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Abstract: Nasopharyngeal carcinoma (NPC) is a malignant tumour of the head and neck affecting
localised regions of the world, with the highest rates described in Southeast Asia, Northern Africa,
and Greenland. Its high morbidity rate is linked to both late-stage diagnosis and unresponsiveness
to conventional anti-cancer treatments. Multiple aetiological factors have been described including
environmental factors, genetics, and viral factors (Epstein Barr Virus, EBV), making NPC treatment
that much more complex. The most common forms of NPCs are those that originate from the
epithelial tissue lining the nasopharynx and are often linked to EBV infection. Indeed, they represent
75–95% of NPCs in the low-risk populations and almost 100% of NPCs in high-risk populations.
Although conventional surgery has been improved with nasopharyngectomy’s being carried out
using more sophisticated surgical equipment for better tumour resection, recent findings in the
tumour microenvironment have led to novel treatment options including immunotherapies and
photodynamic therapy, able to target the tumour and improve the immune system. This review
provides an update on the disease’s aetiology and the future of NPC treatments with a focus on
therapies activating T cell immunity.
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1. Nasopharyngeal Carcinoma

Nasopharyngeal carcinoma (NPC) is a malignant tumour of the head and neck that originates
from the epithelial tissue lining the nasopharynx. Every year, over 80,000 new cases of NPC are
diagnosed and 50,000 NPC-related deaths are recorded worldwide [1]. NPC typically develops on
the mucosa that lines the nasopharynx epithelium. The most common forms of NPCs are those that
originate from the epithelial tissue lining the nasopharynx. Indeed, they represent 75–95% of NPCs in
the low-risk populations and almost 100% of NPCs in high-risk populations [2].

Based on the current World Health Organisation (WHO) pathologic classification, NPCs are
grouped into keratinising squamous cell carcinoma (KSCC) and non-keratinising carcinoma.
The latter group is further subdivided into non-keratinising differentiated carcinoma (NKDC) and
non-keratinising undifferentiated carcinoma (NKUC) [3,4].

Patient’s five-year survival rate remains low as it is often diagnosed at late stages
(30–40%) [1,5]. Although radiosensitive, new therapies are needed to lower the mortality associated
to NPC. New anti-tumour treatments include innovative surgical methods, immunotherapies,
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and photodynamic therapy. In this sense, the authorisations to market immunotherapies used
alone or in combination have recently been approved in tumours of the ortho-rhino-laryngology sphere.
The main objectives of this review are to provide update on the disease’s aetiology and the future of
NPC treatments.

2. NPC Epidemiology

In most of the world, NPC is a rare disease affecting fewer than 1 out of 100,000 people per year.
Nevertheless, some regions or populations show a higher incidence of NPC. For instance, NPC has a
rare incidence of <1/100,000 among Caucasians and in Europe. Some parts of South China, notably
Guangdong and Hong Kong, have the highest levels of incidence in the world (15–50/100,000) [6].
The rest of Southeastern China has an intermediate incidence similar to Indonesia and Vietnam
(3–8/100,000 people). It is noteworthy that Chinese people who immigrate to North America still show
a higher NPC incidence than non-Chinese North Americans. Nonetheless, a decrease in NPC rates
has been observed among successive generations of Southern Chinese populations living in low-risk
areas such as the United States [7] and Australia [8]. Some North African countries also have a high
incidence of NPC, notably Tunisia, Libya, Algeria, and Morocco (3–8/100,000). Additionally, NPC is
significantly more common in Arctic regions such as Greenland and Alaska with an incidence of
3–8/100,000, mostly in people who have Inuit or Aleut heritage [7].

Interestingly, it has been described that men are three times more likely to develop NPC than
women [8]. It was also found that, in low-risk groups, the incidence increases with age, which is the
usual distribution risk for epithelial cancers. However, in the moderate-risk and high-risk populations,
there is a peak of incidence, respectively, at young adulthood and at 45–54 years old followed by a
decline in incidence at older age. It is thought that the early-age peak is due to early-life exposure to
aetiologic factors that vary between cultures [7].

3. NPC Aetiology

3.1. Genetic Factors

Similar to all cancers, NPC is multifactorial and is caused by a number of etiologic factors.
Other than its clear association to the Epstein-Barr virus (EBV), some environmental and genetic factors
have been linked to higher risks of developing NPC.

As mentioned above, although Chinese people who migrate outside of China show a lower
NPC-incidence, they still have an increased risk in comparison to the average population. This key
information confirms that environment and genetic factors both contribute to the emergence of NPC.
Indeed, families with many members developing NPC have been studied, yet there are no clear genetic
markers that fully elucidate the seemingly strong predisposition for NPC in these cases [9]. Studies of
the HLA locus have led to understand it is important in NPC carcinogenesis. Some specific HLA
haplotypes (A2, B17 and Bw46) show higher risks of NPC [10], whereas other haplotypes such as A31,
B13, B27, B39 and B55 seemingly protect the person from NPC [11]. Moreover, now that the technology
is sufficiently advanced, genome-wide searches for other susceptibility loci have revealed chromosome
3p21 [12] as well as the D4S405 and D4S3002 markers on chromosome 4 [13].

Another reported susceptibility locus for NPC is the TERT/CLPTM1L-encoding region. A 2016
meta-analysis study carried out on over 8000 people of Chinese descent identified that a variation in
the tert/clptm1l locus (Chr 5p15.33) was linked to an increased NPC risk [14]. Indeed, the telomerase
reverse transcriptase (TERT) is a subunit of the telomerase complex. A default in telomerase activity is
associated to many cancers, including NPC [15]. EBV oncoprotein, latent membrane protein 1 (LMP1),
has also been linked to abnormally long telomerases in NPC cell lines [16]. Additionally, cleft-lip and
palate transmembrane protein-1-like (CLPTM1L) is known to be involved in Ras-dependent oncogenic
transformation in lung cancer [17]. Thus, further studies are still needed to determine the exact
mutation site and underlying mechanisms that contribute to NPC onset.
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Other loci already identified in carcinogenesis are studied for their potential involvement in NPC.
When deleted, the glutathione S-transferase M1 (gstm1) is linked to increased NPC susceptibility in all
high-risk populations [18]. Studies have also shown mutated genes encoding for cytokines or their
promoters such as IL-1α [19], IL-16 [20], and IL-18 [21,22] can increase the risk on NPC.

Finally, it is well described that men are 2–3 times more likely to develop NPC than women.
Thus, the involvement of X chromosome variations has been hypothesized. However, the study of
the X-chromosome is generally left out in genome studies, as it is far more complex to study than
autologous chromosomes. The X-inactivation phenomenon in females helps balance out the allele
dosage between genders and silences one of the two copies of the gene [23]. This makes studying
potential susceptibility loci on sexual chromosomes very difficult. Nonetheless, the difference in
NPC risk observed between genders could also be explained by the culturally unequal exposure to
environmental contributing factors.

3.2. Environmental Factors

Dietary habits were first put forward as an etiological factor for NPC by John Ho [24]. He suggested
that prolonged and repetitive consumption of Cantonese-style salted fish contributed to NPC onset.
Indeed, this was later confirmed in a study on rats, as Cantonese-style salted fish enhanced nasal cavity
carcinomas and NPC [25–27]. It was further discovered that this food contains nitrosamines and their
precursors that are highly carcinogenic [28,29] and contain EBV-activating factors [30]. The same result
was also found in the salted fish consumed in Greenland [30,31]. Likewise, high incidence rates in
North African countries where nitrosamines/precursors and EBV-activating substances were found in
salt-preserved foods such as harissa, qaddid and touklia [30–33].

The risk of developing cancer in the upper respiratory tract is commonly linked to smoking
cigarettes [34]. However, studies have been inconsistent regarding the impact of smoking on NPC
incidence [35–38]. As the nasopharynx traps primarily medium-size particles (5–10 µm), maybe the
nasopharynx epithelium is less sensitive to cigarette smoke-induced carcinogenesis. However,
studies carried out on British, North American and Chinese workers who are regularly exposed
to coal combustion smoke and wood dust showed greater risks of NPC [37,39–42]. Moreover,
alcohol consumption was not initially thought to contribute to NPC [35,38], but after re-evaluation it
was concluded that extensive use of alcohol significantly increases NPC risks [43,44].

3.3. Viral Factors: Epstein-Barr Virus

NPC is widely recognised as an EBV-associated malignancy. EBV is part of the Gammaherpesvirinae
family and is known as Human Herpes Virus-4 (HHV-4). As with all member of this family, it is
a double-stranded DNA virus containing 85 genes found in the nucleoid. The nucleus-like region
is bound by an icosahedral nucleocapsid that measures 100–120 nm in diameter and is made up
of 162 capsomeres. The space between the nucleocapsid and the outer envelope is lined with the
tegument, a protein-rich matrix. This envelope contains proteins and surface glycoprotein projections
that originate from the cell’s nuclear membrane. The projections help the virus bind to the target cell.

Nonetheless, as EBV infects most of the world’s population, it was hypothesized that certain
strains of EBV were responsible for specific NPC endemic regions. Indeed, some EBV variants can be
significantly correlated with high- incidence of NPC in endemic regions [45,46]. Feng found that a
single nucleotide polymorphism in the EBV genome (locus 155391: G>A) can be linked to increased
NPC susceptibility in Southern China [47]. Furthermore, infection with multiple strains of EBV has also
been described using heteroduplexes [48]. Evidence shows a selective presence of different EBV strains
in the saliva and peripheral blood of the same patient [49]. This variation is thought to occur during
the high replication phase of the virus. Different strains show varying expressions of EBV nuclear
antigen-1 (EBNA1) which might affect its recognition by the host’s immune system [50]. This brings
an evolutionary advantage to EBV as this diversity increases the number of targets for the host’s cell
making its eradication much more strenuous.
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The Epstein-Barr virus latently infects more than 90% of the world’s adult human population
and its association with NPC is thought to be mediated by an interplay of environmental (dietary,
smoking, co-infectious) factors and genetic predisposition (high-risk HLA allotypes). In NPC, the EBV
virus expresses a type II latency program and is present in virtually all poorly differentiated and
undifferentiated non-keratinising (WHO type II and III) NPCs.

EBV-associated NPC expresses a type II latency program, and tumour cells typically express the
latent membrane proteins 1, 2A, and 2B (LMP1, LMP2A, and LMP2B) and EBNA1, all of which have
limited immunogenicity. In addition, several EBV non-coding RNAs primarily EBER1 and EBER2,
and BamHI-A rightward transcripts (BARTs) and BamHI-A rightward frame 1 (BARF1) of EBV are
expressed abundantly and are detected consistently in NPC [51–56].

EBNA1 is frequently expressed in NPC and is a dominant target for CD4 T cells. LMP1 and LMP2
are expressed in approximately 50% of all NPC tumours. Although LMP1 is poorly immunogenic,
LMP2 proteins are sufficiently more immunogenic hence they are now putative targets for EBV-directed
immunotherapy, such as cytotoxic T cells [52,57–59]. NPC occurs in immunocompetent individuals,
and it is likely that immunological pressure results in the expression of a limited array of EBV antigens.
These proteins maintain cellular transformation in malignant cells and their poor immunogenicity is
expected to play a role in promoting immune escape by EBV+ malignant cells [60,61]. EBNA1 can be
detected in all EBV-associated malignancies including NPC [59].

NPC-related EBV antigens LMP1, LMP2A/B, EBNA1, EBER and EBV-encoded RNA each have
distinct effects on growth, differentiation and the host’s immune response. Collectively, they likely
contribute to the development of NPC by promoting cell transformation and angiogenesis, inhibition of
apoptosis, induction of stem-cell-like phenotype and enhancement of cell motility. Pressure-driven
selective evolution constantly fosters the emergence of new EBV variants [62,63]. These may be more
oncogenic and less immunogenic than the parental strain, with, for example, a higher tropism for
epithelial cells rather than B cells, suggesting that some EBV strains may contain an increased NPC
risk [64].

It is important to note that NPC, while associated with EBV and the expression EBV proteins,
is an entity that encompasses a broad range of other distinct molecular aberrations that may also be
targets for immunotherapies [1].

4. NPC Classification

Before treating the patient, the stage of the cancer must be determined using the AJCC Cancer
Staging Method. This classification system takes into consideration three main factors: (T) the
characteristics of the main tumour mass; (N) the status of cancer spread in the lymph nodes (LNs);
and (M) the status of metastasis outside the head and neck. The patient is assessed using the chart in
Table 1.

Table 1. TNM classification of NPC (http://headandneckcancer.org).

Characteristics

T Stage

T1
The tumour is within the nasopharynx, or it has grown into the oropharynx and/or

nasal cavity, but no extension into the parapharyngeal space (soft tissue space
behind and to the side of the pharynx).

T2 The tumour extends into the parapharyngeal space.

T3 The tumour has grown into the bone of the skull base and/or the sinuses.

T4
The tumour has grown into the skull and/or involves the cranial nerves,

hypopharynx and eye socket. Alternatively, it has extended to the infratemporal
fossa or masticator space.

http://headandneckcancer.org
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Table 1. Cont.

Characteristics

N Stage

N0 No evidence of cancer spread to LNs 1 in the neck or retropharyngeal space.

N1
Presence of cancer in the LNs on one side of the neck (6 cm or less in size) and above

the clavicle (supraclavicular fossa). The LNs at this stage should be found in the
retropharyngeal space (6 cm or less in size, one side or both).

N2 Presence of cancer in the LNs on both sides of the neck (biggest LN is 6 cm or less) and
above the supraclavicular fossa.

N3a Presence of a LN with cancer bigger than 6 cm.

N3b Presence of a LN of any size that is far down the neck, just above the clavicle.

M Stage
M0 No evidence of distant spread outside the head and neck.

M1 Evidence of spread outside the head and neck.
1 LNs, Lymph Nodes.

5. NPC Microenvironment

As a lymphoepithelioma, NPC is highly linked to the host’s immune system. It has been shown
that EBV favours carcinogenesis by evading the immune response [65]. Although the patient shows
a strong antiviral response coupled with a high leukocyte infiltration of the tumour, this is still not
enough to fight the tumour. This immune infiltrate is mainly made up of tumour-infiltrating T cells
(TILs), B cells, dendritic cells, monocytes, and eosinophils. It has been found that the infiltrating
immune cells are led to the tumour site by chemokine-dependant mechanisms [66–68]. Indeed, it is
now known that an immunosuppressive tumour microenvironment gives immunological space for the
tumour to grow. This local tolerance is mediated by cytokines and regulatory immune cells that are
diverted from their original purpose [68–70]. It was also discovered that tumour-derived exosomes
contribute to maintaining tumour immune tolerance by favouring regulatory T cells (Tregs) [67],
among other mechanisms [71]. EBV thrives on this immunosuppressive tumour microenvironment
and its key contributors are viral proteins such as EBNA1 and LMP1 [72,73].

6. NPC Conventional Treatments

Due to the deep-seated localisation of NPC, surgery to remove the tumour is generally not
applicable. However, nasopharyngectomy is a possible treatment for locally recurrent NPC. Different
surgical methods exist including the maxillary swing, midface degloving, transpalatal, transmaxillary
and trans-infratemporal fossa approaches, but all of these surgeries remains invasive [74]. In recent
years, there has been much progress in minimally invasive surgical techniques. Endoscopic
nasopharyngectomy was the first technique used for the resection of early stage recurrences and has
shown promising results [75]. Indeed, a study including 91 patients at different stages (30 rT1, 13 rT2,
29 rT3 and 19 rT4) having undergone an endoscopic nasopharyngectomy (ENPG) showed good results
with an overall survival rate at two and five years of 64.8% and 38.3%, respectively, and disease-free
survival rates of 57.5% and 30.2%, respectively. At 109 months follow-up of the 91 patients, 42 were
disease-free, 10 were alive with stable disease and 30 had died [75].

ENPG techniques have also been used in later recurrences including rT3 and rT4 diseases [76].
In one study, 15 patients with recurrent rT3 or rT4 NPC underwent ENPG. Overall survival at two years,
disease-free survival and disease-specific survival were 66.7%, 40% and 73.3%, respectively. In addition,
no post-operative complications were observed [76]. Finally, a retrospective study including a cohort of
144 patients with rT1 to rT3 tumours compared the efficiency of ENPG with that of intensity-modulated
radiotherapy (IMRT). This study showed ENPG was more effective than IMRT for maximising five-year
survival (77.1% vs. 55.5%), preserving quality of life and minimising complications following treatment
(12.5% vs. 65.3%) [77].
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Another minimally invasive approach is the use of robotics in nasopharyngectomy. Tsang et al.
used this technique with the da Vinci S system (Intuitive Surgical Inc., Sunnyvale, CA, USA) on a cohort
of twelve patients [78]. At the end of this treatment, overall survival at two years and disease-free
survival were 83% and 61%, respectively, showing good efficiency. However, this technique often
requires splitting the palate in an irradiated field, which has hindered its used. Other, more flexible
robotic systems have emerged to overcome these problems. For instance, the use of the Flex® system
(Medrobotics, Raynham, MA, USA) in preclinical studies allowed a transoral palate-sparing approach
to the nasopharynx [79].

On the other hand, a craniofacial resection has been proposed for the removal of advanced rT3 and
rT4 recurrent tumours [80]. A monocentric study on 28 patients was performed using this technique.
The overall survival at five years was 52% and 13 patients had a microscopically clear resection margin.
Nonetheless, physical dysfunctions were reported in some patients including swallowing and speech
impairment. Thus, these new minimally invasive surgical approaches provide novel treatment options
for NPC patients. However, some can leave side effects and have a significant impact on patient’s
quality of life.

When diagnosed at early stages, NPC is classically treated with either radiotherapy and/or
chemotherapy with over 90% five-year survival rate [81]. In a Phase III clinical trial (INT-0099), it was
found that coupling fluorouracil (5-FU) and cisplatin chemotherapy with radiotherapy (CRT) increased
overall survival by 31% [82]. However, if the tumour has locally spread, the five-year survival rate
falls to 50–70% and even lower in cases of distant metastases. Although palliative chemotherapy
does have an initial 80% response rate, the disease eventually stops responding to treatment after
12–18 months [81]. Unfortunately, patients that no longer benefit from CRT find themselves at a
therapeutic impasse. However, efforts are currently underway to develop new treatments.

7. NPC Novel Therapies

7.1. Targeted Therapies

Targeted therapies were being tested for all types of cancers at the turn of the century.
These molecular agents target the increased cell growth and resistance to cell death attributed
to tumour cells. Monoclonal antibodies are used to target the EGFR pathway and block multiple
key effector Tyrosine-kinases. In lung cancer, they are now the gold standard treatment for patients.
However, clinical trials have shown only modest advantages for NPC patients. Major toxic side-effects
were recorded including some cases of Grade 5 tumour haemorrhaging with pazopanib [83] and
sunitinib [84] leading to the premature end of this last trial. Thus, the multi-kinase inhibitors’ lack of
effectiveness explains why they are not used for the treatment of NPC at this day.

7.2. Immunotherapies

One of the main characteristics of NPC is the presence of a massive leukocyte infiltrate within
the primary tumour. The latter consists of tumour-infiltrating T cells (TILs), B cells, dendritic cells,
macrophages, monocytes, and eosinophils whose recruitment is facilitated by the production of
inflammatory cytokines by tumour cells [68,85]. Cytokines such as IL-1α [85] and chemokines
(MIP-1α) [68] by tumour and immune cells is particularly involved in the recruitment of immune
cells at the tumour site. Moreover, it was observed that local immunosuppression was mediated by
both immunosuppressive cytokines, such as IL-10, and regulatory cells. Among these regulatory cells,
the presence of Tregs in TILs has been described in patients inhibiting the effector T cell response [86].
It was also discovered that EBV proteins play a role in local immunosuppression, notably LMP1,
which promotes the expansion of myeloid derived suppressive cells (MDSCs) [87].

Figure 1 summarises the immune microenvironment within NPC. This figure, inspired by
Tsang et al. [88], shows the presence of multiple immune cells and cytokines in the tumour
microenvironment (TME) of NPC. Many proinflammatory cytokines including MIP1-α, MIP3-α
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(CCL20), interferon (IFN)-γ, interleukin (IL)-6, GM-CSF (Granulocyte-macrophage colony-stimulating
factor), IL-1-α and IL1-β are present in the TME. MIP3-α is produced by the NPC cells and is a
chemo-attractant for lymphocytes and dendritic cells through CCR6. IL1-α, IL1-β, IL-6 and GM-CSF
are also produced by NPC cells. TGF-β and IL-10 are important immunosuppressive cytokines that
promote immune evasion for NPC cells by suppressing the proliferation and activity of tumour
infiltrating leucocytes. NPC cells release massive numbers of exosomes to evade immune detection
(Figure 1). LMP1, Galectin 9 and CCL20 were found in these exosomes. NPC exosomes induced
the apoptosis of effector T cell. NPC-derived exosomes can also recruit Tregs through CCL20 to
promote their suppressive activity and induce the conversion of conventional T cells into Tregs. Finally,
LMP1-mediated metabolic reprogramming of NPC cells has been shown to increase the release of
IL1-β, IL-6 and GM-CSF in the TME to induce the expansion of MDSCs, which in turn promotes
immune suppression.

The majority of these components participate in the establishment of NPC immunosuppressive
microenvironment, protecting it from the host’s immune response. Given the strong
immunosuppressive TME and the EBV-linked nature of NPC, when the first immunotherapies
were tested in clinical trials, NPC posed as a good candidate for this novel treatment. Immunotherapy
engulfs many types of approaches, e.g. EBV vaccines, adoptive immune cell therapy and immune
checkpoint inhibitors [1].
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Figure 1. Nasopharyngeal Carcinoma immune microenvironment (inspired by Tsang et al. [88]).
This figure illustrates the presence of multiple immune cells and cytokines in the tumour
microenvironment (TME) of NPC. Many proinflammatory cytokines including MIP1-α, MIP3-α
(CCL20), interferon (IFN)-γ, interleukin (IL)-6, GM-CSF (Granulocyte-macrophage colony-stimulating
factor), IL-1-α and IL1-β are present in the TME. MIP3-α is produced by the NPC cells and is a
chemo-attractant for lymphocytes and dendritic cells through CCR6. IL1-α, IL1-β, IL-6 and GM-CSF
are also produced by NPC cells inducing a proinflammatory microenvironment. TGF-β and IL-10
are important immunosuppressive cytokines that promote the tumour’s immune evasion. NPC cells
release massive quantity of exosomes, which express Galectin 9 and CCL20 to avoid immune detection.
Finally, NPC cells increase the release of IL1-β, IL-6 and GM-CSF in the TEM to induce the expansion
of myeloid derived suppressive cells (MDSC), which in turn promotes immune suppression.

7.3. EBV-Based Strategies

We discussed above how viral proteins expressed in NPC contribute to its progression. The trategy
is to target essential viral proteins or RNAs to weaken the viral drivers of NPC [89,90].

It is well established that NPC expresses viral proteins, mainly EBNA1-3 and LMP1-2 that are
involved in carcinogenesis. However, evidence shows that the best strategies target multiple EBV
proteins simultaneously. Thus, an EBV vaccine would increase the availability of viral antigens and
ultimately enhance the EBV-specific immune response. Phase I studies using highly immunogenic
fusion protein expressed by a recombinant virus showed an increase in the EBV-T cell population [91],
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whereas loading modified LMP1-2 on autologous DCs did not lead to any change in EBV-T cell
numbers [92].

A peptide-based vaccine strategy was proposed by our team for EBV-associated malignancies
including NPC [93]. Six peptides derived from EBNA1, LMP1 and LMP2 with high affinity for major
histocompatibility complex class II molecules were selected. It was shown in healthy donors that
the EBV-peptides induce IFN-γ-secreting CD4+ T cells and are also recognised by CD4+ memory T
cells followed by IFN-γ and IL-2 secretion. Furthermore, cytotoxic EBV-specific CD4+ T-cell lines
were generated on original models expressing type II latency EBV antigens (EBV-transformed T
cells and monocytes) and also on lymphoblastoid cell lines (LCLs) expressing type III latency EBV
antigens. In addition, granzyme B enzyme-linked immunospot assays suggested that this cytotoxic
activity could be partly linked to the granule lytic pathway [93]. Strikingly, the authors showed that
neither phenotypical nor functional changes in CD4+CD25+CD127(Low)-regulatory T cells were
observed in response to the EBV-peptides. This avoids any future risk of aggravating a pre-existing
immunosuppressive microenvironment as reported in NPC.

Viral RNAs are also interesting targets as they are expressed in all EBV-latencies. However,
their exact functions remain elusive and their diversity makes them difficult targets. Nevertheless,
RNA-targeting drugs such as Ribavirin, a nucleoside inhibitor, is already being used to treat other viral
diseases such as Hepatitis C and viral haemorrhagi fever, although these are RNA viruses. To our
knowledge, no major developments of EBV-RNA-based treatments are currently underway.

7.4. Cell Therapy

Given the strong T-cell response mounted towards EBV, it seems logical to try to enhance such
an immune response. The two main leads use autologous dendritic cells or T cell that are enhanced
in vitro and then reinjected into the patients [93]. A Phase III trial currently underway aims to treat
patients with enhanced EBV-specific cytotoxic T cell after completing a first course of chemotherapy
(NCT02578641) [94]. Out of the 35 patients tested, 3 showed a complete response and 22 patients
partially responded. The overall response rate was 71.4% with five patients who did not require
further chemotherapy treatment. Another group used autologous T cells that were presented with
EBV antigens, notably LMP2, by autologous EBV+ LCLs. The cells obtained were indeed cytotoxic
CD3+ CD8+ T cells that showed specific killing of EBV-LCLs. After reinjection into the stage IV NPC
patients, 6 out of the 10 patients showed a control of disease progression (two with partial response
and four with stable disease). Moreover, the treatment was generally well tolerated with grade 1 and
2 toxicities observed in two patients [95]. The same group hypothesised that a lymphodepletion before
reinjecting the cells would help enhance the adoptive cell therapy. Unfortunately, this was not the case
as administering lymphodepleting chemotherapy beforehand did not improve clinical benefit [96].

Nevertheless, it is worth mentioning that, although cell therapy has shown promising results,
it remains very costly and technically difficult. Thus, other, cheaper and more accessible therapies are
also being developed.

7.5. Immunotherapy Targeting Checkpoint Inhibitors

Given that most key immune regulatory checkpoints are expressed in NPC cells, targeting them
using checkpoint inhibitors seems logical. Programmed death-1 (PD-1) is found on the surface of
activated B and T cells and is an inhibitory molecule that favours immune tolerance. PD-1 interacts with
members of the B7 family: PD-Ligand 1 (PD-L1) and PD-Ligand 2 (PD-L2) [97]. However, other immune
regulatory checkpoint molecules are also gaining interest including cytotoxic T lymphocyte-associated
protein 4 (CTLA-4) [98], which is expressed on activated T cells and blocks activation molecules
(CD80-CD86) found on antigen presenting cells. Indeed, it is even suggested that the expression
of PD-1, PD-L1 and CTLA-4 could be used as biomarkers for prognosis and to better stratify NPC
patients [99–102].

Table 2 summarises all the completed and ongoing clinical trials testing immunotherapy in NPC.
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Table 2. Summary of completed or ongoing clinical trials involving immunotherapy in NPC.

Phase Status Treatment Tested Patient Details Aim of the Study Reference

I Completed EBV-specific adoptive T cell
immunotherapy

28 relapsed or metastatic
NPC patients

To determine the safety of
EBV-based adoptive transfer

immunotherapy in NPC

NCT00431210
[103]

I Active, not
recruiting

EBV-specific T cells (2 antigens)
that have an extra T cell receptor

named DNT
± chemo lymphodepletion

beforehand (Cyclophosphamide
and fludarabine)

14 participants with
advanced NPC

To examine efficacy of EBV-specific
T cells in NPC patients and

determine if lymphodepleting
chemotherapy before T cell infusion

increases treatment efficacy

NCT02065362

I Recruiting CAR-T cells (recognise EpCAM) 30 NPC and breast cancer
patients

Determine if treatment is well
tolerated, the dosage and the

adverse effects
NCT02915445

I Completed Using two variants of LMP2
peptide vaccine

99 patients with a high-risk
of NPC recurrence

Evaluate the immunologic
effectiveness of peptide

immunisation in adjuvant settings
in NPC

NCT00078494

I/II Recruiting LMP1-CAR-T cells

20 patients with EBV
associated malignant

tumours (nasopharyngeal
neoplasms)

Evaluate safety and efficacy of
designed LMP1-CAR-T cells in the

treatment of EBV associated
malignant tumours.

NCT02980315

I/II Recruiting High-activity NKs 20 NPC patients with small
metastases

Assessment of the safety of high
activity NKs on NPC patients NCT03007836

I/II Completed Cancer stem cell (CSC) vaccine 40 metastatic NPC patients

To demonstrate that cytotoxic T
cells generated after CSC

vaccination are capable of specific
killing of CSCs and conferring

anti-tumour immunity

NCT02115958
[104]

II Active, not
recruiting

EBV-specific adoptive T cell
immunotherapy

20 relapsed or metastatic
NPC patients

To determine effectiveness and
safety of EBV-based adoptive

transfer immunotherapy in NPC

NCT00834093
[103]
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Table 2. Cont.

Phase Status Treatment Tested Patient Details Aim of the Study Reference

II Recruiting

Combinations of Dendritic cells
and Cytokine-induced Killer Cells

(DC-CIK) treatment in solid
tumours

200 patients with
treatment-refractory solid

tumours:
Colorectal cancer

Renal cell Carcinoma
Nasopharyngeal carcinoma

Lung cancer

Aim is to investigate the efficacy of
concurrent chemotherapy with
DC-CIK and CIK treatment in

patients with treatment-refractory
solid tumours

NCT03047525

II Recruiting Cisplatin and CRT ± TILs
116 patients with only

locoregionally advanced
high-risk NPC

The Phase I results showed that
TILs following CRT resulted in

sustained anti-tumour activity and
anti-EBV immune responses with

good tolerance

NCT02421640

II Recruiting (cisplatin) CRT ± nivolumab
40 NPC patients ranging
from low stage II to high

stage IVB

Establish how well nivolumab and
chemotherapy work to treat

advanced NPC
NCT03267498

II Not yet
recruiting Pembrolizumab

63 patients with detectable
levels of EBV DNA in
plasma after CRT. No

residual disease and/or
metastases

Examine efficacy and safety of
pembrolizumab on NPC patients NCT03544099

II Recruiting Ipilimumab and nivolumab 35 patients with advanced
NPC

Test a combination of ipilimumab
and nivolumab in EBV+ NPC NCT03097939

III Recruiting
Chemotherapy (Gemcitabine and

IV carboplatin) + autologous
EBV-specific cytotoxic T cells

330 participants with
advanced NPC

Assess the efficacy of CTL
following first line chemotherapy
in prolonging overall survival of

NPC patients

NCT02578641
Phase II

complete trial
[94]

III Recruiting Camrelizumab (PD-1 Antibody)
after chemoradiotherapy

400 patients with stage
III-IVA non-metastatic NPC

Investigate whether adjuvant PD-1
antibody treatment could improve

survival
NCT03427827

II Recruiting Nivolumab and ipilimumab Patients with rare tumours
including NPC

Evaluate the efficacy of a
combination of nivolumab and

ipilimumab on hindering tumour
cell growth

NCT02834013
[105]
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7.6. Photodynamic Therapy

Photodynamic therapy (PDT) is a new promising treatment for cancers. It involves the
administration of a photosensitiser, followed by a local illumination of tumour tissue with light
of a wavelength complementary to the absorption spectrum of the photosensitiser. The photosensitiser
produces reactive oxygen species (ROS) when activated by light. ROS’ in turn induce direct cytotoxicity
of tumour cells as well as indirect destruction of tumour cells through vascular damage [106]. It has
been reported that PDT increases the survival rate of NPC patients.

An initial study conducted by Lofgren et al. on recurrent or persistent forms of NPC was
designed to determine the efficacy of PDT in five patients who were unresponsive to radiotherapy [107].
Four patients were treated with a hematoporphyrin derivative at 2.5 mg/kg and one with potfimer
sodium. After PDT treatment, three patients were tumour-free at 51 and 60 months, another patient
had persistent disease and the last one had a recurrence six month later. This study showed the
efficiency of this new therapy in NPC previously treated with irradiation. However, a few side effects
were reported, significant headaches and minor problems of photosensitivity following sun exposure.
Shortly after, Tong et al. conducted a similar study on 12 patients treated with PDT for recurrent
NPC [108]. They underwent PDT with a hematoporphyrin derivative at 5 mg/kg and were exposed
to 200 J/cm2 light. All 12 patients responded to treatment, among who three remained disease-free
after 12 months and three others achieved useful palliation. The only complication observed was skin
hypersensitivity. An interesting study conducted by Li et al. was designed to evaluate the clinical
response of Photofrin PDT in patients with relapsed NPC. Thirty patients were divided into two
groups of either Photofrin PDT or chemotherapy. Six months after treatments, PDT showed better
local response and nasal cavity obstruction remission than chemotherapy [109].

Following these promising studies, other trials were carried out involving other photosensitisers.
For instance, Indrasari et al. reported the efficiency of Foscan® PDT in one patient with residual NPC
(T4N0M0) after failing to respond to chemotherapy and radiotherapy [110]. He was treated with
0.15 mg/kg of Foscan® before illumination. At the end of the therapy, a remarkable long-term response
was described with no tumour progression and no lymph node metastasis. The same team conducted
a similar study on 21 patients which showed that Foscan® PDT is effective in treating local failures of
NPC with a depth of less than 10 mm [111]. Nyst et al. reported 22 patients treatment with Foscan®

PDT and once again this treatment was well tolerated by patients and showed efficacy against residual
or recurrent NPC [112]. Similarly, Succo et al. studied six patients with recurrent or persistent NPC
who underwent Foscan® PDT [113]. All patients were treated with 0.15 mg/kg of Foscan® before
illumination. After the first PDT, two patients are disease-free at 38 and 71 months, one patient remains
disease-free after a second PDT treatment, another one is currently living with the disease and two
patients died. Temporary pain during swallowing was observed in all patients.

Moreover, the effects of other promising photosensitisers such as 5-aminolevulinic acid (ALA)
and its hexyl ester (ALA-H) were assessed on NPC cells [114]. Wu found that NPC tumour cells were
sensitive to both 5-ALA and ALA-H PDT. They induced apoptosis and necrosis of tumour cells as
well as an inhibition of the expression of matrix metalloproteinase-2, a marker for tumour metastasis.
Du et al. reported the potential of hypericin as a PDT tool in the treatment of NPC/HK1 tumour
cells [106]. They observed that hypericin appears to be a potent photosensitiser as it induced vascular
damage and direct tumour cells killing by necrosis. These new compounds are promising but have yet
to be tested in vivo before they can be used as a therapy.

Thus, all these studies tend to indicate that PDT has the potential to be an effective local treatment
for recurrent/persistent NPC with only side effects linked to photosensitivity.

Interestingly, it has been shown that PDT shuts down the tumour microvasculature and stimulates
the host’s immune system. In contrast to surgery, radiotherapy and chemotherapy that are mostly
immunosuppressive, PDT causes acute inflammation, expression of heat-shock proteins, invasion and
infiltration of the tumour by leukocytes and might increase the presentation of tumour-derived antigens
to T cells [115].
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Indeed, PDT produces tumour-cell destruction in the context of an acute inflammation that acts as
a “danger signal” to the innate immune system. Activation of the innate immune system increases the
priming of tumour-specific T lymphocytes that have the ability to recognise and destroy distant tumour
cells and, in addition, lead to the development of an immune memory that can prevent recurrence of
the cancer at a later time. PDT may also be successfully combined with immunomodulating strategies
that are capable of overcoming or bypassing the escape mechanisms employed by the progressing
tumour to evade immune attack [116].

As is well described, anti-cancer therapy is more successful when it can also induce an immunogenic
form of cancer cell death (ICD). Therefore, when developing new treatment strategies, it is extremely
important to choose methods that induce ICD and thereby activate an anti-tumour immune response
leading to the most effective destruction of tumour cells. A very interesting work analysed whether the
widely clinically used photosensitisers, photosens (PS) and photodithazine (PD), can induce ICD when
used PDT. Using dying cancer cells induced by PS-PDT or PD-PDT, the authors notably demonstrated
the efficient vaccination potential of ICD in vivo. Thus, their results identified PS and PD as novel ICD
inducers that could be effectively combined with PDT in cancer therapy [117].

Otherwise, a very recent investigation from our team has suggested that PDT, which is an effective
therapy in the treatment of pancreatic ductal adenocarcinoma (PDAC), also activates the immune
system and could be considered as a real adjuvant for anti-cancer vaccination. The authors developed a
new photosensitiser (PS-FOL/PS2) that is associated with an addressing molecule (folic acid) targeting
the folate receptor 1 (FOLR1) with a high affinity (published patent: WO2019 016397-A1, 24 January
2019). Folate specifically binds to FOLR1 which is expressed in 100% of PDACs or over-expressed in
30% of cases. Interestingly, they observed a significant increase in the proliferation of activated human
PBMCs and T cells when cultured with PDAC cell-conditioned media subjected to PS-FOL/PDT [118].

Moreover, in the context of squamous cell carcinoma, a very interesting study has shown that,
besides causing direct cytotoxic effects on illuminated tumour cells, PDT causes damage to the tumour
vasculature and induces the release of proinflammatory molecules. Indeed, pre-clinical and clinical
studies on squamous cell carcinoma have demonstrated that PDT can affect both the innate and
adaptive arms of the immune system. Besides stimulating tumour-specific cytotoxic T-cells capable
of destroying distant untreated tumour cells, PDT leads to the development of anti-tumour immune
memory. The immunological effects of PDT make the therapy more effective also when used for
treatment of bacterial infections, due to an enhanced infiltration of neutrophils into the infected regions
that seems to potentiate the outcome of the treatment [119].

In the field of NPC, an in vitro study suggested that PDT using Zn-BC-AM photosensitiser
might indirectly reduce tumour growth through the modulation of cytokine production. Indeed,
by examinating the effects of EBV infection on proinflammatory cytokines secretion by NPC cells after
Zn-BC-AM PDT, they showed that a light dose of 0.25–0.5 J/cm2 on Zn-BC-AM PDT-treated HK-1-EBV
cells induce a higher level of IL-1α and IL-1β secretion than the non-treated HK-1 cells. The production
of IL-1β appeared to be mediated via the IL-1β-converting enzyme (ICE)-independent pathway.
In contrast, the production of angiogenic IL-8 was downregulated in both HK-1 and HK-1-EBV cells
after Zn-BC-AM PDT [120].

The impact of PDT on tumour reduction through cytokines has also been confirmed by studying
patients with residual or recurrent NPC who had received PDTs between 2005 and 2011. Pre- and
post-test examination were used to test the hypothesis of the cytokines level difference before and after
PDTs. The authors described that PDT in NPC either residual or recurrence patients after receiving
radiation or in chemo-radiation therapy will yield a well-responding therapy, compared to those who
did not receive PDT, and inducing systemic anti-tumour response which was marked by the increased
level of immune-response cytokines [121].

Finally, a recent study has demonstrated in mice bearing CT26 tumours that vascular PDT with
redaporfin PS, using a low light dose delivered at a high fluence rate not only destroys the primary
tumour but also reduces the formation of metastasis, thus suggesting anti-tumour immunity. Indeed,
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this in vivo work characterised immune responses triggered by redaporfin-PDT and demonstrated that
vascular-PDT leads to a strong neutrophilia, systemic increase of IL-6, increased percentage of CD4+

and CD8+ T cells producing IFN-γ or CD69+ and increased CD4+/CD8+ T cell ratio. At the tumour
bed, T cell tumour infiltration disappeared after PDT but reappeared with a much higher incidence a
day later. In addition, they showed that the therapeutic effect of redaporfin-PDT is highly dependent
on neutrophils and CD8+ T cells but not on CD4+ T cells [122].

Arguably, major benefits might be achieved with immunostimulating approaches that induce
appropriate tissue-based inflammation. PDT and vascular-PDT in a proinflammatory regimen
achieved a successful transition from innate to adaptive anti-tumour immunity and transformed
the immunosuppressive tumour microenvironment into a more favourable homing for anti-tumour
immunity. This therapy may offer new opportunities to improve systemic NPC treatments.

8. Conclusions

When diagnosed at early stages, NPC is classically treated with radiotherapy and/or chemotherapy
(CRT) with over 90% five-year survival rate [81]. Unfortunately, patients that no longer respond to
CRT or have a late-stage diagnosis usually have a significantly lower overall survival rate. Hence the
latest surge in new treatment methods giving promising prospects for NPC care.

Considering the surgery option for NPC, endoscopic nasopharyngectomy was the first technique
used for the resection of early stage recurrences and has shown encouraging results [75]. Indeed,
several studies showed that this technique was more effective than IMRT for maximising the survival,
preserving quality of life and minimising complications following treatment [77]. Another minimally
invasive approach is the use of robotics in nasopharyngectomy. At the end of this treatment, overall
survival at two years and disease-free survival were improved and showed good efficiency. However,
this technique often requires splitting the palate in an irradiated field, which has hindered its used.
Other techniques such as a craniofacial resection have been proposed for the removal of advanced
recurrent tumours [80]. Nonetheless, major physical dysfunctions were reported in some patients
including swallowing and speech impairment. In conclusion, all these new minimally invasive surgical
approaches provide novel treatment options for NPC. However, some can have serious side effects
that have a significant impact on patient’s quality of life.

Regarding targeted therapies, clinical trials have shown only modest advantages for NPC
patients with also major toxic side-effects [83] leading to the premature stop of clinical trials. Thus,
targeted therapies are not currently used for the treatment of NPC.

Furthermore, when the first immunotherapies were tested in clinical trials, NPC posed as a
good candidate given the strong immunosuppressive tumour microenvironment and its EBV-linked
nature. Indeed, it is well established that NPC expresses viral proteins, mainly EBNA1-3 and LMP1-2,
that are involved in carcinogenesis. However, evidence shows that the best strategies are the ones that
simultaneously target multiple EBV proteins. Thus, an EBV vaccine would increase the availability
of viral antigens and ultimately enhance the EBV-specific immune response. Viral RNAs are also
interesting but elusive targets that have not yet pursued in upcoming NPC therapies.

Moreover, given the strong T-cell response mounted towards EBV, cell therapy protocols are of
great intertest. The two main leads either use autologous dendritic cells or T cell that are enhanced
in vitro and then reinjected into the patients [93]. Like all cell therapies, there are technical and financial
limits, but first studies show good efficacy with limited side effects.

Most key immune regulatory checkpoints are expressed in NPC cells which in part explains local
immune tolerance towards the tumour. Thus, testing immune checkpoint inhibitors in NPC was met
with high expectations. As the complex interplay of EBV and NPC continues to be unraveled, it is
likely that immunotherapeutic strategies will merge into mainstream clinical practice and offer durable
remissions in patients with advanced NPC who are this day incurable.

Finally, photodynamic therapy (PDT) is a new promising treatment for several cancers, including
NPC. Arguably, major benefits might be achieved with immunostimulating approaches that induce
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appropriate tissue-based inflammation. PDT and vascular-PDT in a proinflammatory regimen
achieved a successful transition from innate to adaptive anti-tumour immunity and transformed the
immunosuppressive TME into a more favourable homing for anti-tumour immunity. This therapy
may offer new opportunities to improve systemic NPC treatments.

In conclusion, there has recently been substantial progress in the understanding of NPC
biology. Thus, the search for compelling new diagnostic tools and treatments is gaining momentum.
The repertoire of treatment options is widening, resulting in lower morbidity rates for locally recurrent
NPC patients. Advances in therapeutics, namely immunotherapy and photodynamic therapy,
have shown promising results. With all these exciting recent advances, we are looking forward to
future studies, which will further improve our understanding of NPC and significantly improve the
current management of NPC patients.
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