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Periodontitis involves the loss of connective tissue attachment and alveolar

bone. Single cell RNA-seq experiments have provided new insight into how

resident cells and infiltrating immune cells function in response to bacterial

challenge in periodontal tissues. Periodontal disease is induced by a combined

innate and adaptive immune response to bacterial dysbiosis that is initiated by

resident cells including epithelial cells and fibroblasts, which recruit immune

cells. Chemokines and cytokines stimulate recruitment of osteoclast

precursors and osteoclastogenesis in response to TNF, IL-1b, IL-6, IL-17,

RANKL and other factors. Inflammation also suppresses coupled bone

formation to limit repair of osteolytic lesions. Bone lining cells, osteocytes

and periodontal ligament cells play a key role in both processes. The

periodontal ligament contains cells that exhibit similarities to tendon cells,

osteoblast-lineage cells and mesenchymal stem cells. Bone lining cells

consisting of mesenchymal stem cells, osteoprogenitors and osteoblasts are

influenced by osteocytes and stimulate formation of osteoclast precursors

through MCSF and RANKL, which directly induce osteoclastogenesis.

Following bone resorption, factors are released from resorbed bone matrix

and by osteoclasts and osteal macrophages that recruit osteoblast precursors

to the resorbed bone surface. Osteoblast differentiation and coupled bone

formation are regulated by multiple signaling pathways including Wnt, Notch,

FGF, IGF-1, BMP, and Hedgehog pathways. Diabetes, cigarette smoking and

aging enhance the pathologic processes to increase bone resorption and

inhibit coupled bone formation to accelerate bone loss. Other bone

pathologies such as rheumatoid arthritis, post-menopausal osteoporosis and

bone unloading/disuse also affect osteoblast lineage cells and participate in

formation of osteolytic lesions by promoting bone resorption and inhibiting

coupled bone formation. Thus, periodontitis involves the activation of an

inflammatory response that involves a large number of cells to stimulate

bone resorption and limit osseous repair processes.
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Introduction

There are two major forms of periodontal disease, gingivitis

and periodontitis. Gingivitis, inflammation of the gingiva,

always precedes periodontitis but does not necessarily lead to

it. In gingivitis, damage to the gingival tissue is reversible.

Periodontitis is characterized by loss of connective tissue

attachment to the teeth and loss of bone that surrounds the

tooth, which is generally thought to be permanent. Both

gingivitis and periodontitis involve inflammation from both

the innate and adaptive immune responses. The immune

responses affect bone remodeling through impact on osteoblast

lineage cells, periodontal ligament fibroblasts, and osteoclasts,

which impact bone resorption and bone coupling. Recent single

cell analysis has shed light on the types of cells involved

including fibroblasts, epithelial cells, vascular cells and

leukocytes. However, the role of bone-associated and

periodontal ligament cells is less well studied. This review aims

to describe how inflammation generated by the innate and

adaptive immune response affects osteoblast lineage cells and

the contribution of the latter to bone resorption and uncoupled

bone formation. The cellular interactions are critical in

understanding the formation of osteolytic lesions that are

characteristic of periodontitis.
Osteoblasts, osteocytes, periodontal
ligament and osteoclast cells

Osteoblast lineage cells are formed from the differentiation

of mesenchymal precursors to osteoblasts. The osteoblast lineage

cells play a critical role in bone development, growth, and

maintenance. Bone undergoes remodeling in vertebrates

throughout life. Progenitors differentiate to osteoblasts through

the activity of transcription factors such as runt-related

transcription factor 2 (Runx2) and osterix (Osx) (1, 2). Mature

matrix-producing osteoblasts synthesize collagen-rich

unmineralized matrix, osteoid. Osteoblasts have 3 fates; they

can form bone-ling cells, osteocytes, or undergo apoptosis (1, 2).

Bone-lining cells cover bone surfaces and exhibit properties of

immature mesenchymal cells with multi-lineage potential. These

cells proliferate as an early step in bone repair (3, 4). Osteocytes,

which are incorporated into the osteoid matrix, are the most

abundant osteoblast lineage cells and account for approximately

95% of cells in mature bone tissue (5, 6). Osteocytes play

important roles in bone remodeling. The differentiation of

osteoblast lineage cells and osteoclast cells is shown in

Figure 1. Osteocytes can limit bone formation by production

of sclerostin (6, 7) and can stimulate bone formation by

production of growth factors such as insulin-like growth factor

(IGF)-1 or the chemokine CCL5 that recruits osteoblasts to sites

of resorption and promotes bone coupling (6, 8, 9). Bone lining
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and other cells produce macrophage colony-stimulating factor

(M-CSF) to induce formation of osteoclast progenitors, while

osteocytes and other cells contribute to bone resorption through

production of receptor activator of nuclear factor k-Β ligand

(RANKL). Apoptotic osteocytes promote nearby osteocytes to

secrete bone-resorbing factors (6–8). In periodontitis animal

models, deletion of RANKL expression specifically in osteocytes

inhibits osteoclastogenesis and bone loss, demonstrating that

osteocytes are an important source of RANKL in this disease

(10, 11).

Cementoblasts are large cuboidal cells that produce

cementum. Both cementoblast precursors and osteoblast

progenitors are resident cells in the periodontal ligament

(PDL). The differentiation of cementoblasts from precursors is

less well studied than osteoblasts but is thought to involve many

of the same transcriptional programs (12, 13). Recently, two

distinct stem cell populations in the periodontal ligament have

been identified by scRNA-seq that contribute to cementoblast

differentiation (14). Microarray analysis indicates that there are

some differences in the expression of regulatory genes that

control cementoblasts and osteoblasts (15). The formation of

cementoblasts and production of cementum is thought to be a

critical step in periodontal regeneration following bone loss due

to periodontitis.

PDL fibroblasts are mesenchymal cells with multifunctional

properties that participate in various cellular activities and

respond to inflammatory stimuli (16, 17). PDL cells exhibit

similarities to tendon cells and immature mesenchymal cells

with some osteoblastic characteristics as demonstrated by 2.5kb

collagen-1a1 promoter reporter activity in vivo. Bacterial

dysbiosis in mice stimulates expression and activation of

nuclear factor kappa-B (NF-kB) in PDL fibroblasts, bone-

lining cells and osteocytes, which produce chemokines and

RANKL to stimulate bone resorption (18). PDL cells influence

immune responses through production of cytokines and

chemokines in response to an oral dysbiosis (17, 18). A recent

study examined PDL cells by single cell RNA-seq. Two major

populations of mesenchymal cells were identified, Scx+

(scleraxis) and Mkx+ (mohawk homeobox), which is expressed

in tendon cells (19). Scx+ PDL cells are located in the central part

of the PDL and produce collagen. Mkx+ cells are seen

throughout the PDL and produce oxytalan fibers and

proteoglycan (19). In addition to differentiating to osteoblasts,

PDL cells differentiate to cementoblast-like cells and

chondrocytes (20). PDL cells express periostin, which

stimulates expression of RUNX2 and differentiation to

osteoblasts (21). Interestingly, periostin expression is

downregulated by periodontal disease. Periodontal ligament

stem cells have been categorized as “high osteogenic” or “low

osteogenic” potential (19). Those with low osteogenic potential

have hypermethylated DNA and low expression of genes that

regulate osteoblast differentiation. Thus, PDL cells with high

osteogenic potential have reduced methylation and greater
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capacity to form osteoblastic cells. Persistent methylation may

serve as a brake to l imit d i ff e rent ia t ion of PDL

subpopulations (22).

Osteoclasts originate from cells of the mononuclear

phagocyte lineage and are responsible for bone resorption

(23). Osteoclast precursors can be formed from immature

monocytic cells, immature monocyte-derived dendritic cells

and resident macrophages (24, 25). Osteoclast precursors are

recruited to sites of inflammation by chemokines such as CCL2,

CXCL16, and CX3CL1. Some chemokines support the

proliferation of precursors or their differentiation to osteoclasts

(26). Osteoclasts also produce chemokines CCL3, CCL5, CCL9

and CCL22 to amplify osteoclastogenesis and bone resorption

(27, 28). Differentiation of monocytic cells to osteoclast

precursors is stimulated by M-CSF and multi-nucleated

osteoclast formation is induced via RANKL (29) .

Prostaglandins and a number of cytokines can indirectly

promote osteoclastogenesis including TNF, IL-1, IL-6, IL-7,

and IL-23 by stimulating production of RANKL. Conversely,

there are a number of anti-osteoclastogenic cytokines such as IL-

3, IL-4, IL-10, and interferon gamma (IFN-g) (8, 30). Several co-
stimulators are needed to facilitate osteoclastogenesis including

osteoclast-associated receptor (OSCAR), immunoreceptor

tyrosine-based activation motif (ITAM), DNAX associated

protein 12kD size (DAP12) and FcϵR1 gamma chain (FcRg)
(31, 32). Secreted osteoclastogenic factor of activated T cells

(SOFAT) is produced by activated T cells and stimulates bone

resorption in the absence of osteoblasts or RANKL (33).

Dendritic cell-specific transmembrane protein (DC-STAMP)

plays an essential role in the formation of multinucleated
Frontiers in Immunology 03
osteoclasts (34, 35). Knock-down of DC-STAMP abrogates

cell–cell fusion. Osteoclasts isolated from DC-STAMP

knockout (KO) mice have single nuclei due to deficiency in

cell-cell fusion and exhibit mild osteopetrosis (36). Osteoclasts

express carbonic anhydride to produce carbonic acid (H2CO3)

and to generate protons that are released into lacunae. This leads

to formation of HCl at the resorption site to create an acidic

microenvironment with pH of 4 , which dissolves

hydroxyapatite. Osteoclasts also secrete cathepsin K and

MMP-9 to degrade type-1 collagen and other bone matrix

proteins (30).

Remodeling activity of alveolar bone occurs at a significantly

higher rate than skeletal bone. The high degree of mechanical

stress caused by mastication plays a role in the high turnover rate

under both physiological and pathological conditions.

Mechanical loading enhances the production of RANKL to

increase alveolar bone turnover. PDL fibroblasts play an

important role in regulating alveolar bone remolding in

response to mechanical forces. These cells can produce

RANKL, IL-1b and TNF-a to stimulate alveolar bone

remodeling (37).
Stimulation of bone formation

A number of pathways stimulate osteoblasts to promote

bone formation. They include Wnt, Hedgehog, bone

morphogenetic protein (BMP), transforming growth factor b
(TGF-b) and Notch signaling. Wnts are secreted glycoproteins

that activate b-catenin, a transcription factor that induces
FIGURE 1

Regulation of bone and the impact of inflammation. Mesenchymal stem cells (MSCs) can differentiate into multiple lineages and are regulated by
growth and differentiation factors that induce transcriptional programs that are lineage-specific. Osteoclasts are of myeloid lineage.
Inflammation promotes osteoclastogenesis, in part, by inducing osteocytes to produce chemokines, inflammatory cytokines and RANKL.
Inflammation also reduces coupled bone formation by inducing osteoblasts/osteocytes to produce inhibitors of Wnt signaling, DKK2 and
sclerostin, interfering with differentiation at several steps, limiting the production of bone matrix, osteoid, and inducing apoptosis of
mesenchymal stem cells, OB progenitors, OB and osteocytes. Thus, bone lining cells, OB and osteocytes play an important role in maintaining
periodontal bone mass through secreting factors that regulate the balance of osteoclastogenesis and osteogenesis.
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osteoblast differentiation and activity. The canonical Wnt/b-
catenin pathway plays a vital role in regulating embryonic

development and bone formation (38, 39). There are

approximately 20 different Wnt ligands ranging from Wnt-1

to Wnt-16b. Wnts activate intracellular signaling pathways by

binding to one of 10 different receptors in the frizzled family. In

some cases a co-receptor is required such as lipoprotein

receptor-related protein (LRP)-5 or LRP-6. Wnt signaling

stimulates proliferation of progenitors and stimulates

osteoblast differentiation and survival (40). Inhibitors of Wnt/

b-catenin signaling reduce or block bone formation and include

Axin2, Sclerostin and Dickkopf-1 (Dkk1). DKK1 competitively

binds to the Wnt co-receptor LRP-6 (41).

FGF (fibroblast growth factor) represents a large family of

growth factors that play a role in bone formation (42, 43). FGF2,

formerly known as basic-FGF, promotes bone formation

through increased proliferation of osteoprogenitors,

stimulation of angiogenesis and increased osteoblast

differentiation. FGF-2 can upregulate BMP2 signaling and

increase b-catenin levels in calvarial osteoblast precursors (44).

FGF-18 up-regulates RANKL expression in osteoblasts (45). IGF

(insulin -like growth factor) consists of IGF-1 and -2. IGF-1 has

both local and systemic effects and binds to IGF-1 cell-surface

receptors to stimulate proliferation of osteoblast precursors,

formation of osteoid and prevent apoptosis, thereby enhancing

bone formation and maintaining bone mass (46). IGF-1 is

synthesized by cells such as preosteoblasts, mature osteoblasts,

osteocytes, and osteoclasts (47, 48). IGF-1 signaling also

promotes osteoclast differentiation (49). IGF-2 plays a role in

growth during fetal development and is important in the

maintenance of stem cell populations (50).

TGF-b consists of more than 30 family members and

includes activin, nodal, BMPs, growth and differentiation

factors (GDFs) and TGF-b1, TGF-b2 and TGF-b3. TGF-b
superfamily members regulate bone cell proliferation,

differentiation, and function (51, 52). SMAD proteins are the

intracellular effectors of TGF-b signaling (53). TGF-b1
stimulates formation of committed osteoprogenitors via the

ERK pathway and activation of the transcription factor, Runx2

(54). TGF-b2 is important in embryonic development (55, 56).

BMP2 and TGF-b synergistically induce mesenchymal stem cell

differentiation to committed osteoblasts (57). TGF-b3 induces

endochondral bone formation and recruits endogenous HMSCs

to initiate bone regeneration (58). BMP (bone morphogenetic

protein) enhances MSC differentiation to osteoblasts while

opposing proliferative pathways stimulated by Wnt (59).

BMPs are expressed by many cells, including osteocytes and

osteoblasts. The best characterized with regard to bone

formation are BMP-2 and BMP-7. BMP-2 is released from the

bone matrix as a result of bone resorption and contributes to

differentiation of osteoblasts by inducing Runx2 (59, 60).

Osteoblast lineage commitment is also increased by BMP-7

signaling to promote femurs and tibiae bone formation (61).
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Hedgehog proteins that stimulate bone formation consist of

sonic hedgehog (Shh) and Indian hedgehog (Ihh). Ihh and Shh

stimulate osteoblast differentiation and bone formation (62–64). Ihh

inhibits MSC differentiation to adipocytes and promotes

differentiation to osteoblasts. Ihh signaling also acts synergistically

with the Wnt and BMP pathways to promote bone formation (65).

Shh upregulates osterix, an osteoblast-specific transcription factor

that induces gene expression, which promotes differentiation of

preosteoblasts to mature osteoblasts (66, 67). Shh may also play a

role in regenerating the periodontium since it stimulates

cementoblast differentiation (68).

The Notch pathway is initiated by interaction between

adjacent cells and typically suppress bone formation. There are

five Notch ligands in mammals, delta like-1, -3 and -4 and jagged

(Jag) -1 and -2, which are transmembrane proteins that bind to

notch receptors -1, -2, -3 and -4 (69). Notch-1 or -2 both

suppress differentiation of mesenchymal progenitors to

osteoblasts (70). Notch suppresses the Wnt pathway in MSCs

to inhibit MSC differentiation to osteoblasts. Notch-1 signaling

in osteocytes induces Sost and Dkk1 expression to limit bone

formation in femurs (71). Notch-1 and -2 can inhibit

osteoclastogenesis directly or indirectly by inducing

osteoprotegerin (OPG) in osteoblasts and osteocytes. In

contrast, Notch-3 induces RANKL in osteoblasts and

osteocytes (72).

Several other factors are important in bone formation and/or

bone coupling and have been recently reviewed (73). They

include platelet derived growth factor (PDGF) that stimulates

proliferation of osteoblast precursors and stimulates periodontal

bone formation in vivo (74). Semaphorins are a large family of

extracellular signaling molecules that affect bone. Sema3A and

Sema3B help maintain bone mass by suppressing bone

resorption and increasing bone formation (75).
Bone remodeling

Bone remodeling consists of two major processes; existing

bone is resorbed by osteoclasts, which initiates a process of new

bone formation by osteoblasts (76, 77). This cycle is regulated

precisely between osteoblasts and osteoclasts and occurs in 4

steps: activation, resorption, reversal and formation. The

remodeling processes involve a basic multicellular unit (BMU)

that includes osteoclasts, mononuclear cells that are osteoblast

precursors and osteoblasts (76, 77). Activation of remodeling

can be stimulated by local factors such as microdamage or

inflammation that induces osteocytes to produce factors that

stimulate bone resorption (78). A key factor is thought to be the

death of osteocytes caused by micro-damage or immune cell

stimulation, which induce osteocytes to produce pro-

osteoclastogenic factors (68). Remodeling may also be

stimulated by local factors or in response to systemic factors

such as parathyroid hormone (PTH) (79).
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Bone resorption in a BMU in humans lasts approximately 3

weeks and the bone formation phase 3 to 4 months (76, 77).

During resorption, osteoclasts release factors from bone matrix

such as IGF-1 and TGF-b to recruit and activate osteoblasts.

Bone resorption is terminated by osteoclast apoptosis and is

followed by reversal. Chemotactic signals released by apoptotic

osteoclasts (e.g. CXCL16, CLL5, CLL20, and CLL12) and from

bone matrix during resorption (e.g. TGF-b) attract stromal-

derived mesenchymal cells to the sites of repair. CCL2 produced

by osteoblastic cells is also thought to stimulate recruitment of

osteoprogenitors cells (80, 81). These precursor cells cover the

resorbed bone surface. They are stimulated to differentiate into

osteoblasts by factors such as BMPs and Wnts in both

periodontal and iliac bone (5, 82, 83). Bone formation involves

the production of type I col lagen, proteoglycans ,

glycosaminoglycans, alkaline phosphatase, osteonectin,

osteopontin, osteocalcin and other proteins (84–86).

Osteocalcin is the most abundant non-collagenous protein in

bone, is expressed by osteoblasts and promotes mineralization

by directing the alignment of apatite crystals with collagen fibers.

Alkaline phosphatase regulates mineralization in two different

ways. It hydrolyzes inorganic pyrophosphate, which is a natural

inhibitor of mineralization. Alkaline phosphatase also provides

inorganic phosphate that is needed to synthesize hydroxyapatite.

Ostonectin promotes mineral deposition and crystal growth.

Osteopontin dissipates energy and inhibits microfacture

propagation (84–86).

Unloading or inactivity
Healthy bone will adapt or remodel in response to stress,

which represents a functional adaptation (87). Osteocytes sense

disuse inactivity and promote bone resorption by regulating

osteoclastogenesis and osteoblasts (68, 88, 89). Inactivity reduces

Wnt1 expression and increases sclerostin production, which

inhibits the Wnt/b-catenin pathway resulting in decreased

osteoblast formation and activity. Unloading promotes

osteocyte apoptosis by increased expression of pro-apoptotic

genes. Apoptotic osteocytes enhance the expression bone-

resorptive cytokines such as RANKL and reduce OPG

expression (90–92).

Rheumatoid arthritis (RA)
Rheumatoid arthritis is a chronic autoimmune disease that

targets joint cartilage and bone to cause disability (93).

Autoimmune induction is influenced by genetic, epigenetic

and environmental factors such as cigarette smoke and dust

exposure (94). A factor that may be an important trigger is the

development of auto-antibodies to citrullinated proteins that are

formed as a result of peptidyl arginine deiminase enzymes in oral

and gut bacteria (94, 95). Single-cell RNA-seq from human

synovial tissue has defined cell populations that drive joint

inflammation in rheumatoid arthritis. They include complex
Frontiers in Immunology 05
interactions between synovial fibroblasts, monocytes,

autoimmune-associated B-cell, T-helper and T-follicular cells

(96). RA upregulates proinflammatory cytokines such as IL-1b,
IL-6, and TNF-a expression (97). The inflammatory

environment induces and activates MMPs and other enzymes

that cause cartilage degradation (98). In addition, RA induces

TNF-a, RANKL and IL-17A expression to stimulate bone

resorption and factors that inhibit coupled bone formation to

create osteolytic lesions (96, 99). Sources of RANKL in RA are

osteocytes, synovial fibroblasts, T-cells, B-cells, monocytes and

macrophages (97–101). Bone coupling is blocked since

inflammatory cytokines that inhibit osteoblast differentiation

and matrix production also stimulate osteocytes to produce

DKK1 and sclerostin (102–104). B-cells also suppress

osteoblast differentiation by production of IL-35 and IL-6

(105–107).
Post-menopausal osteoporosis
Osteoporosis is characterized by decreasing bone mass and

alteration of bone structure that increases bone fragility and risk of

fracture (108). Osteoblasts and osteocytes have estrogen receptors

that induce intracellular signaling that promote maintenance of

bone mass (109). Estrogen signaling inhibits osteocyte and

osteoblast apoptosis to enhance bone formation (109). Estrogen

deficiency reduces expression of IGF-1, TGF-b, BMP andWnt that

suppress bone formation (110, 111). Another mechanism through

which this occurs is estrogen-reduced bone resorption. Calcitonin

production is increased by estrogen, which inhibits osteoclast

activity, while estrogen promotes apoptosis of osteoclasts.

Estrogen receptor signaling down-regulates RANKL and

upregulates OPG in osteocytes to reduce bone resorption (110,

112). Lack of estrogen causes increased RANKL and reduced OPG

in MSCs, T-cells and B-cells to promote bone resorption (110, 113).

Estrogen deficiency also increases cytokines such as IL-7, IL-15 and

IL-17A, thus promoting osteoclastogenesis (114, 115). Like other

bone pathologies, post-menopausal osteoporosis affects both bone

resorption and coupled bone formation.
Periodontal disease

A long-standing paradigm is that the subgingival microbiota

shifts from a composition that is “normal” to one of “dysbiosis”

to induce periodontitis. The specifics of the dysbiosis are largely

unknown but are generally thought to involve a decrease in the

number of beneficial symbionts and increase in the number of

pathobionts. This concept is consistent with the historical

perspective of a decrease in gram-positive aerobes and an

increase in gram-negative anaerobes, although longitudinal

studies are needed to more conclusively establish this

paradigm (116, 117). Another possibility is that there is a shift

in the inflammatory response so that in periodontitis
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inflammation is in closer proximity to bone thereby involving

osteoblast lineage cells to cause bone uncoupling and net bone

loss (118)

As mentioned above, gingivitis and periodontitis involve

inflammation from both the innate and adaptive immune

responses. Resident cells such as epithelial cells and fibroblasts

as well as innate immune cells play a key role in generating an

inflammatory response to bacterial challenge. The latter include

neutrophils, monocytes, macrophages, eosinophils, basophils,

mast cells, dendritic cells, NK cells, gd T-cells, NKT-cells, and

innate lymphoid cells (119, 120). Perturbation by trauma or

bacteria stimulate chemokine production that induces innate

immune cells to migrate to the site of perturbation. Neutrophils

are one of the most common leukocytes in the periodontium and

play a critical role in protecting the host from microbial

challenge. Neutrophils produce respiratory bursts, releasing a

number of factors through degranulation, are phagocytic and

produce neutrophil extracellular traps (NET). Interestingly, both

extremes of excessive numbers of neutrophils and neutrophil

deficiency are linked to severe periodontal disease (121).

Neutrophils produce a number of factors that are pro-

inflammatory and can stimulate bone resorption or inhibit

coupled bone formation. They include IL-1, TNF, IL-6 and

other factors (122). Monocytes/macrophages play an

important role in both bone resorption and bone formation

and have multiple phenotypes that are classically defined as pro-

inflammatory (M1) and pro-healing (M2). Recent evidence

indicates that macrophages can exhibit simultaneously M1 and

M2 phenotypes (123, 124). M1 macrophages initiate

osteoclastogenesis and the first stages of osseous repair by

stimulation of pro-inflammatory factors such as IL-1, IL-6, IL-

12, and TNF-a (123, 125). M2 macrophages are activated by IL-

4 and IL-13 (Th2 related cytokines) to resolve inflammation and

inhibit osteoclastogenesis. M2 macrophages also release bone

morphogenetic protein-2 (BMP-2) to stimulate bone formation

and clear apoptotic cells to facilitate bone regeneration (124–

126). Osteal macrophages (osteomacs) are a subtype of resident

tissue macrophages and are an integral component of bone

tissue (127, 128). Osteomacs support bone remodeling by

inducing osteoblast differentiation and bone formation.

Dendritic cells are found in low numbers but are the

predominant antigen presenting cells (129). Dendritic cells

shape the immune response by directing the formation of

specific T-helper subsets. They also produce cytokines that

affect B-cell activation and activation of innate immune cells

(129). Inhibition of dendritic cell function in mice causes a

reduced adaptive immune response and increases periodontal

disease susceptibility (130).

Adaptive immunity is performed by T-cells that express

classic alpha and beta T-cell receptors and B-cells. CD4+ T

(helper) cells include naive CD4+ T cells, T-memory cells and

other CD4+ Th cells (119, 120, 131). The latter include Th1, Th2,

Th9, Th17, Tregs, and T-follicular helper (Tfh). Th1 cells
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produce IL-1 and IFN-g and Th17 cells produce IL-17A. Th1

and Th17 cells are associated with enhanced inflammation (119,

120, 131). The production of these cytokines can induce

expression of destructive enzymes that promote removal of

injured tissue but may also induce tissue destruction and

stimulate RANKL expression to degrade bone (132–134).

Cytokines produced by Th1 and Th17 cells also induce the

production of chemokines to recruit neutrophils and

macrophages to enhance the innate immune response (120,

134). Th2 and Treg lymphocytes produce cytokines such as

IL-4, IL-10, IL-27, IL-35, and TGF-b that resolve inflammation

or reduce bone resorption (135–137). Th2/Treg-secreted

cytokines also upregulate OPG to inhibit bone resorption (132,

133). Th9 cells increase T-cell expansion and survival and Tfh

cells found in the spleen and lymph nodes enhance antibody

production by B-cells (133, 137, 138). CD8+ cytotoxic T-

lymphocytes (CTL) release vesicles containing perforin and

granzyme, inducing death of target cells. CD8+ T-regs reduce

osteoclastogenesis by producing IL-10 and TGF-b (139).

Antigen primed B-cells are stimulated by Th2 cells to

differentiate to plasms cells. B-cell proliferation is stimulated

by APRIL and BLyS, which are important for their survival,

proliferation, and maturation. The expression of APRIL and

BLyS upregulated in gingiva from animals and humans with

periodontitis (140). In addition to producing antibodies, B-cells

produce pro-inflammatory cytokines and can contribute to

tissue destruction (120, 131). The production of opsonizing

antibodies makes the targeting of microbes by phagocytic cells

more efficient. B-regs are a B-cell subset, producing IL-10, IL-35,

and TGF-b1 to reduce inflammation and inhibit bone resorption

(139, 141). Mice with B-cell deficiency have increased ligature

induced periodontal bone loss compared to wild -type mice,

suggesting that B-cells may be protective (142). Thus, in

periodontitis the production of pro-inflammatory cytokines

outweighs the protective effect of cytokines such as IL-4, IL-10

and TGF-b. Interestingly, humoral immunity becomes less

effective with age as reflected by a reduced capacity to generate

an antibody response (143). This occurs in an environment in

aging of increased cellular senescence and production of pro-

inflammatory cytokines such as IL-1, IL-6 and TNF, a process

referred to as “inflammaging” (143). It is possible that these

factors converge to increase susceptibility to periodontitis

with age.

Periodontitis involves the formation of an osteolytic lesion in

which there is both bone resorption and suppression of coupled

bone formation. Activation of the immune response plays an

important role in reducing coupled bone formation, which leads

to increased net bone loss due to diminished repair of the

osteolytic lesion. In animal models, oral dysbiosis induces

inflammation in bone lining cells and osteocytes as reflected

by increased nuclear localization of NF-kB in these cells (10). In

mice, when NF-kB activation is blocked in osteoblastic cells but

not other cell types, dysbiosis-induced periodontal bone loss is
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inhibited (10). This is due to two distinct mechanisms. Blocking

NF-kB activation reduces RANKL expression by osteocytes and

other osteoblastic cells to diminish bone resorption. In addition,

NF-kB in osteoblast lineage cells inhibits coupled bone

formation. NF-kB impairs bone formation by inhibiting

differentiation of osteoblast precursors, indirectly stimulating

apoptosis of osteoblastic cells or their precursors and reducing

production of bone osteoid (104, 144). The latter occurs because

NF-kB inhibits the expression of proteins that make up osteoid

(104). Bacterial dysbiosis significantly increases the number of

TNF-a producing cells and increases bone-lining cell death 10-

fold. The increased apoptosis is functionally significant since

treatment with an apoptosis-specific inhibitor reduces

periodontal bone loss through increased coupled bone

formation. When the adaptive immune response is stimulated

by oral bacteria, coupled bone formation is further inhibited

(145). Thus, activation of NF-kB in osteoblast precursors,

osteoblasts and osteoclast precursors plays a key role in

periodontitis by promoting bone resorption and limiting

coupled bone formation.

Single cell analysis has provided new insight into periodontal

disease. In one study epithelial and fibroblastic stromal cell

populations were identified as key cells that produce

antimicrobial factors or chemokines that stimulate neutrophil

recruitment and other leukocyte subsets (145) (Figure 2). In
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health, stromal cells produce neutrophil chemoattractants that

may contribute to maintaining homeostasis, whereas in

periodontitis there is a shift to intercellular signals produced by

macrophages, mast cells, T-cells, and B-cells (145–147). In

periodontitis there is a loss of stromal cell populations,

particularly myofibroblasts and pericytes. Periodontitis is

associated with an expansion of B-cells, which may contribute to

an overall increase in inflammation through antigen presentation

and cytokine production (147). Periodontitis is linked to an increase

in TNF and IL-1, which has previously been shown to play a key

role in periodontal bone loss (118, 148). Periodontal disease reduces

the number of myeloid derived suppressor cells compared with

healthy controls, which could potentially contribute to greater

inflammation (146). Single cell RNA-seq also suggests that

Ephrin-Eph receptor signaling is more abundant in healthy

periodontal tissue than in periodontal disease tissue (146). This

may be significant since Ephrin-Eph signaling is important in

maintaining angiogenesis and proliferation of immature

mesenchymal cells. Ephrin ligand-eph receptor signaling appears

to also occur between endothelial cells and pre-osteoblasts. Thus,

endothelial cells may play an important role in maintaining the

number of MSCs in health (146). These studies point to the

complex interactions between various cell types and the role that

resident cells such as epithelial cells and fibroblasts have in

providing protective signaling that maintains homeostasis.
FIGURE 2

Single cell analysis indicates identifies distinct fibroblastic/stromal, epithelial and immune cell sub-populations. When subjected to transcriptional
analysis, several distinct clusters can be identified within the major groups of cells isolated from healthy and inflamed gingiva, suggesting
specialized function. When compared to healthy tissue, gingiva associated with periodontal inflammation exhibits a decrease in several epithelial
populations (but an increase in inflammatory epithelial cells, an increase in neutrophils and B-cells, and a decrease in fibroblasts/stromal cells
(but an increase in inflammatory fibroblasts). The various cell populations from each major group respond to challenge and interact to generate
an inflammatory host response. This table was adapted from information in ref: (138) and (140).
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An important issue that has not been firmly established is

the spatial location of inflammation as it pertains to gingivitis

and periodontitis. New techniques may provide data in the

future which helps distinguish inflammatory events in

gingivitis and periodontitis. We have proposed, based on

cellular changes in experimental periodontitis in non-human

primates, that the location of inflammation in relationship to

bone is a key factor (145). This concept is hypothetically

supported by findings above that the impact of inflammation

on bone-lining cells and osteocytes may play a critical role in the

repair of osteolytic lesions (11).
Systemic conditions and periodontitis

Bone coupling is an essential component of periodontitis

and is significantly affected by the impact of inflammation on

osteoblast differentiation and activity. Three conditions that are

known to have a significant impact on bone are diabetes,

smoking and aging. These three systemic conditions are linked

to reduced bone coupling resulting in net bone loss and will be

briefly reviewed here.
Diabetes and periodontitis

Diabetes increases the risk of periodontitis approximately 2

fold and increases its severity compared to non-diabetics (149,

150). The impact of diabetes is inversely proportional to the level

of glycemic control. Both type I diabetes (T1D) and T2D

increase inflammatory events in the periodontium, due to a

number of factors including high levels of glucose, reactive

oxygen species (ROS) and advanced glycation end-products,

each of which increases activation of NF-kB and cytokine

expression such as TNF-a or IL-17A (151). Multiple cell types

in periodontal tissues are affected by diabetes including

leukocytes, vascular cells, MSCs, periodontal ligament

fibroblasts, osteoblasts, and osteocytes.

Increased alveolar bone resorption in human diabetics with

periodontitis is linked to an increased RANKL/OPG ratio (151–

153). Diabetes increases the intensity and duration of an

inflammatory infiltrate and osteoclastogenesis in experimental

periodontitis (154). Periodontal inflammation is prolonged in

both type 1 and type 2 diabetic mice and in humans in response

to bacterial challenge (155, 156). Macrophages in gingiva from

periodontitis induced by ligature placement in rats have higher

expression of the NF-kB consistent with a hyper-inflammatory

environment (157). Functional studies show that a TNF

inhibitor significantly reduces expression of other cytokines,

diminishes leukocyte infiltration and bone resorption in

diabetic rats, indicating that cytokine dyregulation is an

essential component of diabetes-enhanced periodontal bone

loss in vivo (158). Diabetes-enhanced inflammation has a
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dramatic effect on gene expression in the gingiva as shown by

mRNA profiling in animals treated with a TNF inhibitor (159).

Diabetes both up- and down-regulates genes in a TNF-

dependent manner. It predominantly up-regulates genes

involved in the host response, apoptosis, and coagulation/

homeostasis/complement and down-regulates mRNA levels of

genes that regulate metabolism. Moreover, the anti-

inflammatory transcription factor, PPAR-a is up-regulated

during the resolution of periodontal inflammation in normal

animals and suppressed by diabetes. This may contribute to

prolonged gingival inflammation in diabetics (159). Expression

of inflammatory mediators is also upregulated in the diabetic

periodontium in osteocytes and PDL fibroblasts (11). The

expression of RANKL by osteocytes and PDL cells functionally

plays a significant role in the higher levels of bone loss seen in

diabetic animals in vivo (11). The increased production may be

due to the impact of high glucose levels as high glucose increases

NF-kB transcriptional activity (18).

Diabetes also leads to greater bone loss by reducing coupled

bone formation. The amount of new alveolar bone formation

following an episode of periodontal bone resorption is almost 3-

fold higher in normoglycemic compared to diabetic animals

(153). Diabetes interferes with the new bone formation by

reducing osteoblast differentiation and matrix production,

which can be linked to diminished expression of transcription

factors needed for bone formation in vivo including Runx-2,

Dlx5 and c-fos (159). Some of these events can be directly linked

to increased activation of NF-kB by diabetes. In addition,

sclerostin release by osteocytes is synergistically increased by

elevated levels of advanced glycation end products, increased

levels of ROS and TNF in the diabetic periodontium, which can

reduce bone formation by inhibiting the Wnt pathway (160,

161). Other mechanisms by which diabetes may impair coupled

bone formation is through high glucose-suppressed IGF-1

expression (162), reduced MSC proliferation due to the impact

of advanced glycation end products and inhibition of osteoblast

differentiation by inflammatory mediators and oxidative stress

(152, 163, 164). In addition, in vivo experiments demonstrate

that high levels of TNF in diabetic animals suppress proliferation

of bone-lining cells due to the impact of reduced growth factor

expression including FGF-2, TGFb-1, BMP-2, and BMP-6 (157).

An unexpected finding in an animal model was that

diabetes-enhanced inflammation modified the oral microbiota

to render it more pathogenic (165). This was demonstrated at

two levels. The dysbiosis induced by diabetes could be partially

reversed by inhibiting inflammation in the diabetic gingiva by

treatment with an IL-17 antibody (166). Thus, the development

of diabetes created a change in the microbial composition that

was in part, dependent upon the level of inflammation. In

addition, the transfer of bacteria from diabetic donors to

germ-free hosts induced more bone loss than transfer of

bacteria from normoglycemic animals. Studies in humans are

consistent with animal studies and indicate that diabetic subjects
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have lower oral bacterial diversity and an increase in bacterial

taxa that are associated with pathogenicity (166–168).

Interestingly, two other systemic diseases associated with

greater levels of systemic inflammation, rheumatoid arthritis

(RA) and lupus erythematosus have increased susceptibility to

periodontal diseases and alterations in oral bacterial taxa

associated with periodontal disease (167).
The impact of smoking on
periodontal disease

Smoking significantly increases the incidence and

progression of periodontitis and is proportional to the amount

of exposure (169, 170). Although the effects of smoking lingers,

outcomes improve with the length of time of smoking cessation

(171). Tobacco smoke contains over 4000 potential chemicals

including nicotine (172). Tobacco smoke clearly enhances the

risk of periodontitis but its mechanisms have not been firmly

established. However, there are several plausible mechanisms

that may occur concurrently.

Cigarette smoke increases bone resorption, which may be

due to a number of factors One involves the direct effect of

smoke components on osteoclasts. Cigarette smoke exposure

increases alveolar bone remodeling and osteoclastogenesis (173).

The increase in osteoclasts can be explained mechanistically due

to smoke-induced down-regulation of the caspase 3 pathway in

these cells. In addition, cigarette smoke affects osteoclast-

precursors so that they are predisposed to form osteoclasts

(173). Long term smokers have increased oxidative stress that

enhances osteoclast formation and survival. This may be due to

increased production of ROS and reduced expression of

antioxidants (174). Smoking may also promote bone

resorption by increasing the RANKL/OPG ratio (172, 175,

176). However, the effect of tobacco smoke on cytokine levels

has been inconclusive (171, 177, 178).

Another mechanism that may come into play is the impact

of tobacco smoking on down-regulating the reparative capacity

of fibroblasts, periodontal ligament cells, osteoblasts and

cementoblasts to a bacteria/inflammation stimulated injury of

periodontal tissues (179). Periodontal ligament fibroblasts

(PDLFs) display reduced cell viability, proliferation and

migration with increasing concentrations of cigarette smoke

extract (180). Smoking promotes osteoblasts apoptosis and

may cause uncoupling to increase bone loss. Exposure to

smoke in mice decreases the number of osteoblast progenitors

and reduces osteoblast differentiation (181, 182). In addition,

sclerostin and DKK1 are upregulated in periodontitis patients

with smoking, both of which inhibit bone formation by

negatively impacting the Wnt pathway (183). This finding is

consistent with observations that smoking reduces bone

formation in fracture healing (184, 185). Thus, smoking may
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reduce repair of gingiva, PDL and bone, creating greater loss of

attachment and reduced bone coupling to enhance net bone loss.

Smoking may also alter the bacterial composition. Smokers

with periodontitis have increased bacterial anaerobes compared

to non-smokers (186). They include anaerobic bacteria such as

Fusobacterium, Treponema, P. gingivalis, Tannerella forsythia

and other pathogenic bacteria (167). The shift in bacteria may

contribute to increased risk and severity of periodontitis. In

contrast to tobacco-based cigarettes, e-cigarettes appear to be

less pathogenic in promoting periodontal disease (185).

However, e-cigarettes are not harmless as they increase the

representation of pathogens in the oral microbiota and

increase proinflammatory signals (187).

Taken as a whole, there is strong epidemiologic evidence that

smoking negatively impacts periodontitis. Although there is no

clear mechanism there are several that are plausible including

increased bone resorption due to the impact of smoke on

osteoclasts, decreased repair capacity including coupled bone

formation, changes in the effectiveness of the immune response

and increased oxidative stress and microbial changes that

increase pathogenicity.
The effect of aging on
periodontal disease

Periodontitis and osteoporosis are linked to both

inflammation and aging. Although aging is not a direct cause

of periodontitis, aging can affect the periodontal environment to

potentially affect bone resorption and bone coupling. Enhanced

cytokine production that stimulates osteoclastogenesis and

inhibits osteoblastic bone formation are increased with aging.

The increased tendency toward inflammation may be due to

increased levels of oxidative stress, reduced antioxidants, cellular

senescence and accumulation of advanced glycation end

products (188). Osteoporosis and periodontitis are both

associated with bone resorption. NF-kB related cytokines play

a central role in periodontitis and is increased with aging, which

may be linked to increased inflammation associated with aging.

As discussed above, increased activation of NF-kB in osteoblasts

lineage cells increases RANKL expression and inhibits bone

formation (188). Aging reduces gingival fibroblast proliferation

and migration, fiber density, organic matrix production, and

cellular mitotic activity in the periodontal ligament. Meanwhile,

aging increases mRNA levels of MMP-2, MMP-8, which

promote extracellular matrix degradation (189).

Aging may affect periodontal tissues by altering the host

response. There is reduced effectiveness of the adaptive immune

response with aging (189). Aged mice have reduced recruitment of

dendritic cells in response to bacterial challenge, which may be due

to reduced DC migration caused by high glucose levels or high

levels of advanced glycation end products (190). Reduced DC
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activation of the adaptive immune response could contribute to an

increased susceptibility to bacterial challenge. This is consistent with

observations that P. gingivalis-induced dysbiosis has a greater

impact on aged versus young mice (190). While aged mice

appear to have a reduced adaptive immune response to bacterial

challenge, aging has been shown to increase the innate immune

response to P. gingivalis. Old mice have increased periodontal bone

loss with higher levels of IL-1b, TNF, TLR2 and complement C5a

receptors (191, 192). Reduced adaptive immunity but increased

innate immunity may increase the risk and severity of periodontal

disease. Aging also impacts the oral microbiota. A positive

correlation between age and the presence of Fusobacterium, P.

gingivalis, F. alocis, Pasteurellaceae, and Prevotella has been reported

(192). It has been suggested that increased inflammation due to

factors such as TNF, causes a shift in the oral microbiota that

facilitates bacterial dissemination, which in turn may accelerate

aging processes (193).
Conclusion

Periodontal disease is thought to be induced by a combined

innate and adaptive immune response to a bacterial dysbiosis

that affects the gingiva. Inflammation is initiated by resident cells

including epithelial cells and fibroblasts, which recruit immune

cells. The enhanced inflammatory state triggers the expression of

cytokines that induce osteoclastogenesis and bone resorption.

Most importantly, inflammation leads to periodontitis by

interfering with the proliferation of osteoblast progenitors,

inhibiting osteoblast differentiation and reducing the

production of osteoid matrix inhibiting repair of an osteolytic

lesion. Similarly, systemic conditions that affect local

inflammation in the periodontium may influence bone

resorption and bone coupling, leading to greater periodontitis.

The inflammation may also induce an amplification loop in

which the bacterial composition becomes more pathogenic

because of changes in substrate availability linked to the

inflammatory state of the gingival tissue. Thus, all of the cells

present in the periodontal tissues are likely to participate one
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way or the other in the development of gingival inflammation

that can transition to periodontitis and loss of supporting bone

for the teeth. New advances in in single cell RNA-seq and spatial

transcriptomics along with enhanced bioinformatic analysis is

likely to shed new light on these processes. The greater sharing of

databases amongst researchers is a positive development that

should further accelerate the process of discovery.
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Dobrowolska A, Krela-Kaźmierczak I. Impact of cigarette smoking on the risk of
osteoporosis in inflammatory bowel diseases. J Clin Med (2021) 10(7):1515.
doi: 10.3390/jcm10071515

177. Leite FRM, Nascimento GG, Baake S, Pedersen LD, Scheutz F, López R.
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