes with effect ai, and l and m are the numbers of

the pathways positively regulated by Ty and Sz, respectively. The

capital and small letters of B, T and S in formula (5) - (7) represent

two alleles of different trait values at each of the loci.

Complementary epistasis may be of especially great
importance

A major deviation from Models (1) and (2) is the presence of

functionally differentiated alleles at different loci in a FGU. Table

S8 shows a typical case, in which genes A and B represent 2 loci in

the same FGU each with 2 functionally differentiated alleles, A1

and A2 at locus A, and B1 and B2 at locus B from the parents, P1

and P2. The parental-type digenic genotypes, A1A1B1B1 and

A2A2B2B2 form two ‘‘co-adapted’’ di-allelic complexes with an

equal pathway effect on trait X in the parents; but the

recombinant-type digenic genotypes, A1A1B2B2 and A2A2B1B1

do not function well together and have no effect on trait X. In this

case, neither locus A nor locus B will be detected as a main-effect

QTL (AA and AB = 0), but strong epistasis is detectable between

loci A and B with an epistatic effect, lAB = 2.0, by classical QTL

mapping methodology. The pathway effect for either A1<B1 or

A2<B2 equals 2 x lAB = 4.0. In real situations, FGU A1<B1 may

not be equal toA2<B2.

Genetic expectations of population parameters in
response to selection

Figure S4 and Table S9 show the expected frequency shifts and

population parameters in response to positive and negative

selection under the 7 scenarios, which led us to two important

results.

First, all segregating loci in the same FGU, whether in the

regulatory (S, T) or downstream (B) levels, have the same expected

frequency shift in response to selection and their responses to

positive and negative directional selections are generally asym-

metric. Under positive selection, i.e. in the same direction as the

pathway effect, all segregating loci in the pathway will show

frequency shift in the direction of the pathway effect and following

the order of S loci $T loci $B loci (particularly under additivity or

in a RI/DH population). Under negative selection, i.e. in the

opposite direction of the pathway effect, only null mutant alleles or

repressors at upstream regulatory loci are responsive to selection

and significant amounts of allelic diversity will remain at

downstream loci.

Second, positive selection in the direction of the pathway effect

will result in 2 types of weak positive linkage disequilibrium (LD),

one between the upstream loci and their regulated downstream

loci (type I, scenarios 3 and 4) and between different segregating

loci within the same units in each level of the signaling pathway

(scenarios 5–7). The number of any high order LDs can be

predicted similarly based on the number of segregating loci and

their functional relationships (Tables 1, S10), which can be

estimated using Bennett’s method [35]. For positively associated

loci in the selected population, there are inclusive relationships

between functional genotypes at the segregating upstream S or T
loci and their downstream T or B loci in the same signaling

pathway. The intensity of positive LD increases with selection

intensity. Also, directional selection, either positive or negative in

our simulation, results in many negative LDs between independent

segregating loci in different FGUs of model (2). This is

artifactual, resulting from the functional redundancy of the

downstream pathways - B units within model (2) (the preset

stepwise trait increments are equal or proportional to the pathway

effects of different B units in model (2)) (Fig. S4, Table S9). Once

an FGU is included in the selected individuals, the remaining ones

of equal effect will be excluded in these individuals, resulting in

partial negative LDs between independent FGUs in the simulated

populations.

Detection of putative genetic networks underlying
complex traits

Detecting and characterizing genetic networks underlying a

complex trait involves determining the number, genetic relation-

ships, and hierarchy of segregating FGUs (or loci) associated with

the trait in a biparental population. Two general approaches are

readily available - the quantitative genetics approach and the

population genetics approach. The power to detect a genetic

network is largely dependent on its complexity, which is

determined largely by the number of segregating loci, r, within

each of the signaling pathways underlying the trait. Use of

advanced BC or RI/DH populations can significantly increase

power to detect a network for a complex trait when ris large, by

reducing the number of multilocus genotypes relative to an F2

population of maximum genetic complexity. In the following

sections, we demonstrate both approaches by detecting putative

genetic networks underlying plant height in a rice DH population

and submergence tolerance (ST) in a set of selective introgression

lines (ILs).

Putative genetic network underlying plant height (PH) in
rice

Using the 1994 wet-season data of the rice IR64/Azucena DH

population [36], we identified the ‘‘Green Revolution’’ gene - SD1

(GA20ox-2) [37,38], 16 QTLs, and 11 pairwise epistatic interac-

tions affecting PH at a threshold of P,0.0001 (Table S11).

GA20ox-2 encodes a key enzyme functioning in the biosynthetic

pathway for gibberellic acids, GA1 and GA4, that play very

important regulatory roles in rice growth and development [37–

40]. A putative genetic network containing SD1 and all 16

identified QTLs was constructed based on the theoretical

expectations of their estimated main and epistatic effects (Fig. 2

and Tables S11, S12).

The network contained 3 major non-overlapping QTL groups.

Group I was the SD1 (GA) mediated pathways controlled by 6

independent FGUs, QPh2a, QPh3b, QPh4a, QPh7b, QPh12 and

QG1-3 (QPh8a and QPh9b) which expressed (detectable) only in the

presence of SD1 (Fig. 2, Tables S11, S12, S13). Strong epistasis

existed between SD1 and the 6 FGUs. All these 6 downstream

pathways had positive effects for increased height, ranging from

9.5 cm for QPh12 to 19.4 cm for QG1-3. Together, the GA

mediated pathways had a total estimated effect of 82.3 cm for

increased PH (Fig. 2).

Group II was the SD1 (GA) repressed pathways containing 5

FGUs of 2 types that expressed only in the sd1 (mutant)

background, but not in SD1 (Fig. 2). Type 1 was QG3 consisting

of 2 interacting QTLs, QPh3c and QPh7a, with an estimated

pathway effect of 16.8 cm for reduced PH. This is consistent with

the reports on the presence of dominant semidwarf gene(s) in rice

[41,42]. Type 2 included 4 independent FGUs, QPh3a, QPh4c,

QPh9a and QG6 (QPh1 and QPh5a) with estimated pathway effects

of 8.6 cm, 10.2 cm, 8.8 cm and 19.5 cm, respectively. The

pathway effect directions of QPh3a, QPh4c, and QPh9a could not

be determined based on the known QTL information except QG6.

Genetic Networks
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Thus, the effect of the Green Revolution gene, sd1, on rice PH

actually reflects the difference between the total effects of the GA

mediated pathways versus the GA repressed pathways. The third

group contains a single FGU (QG7) which was independent from

SD1. This FGU contained 2 interacting QTLs, QPh5b and QPh11,

with an estimated pathway effect of 13.4 cm for increased height.

Putative genetic networks underlying submergence
tolerance (ST) in rice detected by selective introgression

X2 tests at individual loci and the multilocus probability tests

using genotypic data of 71 ST lines identified 19 FGUs, including

14 loci of excess introgression and 5 perfect association groups or

AGs (groups of unlinked but perfectly associated loci in the

selected ST ILs) based on a threshold of P,0.0001 (Table S14).

LD analyses between the identified FGUs led us to the

construction of a putative genetic network consisting of 3 major

branches plus 3 independent loci (Fig. 3). Branch I had AG1 (bins

5.5, 6.2 and 9.3) on the top connected with 9 largely independent

and complementary downstream FGUs, including 6 loci near bins

5.4, 11.1, 11.5, 5.5, 2.7, and 7.6, AG2 (bins 2.6, 5.1 and 5.3), AG3

(bins 7.1 and 11.6) and AG4 (bins 4.2 and 10.2). Together, this

putative pathway was responsible for ST in 53 (74.6%) of the 71

ILs. The 3-locus FGU, AG1 was detected independently in ST ILs

from multiple populations and was always placed upstream of

putative genetic networks for ST (unpublished data).

Branch II had bin 12.6 on the top connected with bins 8.2, 8.6

and 12.5 downstream. Branch III had bin 4.6 on the top

associated with AG5 (bins 2.5, 2.11 and 7.4) downstream. Three

loci near bins 8.3, 10.6 and 11.4 formed 3 independent single-

locus FGUs (Fig. 3). According to the theory developed above,

branches (or FGU groups) I, II and III were most likely positively

regulated pathways for improved ST, and the single locus FGU of

high introgression at bin 10.6 was more likely a repressor for

improved ST though it is difficult to determine the nature of the

two other single-locus FGUs near bins 8.3 and 11.4 because of

their relatively small effects (Fig. 3 and Table S14). Strong negative

associations existed between the branch I loci and 3 downstream

loci of branch II, and between AG1 of branch I and downstream

AG5 of branch III, suggesting the possible presence of negative

regulations between the putative pathways I and II, and between

pathways I and III.

Discussion

Validity, predictions and deviations of the molecular-
quantitative genetics theory

The theoretical framework of models (1) and (2) developed

above is based on the notion that genetic variation of most

complex traits is controlled by multiple signaling pathways, each

involving many genes functioning in a strictly hierarchical manner

as proven for many physiological and developmental traits in

multicellular organisms, particularly their responses to internal

and external perturbations [22,23]. Thus, expression and develop-

ment of any phenotypic traits controlled by gene networks start

somehow in response to either internal or external stimuli,

necessitating inclusion of two environmental elements, E1 and

E2 in model (1) with E1 (particularly, ES) being a key part of

model (1).

The principle of hierarchy and the existence of FGU are two

important concepts in the theory. Hierarchy reflects the one-way

FD of genes in downstream metabolic pathways on their upstream

regulators, and the predicted relationships among function,

number, effect size and diversity of genes in signaling pathways.

FGU represents the most common type of functional relationships -

referred to as ‘‘complementary epistasis’’ in many examples of

classical genetics – and comprised of mutual function dependency

among a group of related genes that affect phenotype(s) in a manner

of a ‘‘house of cards’’ at each level of signaling pathways. Hierarchy

and FGU in the theory suggest that epistasis results from two types

of functional relationships between or among loci within a signaling

pathway, each of which can be tracked to well known molecular

mechanism(s). At the molecular level, type I epistasis can best be

accounted for by protein-DNA interactions, protein-RNA and

RNA-DNA interactions, while type II epistasis may primarily

Figure 2. The putative genetic network underlying plant height (PH) of rice. It contains 3 major groups of functional genetic units (FGUs) or
QTLs controlling rice PH. I - SD1 (GA) mediated FGUs for increased PH; II-1 - a SD1 (GA) repressed FGU for reduced PH; II-2 - SD1 (GA) repressed FGUs
with effects on PH of uncertain direction; and III – SD1 (GA) independent FGU. The number under each FGU is its pathway effect estimated using the
relevant QTL parameter of Table S11 and its genetic expectation (Tables S12, S13).
doi:10.1371/journal.pone.0014541.g002
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involve protein-protein interactions and enzyme cooperativity

(Fig. S1, [34]).

Using model (2), we demonstrated mathematical relationships

between QTL main effects and epistatic effects and apparent

correspondences between the quantitative genetics parameters and

population genetic parameters of loci in signaling pathways, i.e.

frequency shifts of loci and non-random association resulting from

positive selection vs QTL main and epistatic effects identified in

random segregating populations. One important assumption of the

theory is that different T units act independently and their

regulated downstream (B) units within a signaling pathway

contribute to the trait(s) in the same direction, as in the case of

the SD1 (GA) mediated pathways for rice PH. This should be true

in most cases because selection would not favor the repulsion

situation that different T and B units within the same signaling

pathway have opposite effects on the same traits, or a signaling

pathway that is largely neutral with regard to its contribution to

the trait or fitness. Thus, balancing selection would be more likely

to act on different signaling pathways of opposite effects on a trait,

rather than on different downstream pathways of opposite effects

within a single signaling pathway.

Several important predictions from our theory can be used to

test the generality of the model based on empirical results from

typical QTL experiments. First, the theory predicts that many loci

contributing to genetic variation of complex traits in natural

populations are downstream (B) in pathways, and would be

obscured in most QTL mapping studies in the presence of

epistasis. This is because once a loss of function mutation occurs at

any regulatory locus of a signaling pathway, mutations in its

member genes and downstream FGUs may be relieved of selection

pressure, except those having multiple functions.

Since unlinked genes of the same FGU may encode different

enzymes or proteins of the same phenotypic effect(s), functional

alleles of the same FGUs may show correlated responses to

positive selection, resulting in non-random associations. However,

the observed non-random associations between or among

genetically independent FGUs for ST in rice were much stronger

than the simulation results. For example, the largest pathway

mediated by the 3-locus FGU, AG1 was responsible for ST in 53 of

the 71 ST ILs (Fig. 3). This 3-locus FGU was detected

independently in ST ILs from multiple populations and always,

when detected, placed in the upstream of putative genetic

networks for ST (unpublished data), demonstrating the power

and robustness of the population genetics approach in detecting

genetic networks underlying complex traits. This type of strong

non-random associations between or among unlinked loci was

widely observed in ILs selected for ST, drought and salinity

tolerances from large numbers of populations ([43]; unpublished

Figure 3. The putative genetic network underlying submergence tolerance (ST) of rice. (A) The multilocus structure consisting of 19 FGUs
(14 loci and 5 AGs) in 3 major groups plus 3 independent loci identified in the 71 ST NPT/Khazar BC3 ILs (Table S14); (B) the graphic genotypes of the
71 ST NPT/Khazar BC3 ILs at the identified FGUs. The color boxes are homozygous donor (Khazar) alleles and patched boxes are the heterozygotes. An
AG is a group of unlinked but perfectly associated loci identified in the selected ST ILs. Different orbits marked with different colors represent different
FGUs either as single loci or as AGs. The number under each FGU is the source bin (marker) in the rice genome or the number of loci included in the
AG.
doi:10.1371/journal.pone.0014541.g003
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data), suggesting some other mechanism(s), particularly ER in

model (1), in addition to strong selection, were responsible for the

observed multilocus structure (unpublished data). Single FGUs,

particularly the downstream ones, may be energetically the most

efficient solutions to adaptive needs, but are genetically vulnerable

both to mutations within their coding sequences and their

upstream elements. Indeed, one can envision a ‘hierarchy of

vulnerability’ with downstream FGUs being most vulnerable to

loss of function. A tantalizing hypothesis for further study is that

multicellular organisms have evolved multiple FGUs of similar or

complementary function as a means to mitigate this vulnerability,

which was proven to be the case in both our examples where each

of the putative upstream FGUs are regulating multiple down-

stream FGUs of similar effects.

These predictions are consistent with both our examples and the

observation that the complementary interaction was the predom-

inant type of statistically detectable epistasis in rice QTL mapping

studies [4–8,44], and that most downstream loci tended to be

detected as AGs in large selection experiments (unpublished data).

When extending the results from model (2) to model (1), a

third type of epistasis may exist, resulting from either antagonistic

or synergistic relationships between loci in different signaling

pathways, resulting in typical web-like networks detected in many

genomewide gene expression studies [45–47]. Mathematically,

both antagonistic and synergistic relationships cause statistical

epistasis [48], as demonstrated in our examples including

antagonistic epistasis (background effect) between SD1 and its

repressed PH QTLs (Fig. 2) and the strong negative LDs between

loci of two different lineages (putative pathways) in the ST

network, and with empirical examples of antagonistic epistasis

between loci in the GA and ABA signaling pathways [23] and

synergistic epistasis between loci of the GA and ethylene pathways

[49,50].

We find that responses to divergent selection for a complex trait

controlled by signaling pathways are generally asymmetrical in a

segregating population unless only one locus in a pathway is

segregating. This is because function (phenotype) can be much

more easily altered by disabling a FGU than restoring it by

recombination. Thus, we offer an alternative explanation of the

asymmetrical responses observed in many artificial selection

experiments [51–56].

Both epistasis and genotype-by-environment interaction play a

central role in maintaining genetic variation for complex traits in

populations, even under strong directional selection. This is

because a similar phenotype or fitness under a given environment

can be achieved by various combinations of signaling pathways

with opposite effects. Indeed, multicellular organisms may adapt to

fluctuating environments through multiple alternative signaling

pathways of similar but not identical functions. This provides an

excellent explanation for the observed correlation between

environmental heterogeneity and genetic diversity in plant

populations [57,58]. Results from large selection experiments for

several abiotic stress tolerances in rice (unpublished data) provide

strong evidence in support of this prediction. In other words,

differential expression of regulatory genes, particularly those

functioning at level S, may be largely responsible for the observed

GE interaction of complex traits, as observed in previous QTL

studies [36,59].

Our model suggests that both loss of function and ‘‘co-adapted’’

gene complexes formed by multiple alleles with differentiated

functions (effects) should be frequent types of allelic diversity at loci

that contribute to the genetic variation of complex traits in

populations. Observations from numerous studies [4–8,44,60]

appear to lend strong support to this inference, and resequencing

studies have recently begun to reveal surprisingly high frequencies

of apparently-crippling mutations in natural plant populations

[61].

Finally, our model predicts that heterosis for most complex traits

would arise primarily from complementarity between dominant or

partially dominant regulatory genes and additive downstream

ones, and inbreeding depression is due primarily to the breakdown

of functioning FGUs by recombination. The theory further

predicts that a high level of heterosis may be found in crosses

between ecotypes adapted to highly-differentiated environments

because they tend to carry different signaling pathways related to

fitness and its components. These predictions are consistent with

numerous empirical observations in both plants and animals and

have been proven to be true in two large series of experiments in

rice [5–10,16,36,44]. In other words, it seems reasonable to

assume complete or partial dominance as an important charac-

teristic for regulatory genes in signaling pathways. Nevertheless,

this assumption remains to be tested in future experiments.

Extending the above results to include multiple signaling

pathways and the random noise of E2 of model (1) where trait

heterosis is averaged across all involved segregating pathways, the

mixed mode of gene action appears to fit more closely to real

situations of most complex traits. This is because trait heterosis

under complete dominance or additivity for all loci (Table S3 and

Fig. S3) contradicts the commonly observed importance of

additive gene actions for most quantitative traits and the observed

variation in the levels and directions of heterosis. In the latter case,

,50% of the negative trait heterosis under additivity does not

appear to fit the observed heterosis for most complex traits,

particularly fitness and its components.

Deviations of the two models from real ones
Both models (1) and (2) are very much simplified relative to

current knowledge of signaling pathways. At the molecular level,

there are complex webs of relationships between genes/pathways

within a signaling pathway, including multiple transcriptional

factor binding sites [62], multiple phosphorylations [62], and

genetic ‘‘redundancy’’ from gene duplications in both copy

number and function, each of which can result in deviations from

models (1) and (2). More complicated relationships of FD in

signaling pathways such as multiple TF binding sites and

phosphorylations may result in the ‘‘redundant’’ branch pattern

in genetic networks [63], as seen in our example of the rice ST

genetic network. Genetic redundancy is expected to generate the

‘‘distributed’’ branching pattern, which is included in model (2)
(different T units and different B units within each T unit of are

actually ‘redundant’ with their effects on trait X) and well

demonstrated in the SD1 example. These deviations are expected

to result in more complex branching patterns and more layers of

genetic networks as long as these relationships fall into one of the

two major types with regard to their effects on specific

phenotype(s) defined in this paper. Consistent with our expecta-

tion, selection experiments from more than 80 backcross

populations revealed that the redundant branching pattern was

prevalent in rice genetic networks for drought tolerance (DT) and

ST (unpublished data). Thus, the general ‘‘distributed’’ pattern of

genetic networks underlying DT and ST in rice suggests a

significant level of downstream genetic redundancy, consistent

with our current understanding of most plant abiotic stress

signaling pathways [64].

Detection and verification
With the theory developed above, additional modeling efforts

are needed to combine this model with stochastic features of linear
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statistical and landscape models for parameter estimation, genetic

network construction and genotype-phenotype prediction in

breeding populations. As demonstrated in our first example, the

current statistical methodology and modeling tools for QTL

analyses and genotype-phenotype predictions [24,25;29,30,65]

remain valid, because the estimated QTL parameters can be

readily converted to the pathway effects based on their genetic

expectations developed in this study. It is important to point out

that all detected putative genetic networks should be verified,

particularly when identified in single environments. In our first

example, the rice PH network (and the FGUs) was consistently

detected across multiple diverse environments, providing interest-

ing insights into the nature of Green Revolution (unpublished

data). However, a major limitation of the quantitative genetics

approach was noted, i.e. the direction of a pathway (FGU) effect

can not be determined if it is not involved in any epistasis, as seen

in most of FGUs in the GA repressed pathways. In our second

example, similar rice ST networks were identified in ILs from

more than 20 populations, indicating the robustness of the method

(unpublished data).

There are several ways to verify the identified FGUs and their

relationships within genetic networks. Random reciprocal introgres-

sion lines derived from the same parents are ideal for both

quantitative and population genetics approaches. A second way is

to use progeny testing. As demonstrated in our two examples,

selected lines of extreme phenotype from a segregating population

represent unique multilocus genotypes at the identified FGUs based

on which the genetic network for the selected trait was constructed.

Backcrossing each line to the recurrent parent can create a

segregating population to test and verify the identified genetic

network using either population or quantitative genetics. In addition,

lines created for verification are also suitable for high-throughput -

omic analyses and extensive phenotypic evaluation to identify genes

underlying the genetic networks by an integrated approach [43].

Materials and Methods

The materials and method of the quantitative genetics
approach

In case study 1, the materials used are the well-known IR64/

Azucena doubled haploid (DH) population of 126 rice lines with

the plant height (PH) data obtained in the 1995 dry-season at

IRRI and genotypic data of 176 RFLP markers [36]. Three steps

were taken to detect the putative genetic network underlying PH

using the quantitative genetics approach: (1) to identify main-effect

and digenic epistatic QTLs affecting PH in the population using

the classical QTL mapping approach [24]; (2) to determine the

relationships between and among the identified QTLs based on

their epistasis and the magnitudes of their QTL main effects; and

(3) to estimate the pathway effects of independent QTL groups

based on the genetic expectations of the multilocus genotypes of

interacting QTLs demonstrated in Table S6.

The materials and method of population genetics
approach

In case study 2, the materials included 71 rice introgression lines

(ILs) with significantly improved ST selected from 1900 BC3F2

plants from a cross between a new plant type (NPT) line and

Khazar. NPT is a tropical japonica line developed at IRRI and

used as the recipient. Khazar is a japonica landrace from Iran and

used as the donor. The initial cross was made in 1998 and the F1

plants were backcrossed to the recipient to obtain BC1F1 seeds,

from which 25 random BC1F1 plants were each backcrossed to the

RP to produce 25 BC2F1 lines. Then, 1–3 random plants in each

of the BC2F1 lines were further backcrossed to the RP to produce

30–75 BC3F1 lines. The resultant BC3F1 lines were planted in the

field and allowed to self to produce BC3F2 seeds. Seeds from all

BC3F1 plants were bulk-harvested as a single BC3F2 population. In

the 2001–2002 dryseason, 1900 BC3F2 plants of the NPT/Khazar

cross were subjected to 2-week complete submergence in the deep-

water pond of the IRRI experimental farm, resulting in 71 survival

plants (unpublished data). ST of the survival plants were confirmed

in the progeny testing under 2-week complete submergence during

the following 2002 wet-season. Then, a total of 625 SSR markers

across the rice genome were used to screen the polymorphisms

between the RP and ST donor, from which 159 polymorphic SSR

markers were used to genotype the ST ILs (unpublished data).

According to the classical population genetics theory and our

computer simulation, 3 steps were taken to detect the putative

genetic network underlying ST in the ILs. First, we performed two

types of statistical tests to identify FGUs associated with ST. We

used standard X2 tests to detect donor alleles at individual loci

across the genome that deviated significantly in both allelic and

genotypic frequencies from the expectations and multilocus

probability tests to detect individual association groups (AGs)

in the selected ST ILs using the formula P AGð Þ~ pið Þrm.
1{pið Þr n{mð Þ

. Here, an AG is defined as a group of r (r$2)

perfectly associated but genetically unlinked loci of equal

introgression in the ST ILs, where pi is the expected frequency

of the donor introgression in a BC3F2 population, n is the number

of ILs, m is the number of ILs that have co-introgression of the

donor alleles, and n{mð Þ is the number of ILs having no

introgression at the r unlinked loci in the AG. Thus, (Pi)
m is the

probability of m ILs having co-introgression of the donor alleles

and (1 - Pi)
n-m is the probability of (n-m) ILs having no introgression

at r unlinked loci. For r loci (r$2) in an AG, there will be r(r21)/2

independent pairwise associations between the r loci. The

threshold to claim a significant case was P#0.0001 for individual

cases. Second, we performed pairwise gametic LD analyses to

determine non-random associations between individual FGUs

identified in the first step using the standard approach [66]. Third,

we constructed the putative genetic network or the multilocus

structure containing all identified FGUs based on the principle of

hierarchy in 2 steps: (1) all FGUs detected in the ILs were divided

based on the LD results into major groups such that different

FGUs within each group were all significantly and positively

associated with one another (D̂DsAB
0
= 1.0), and FGUs in different

groups were either independent, or negatively associated; and (2)

all FGUs within each group were connected, forming multiple

layers, according to their progressively reduced introgression and

inclusive relationships. The underlying assumption for the network

construction is that all FGUs in a network are unlinked, which was

true in our case because all redundant loci due to linkage

associated with each of the identified FGUs were removed.

Supporting Information

Table S1 Nature of allelic diversity at 26 cloned QTLs.

Found at: doi:10.1371/journal.pone.0014541.s001 (0.07 MB

DOC)

Table S2 Quantitative genetics presentation of multilocus zygote

genotypes and their corresponding phenotypic effect, aij (assuming

complete dominance) of three unlinked segregating loci of a single

functional genetic unit (FGU) in an F2 population with two alleles

at each of the loci, one functional allele (the capital letter) and the

other nonfunctional mutant (the small letter).

Found at: doi:10.1371/journal.pone.0014541.s002 (0.05 MB

DOC)
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Table S3 The expected F1 values, mid-parental heterosis (HMP),

and population parameters of an ideal F2 or RI (DH) population

derived from a biparental cross under different gene actions and

the seven scenarios in Table 1 and model (2) of Figure 1B.

Found at: doi:10.1371/journal.pone.0014541.s003 (0.05 MB

DOC)

Table S4 Expected QTL and population parameters for nine

functional genetic units (FGUs), including one S unit, two T units

and six B units of a signaling pathway defined in model (2)

(Figure 1B) under the seven scenarios defined in Table 1,

regarding the number of segregating loci in each of these FGUs

in populations derived from a cross between two inbred parents,

P1 and P2.

Found at: doi:10.1371/journal.pone.0014541.s004 (0.18 MB

DOC)

Table S5 Comparison between the estimated epistatic effects of

four digenic genotypes for each epistatic loci pair under scenario 3

(Figure 1B and Table 1) and their phenotypic values assigned

based on model (2) in an F2 or RI (DH) population.

Found at: doi:10.1371/journal.pone.0014541.s005 (0.06 MB

DOC)

Table S6 The genetic expectations and phenotypic values of

digenic genotypes in trait X based on model (2) and the classic

quantitative genetics model under scenario 3 (Figure 1B and

Table 1) in a RI or DH population.

Found at: doi:10.1371/journal.pone.0014541.s006 (0.10 MB

DOC)

Table S7 The genetic expectations and phenotypic values of

digenic genotypes in trait X predicted based on model (2) and the

classic quantitative genetic model under scenario 3 (Figure 1B and

Table 1) in an F2 (complete dominance) population.

Found at: doi:10.1371/journal.pone.0014541.s007 (0.10 MB

DOC)

Table S8 Complementary epistasis affecting trait X in the

presence of functionally differentiated alleles at two segregating

loci, A and B, in an FGU in an RI (DH) population derived from

parents, P1 and P2.

Found at: doi:10.1371/journal.pone.0014541.s008 (0.05 MB

DOC)

Table S9 Expected population parameters, m (mean) and s2
G

(variance), of segregating loci in a signaling pathway of model (2)

resulting from positive and negative selection under the seven

scenarios of biparental populations defined in Table 1.

Found at: doi:10.1371/journal.pone.0014541.s009 (0.28 MB

DOC)

Table S10 Nonrandom associations, measured by the normal-

ized gametic linkage disequilibrium statistics (LD’), between loci

segregating in a signaling pathway of model (2) resulting from

positive and negative selection for increased trait values under the

seven scenarios of an RI (or DH) populations defined in Table 1.

Found at: doi:10.1371/journal.pone.0014541.s010 (0.26 MB

DOC)

Table S11 Genetic parameters of 16 QTLs in seven groups (QG)

affecting plant heights identified in the IR64/Azucena DH

population evaluated in 1994 wet season at IRRI [36].

Found at: doi:10.1371/journal.pone.0014541.s011 (0.07 MB

DOC)

Table S12 Inferred effects on plant height (cm) of the SD1

mediated downstream pathways (QG1-3, QPh8a and QPh9b) based

on the theoretical expectations and observed plant heights (in cm)

of the tri-locus genotypes at the corresponding QTLs.

Found at: doi:10.1371/journal.pone.0014541.s012 (0.06 MB

DOC)

Table S13 Inferred effects of the SD1 mediated QTL groups

(QG1 expect for QG1-3), QG3, QG6 and QG7 on plant height based

on the theoretical expectations and observed plant heights of the

multilocus genotypes at the corresponding loci.

Found at: doi:10.1371/journal.pone.0014541.s013 (0.15 MB

DOC)

Table S14 Identification of 19 functional genetic units (FGUs)

affecting submergence tolerance (ST) by x2 tests (single loci) and

multi-locus probability tests in 71 ST introgression lines selected

from 1900 BC3F2 plants derived from the cross between NPT

(recurrent parent) and Khazar (donor).

Found at: doi:10.1371/journal.pone.0014541.s014 (0.08 MB

DOC)

Figure S1 Hypothetical molecular mechanisms involved in a

positively regulated signaling pathway affecting trait X, in which a

signal from a specific environmental factor, ES, is perceived by one

or more receptor proteins either directly or through an smRNA,

each encoded by a single gene, forming a single signal transduction

(S) unit. The transduction unit then induces the expression of six

transcriptional factor genes forming two separate protein com-

plexes, T1 and T2, units. T1 and T2 then each regulate a set of

downstream genes B111, B112, B113, etc.; encoding enzymes En111,

En112, En113, etc. or B211, B212, etc. encoding En211, En212, etc.

that function in downstream pathway B11 or B21, resulting in

metabolites M11 or M21, which has phenotypic effect a11 or a21 on

trait X. Sub111, Sub112, and Sub113 are biochemical substrates of

enzymes En111, En112, En113 encoded by genes B111, B112, B113,

respectively.

Found at: doi:10.1371/journal.pone.0014541.s015 (1.49 MB TIF)

Figure S2 Expected frequency distributions of the phenotypic

values of trait X in an F2 and a recombinant inbred line population

segregating at different numbers of loci in a single signaling

pathway of model (2) under the seven scenarios defined and

Table 1 and Figure 1B.

Found at: doi:10.1371/journal.pone.0014541.s016 (1.13 MB TIF)

Figure S3 The expected mid-parental trait heterosis (HMP)

under three types of gene actions under scenarios 3–7 of Table 1

regarding the type and number of segregating loci in a signaling

pathway defined in Figure 1B. In the mixed gene action, all

segregating loci at regulatory (S and T) levels are completely

dominant, and all loci at the downstream level B act additively. r

and n are the numbers of segregating loci and possible distributions

of the segregating loci in the parents.

Found at: doi:10.1371/journal.pone.0014541.s017 (1.64 MB TIF)

Figure S4 The expected cumulated frequency shifts of

functional alleles in response to positive and negative selection

under the seven scenarios defined in Table 1 (A) under complete

dominance at all segregating loci in an F2 population, (B) under

mixed gene action (complete dominance for the regulatory S and

T loci and additivity for the downstream B loci) in an F2

population, (C) complete additivity in an F2 population, and (D)

RI or DH population. In the steps of selection, 1, 2, …, 8

represent the selection trait thresholds of $4.0 or #4.0, …,

$32.0 or #32.0 for positive or negative selection defined in

Table S9.

Found at: doi:10.1371/journal.pone.0014541.s018 (0.51 MB

PDF)
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