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Ordered and chaotic superlattices have been identified in Nature that give rise

to a variety of colours reflected by the skin of various organisms. In particular,

organisms such as silvery fish possess superlattices that reflect a broad

range of light from the visible to the UV. Such superlattices have previously

been identified as ‘chaotic’, but we propose that apparent ‘chaotic’ natural

structures, which have been previously modelled as completely random struc-

tures, should have an underlying fractal geometry. Fractal geometry, often

described as the geometry of Nature, can be used to mimic structures

found in Nature, but deterministic fractals produce structures that are too ‘per-

fect’ to appear natural. Introducing variability into fractals produces structures

that appear more natural. We suggest that the ‘chaotic’ (purely random)

superlattices identified in Nature are more accurately modelled by multi-

generator fractals. Furthermore, we introduce fractal random Cantor bars as

a candidate for generating both ordered and ‘chaotic’ superlattices, such as

the ones found in silvery fish. A genetic algorithm is used to evolve optimal

fractal random Cantor bars with multiple generators targeting several desired

optical functions in the mid-infrared and the near-infrared. We present opti-

mized superlattices demonstrating broadband reflection as well as single

and multiple pass bands in the near-infrared regime.
1. Introduction
Fractal geometry, which was introduced by Mandelbrot in the 1970s, has been

called the ‘geometry of Nature’ because it helps us describe complex structures

found in Nature that are often irregular, wiggly, self-similar on multiple length

scales, and difficult to represent using conventional Euclidean geometry [1].

Fractals themselves lie at the interface between mathematics and Nature, where

finite approximations to infinitely repeating fractal geometries provide a powerful

mathematical tool for describing complex structures found in the natural world.

Just a few of many examples of fractals in Nature include objects such as trees,

rivers and shells. However, fractals have limitations in mimicking natural struc-

tures. For instance, fractal trees formed by using the same generator at every

stage of growth appear too regular to have been produced by Nature [2]. Such a

deterministic fractal tree would have a trunk and branches just like a normal tree,

but its branches would all be identical, whereas a tree found in Nature, while pos-

sessing a self-similar shape, also has variations throughout the tree. Our eyes are

able to spot the difference between the artificial structure and the legitimate item.

However, if a degree of variability is introduced into the fractal generation [3,4],

then the final result can appear very similar to trees found in Nature.

Superlattices, layers of homogeneous dielectric material that have con-

trasting refractive indices, have been identified in Nature in the skin of a

variety of organisms that give rise to the spectral and polarized scattering

of light off the organism [5–11]. Of particular interest is the variety of super-

lattice structures in Nature identified by Parker that give rise to broadband
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Figure 1. (a) Three ways found in Nature for achieving a broadband wavelength-independent reflector in a dielectric superlattice including three quarter-wave
stacks, a ‘chirped’ stack and a ‘chaotic’ stack, inspired by Parker [5]. (b) Organisms with broadband optical reflectivity. (Left) Gold chrysalis of the butterfly Euploea
core with ‘chirped’ superlattice [13]. (Top right) Ultraviolet photograph of a silvery fish with ‘chaotic’ superlattice [5]. (Bottom right) Gold beetle Anoplognathus
parvulus with ‘chirped’ superlattice [5]. (Online version in colour.)
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reflection, including tuned quarter-wave stacks, chirped and

‘chaotic’ multilayers, which are found in the herring, gold

beetle shells and certain silvery fish, respectively [5]. Figure 1a
illustrates these three types of superlattices found in Nature

that give rise to broadband reflectivity, and photographs of

several organisms with broadband reflectivity are shown in

figure 1b. According to Parker, the first two superlattice types

achieve broadband reflectivity by reflecting progressively smal-

ler wavelengths at increasing depths within the superlattice. For

instance, in the case of the tuned quarter wavelength stacks,

each stack would be tuned to a different colour of light, and

for the chirped superlattice, the decreasing layer thicknesses

reflect decreasing wavelengths of light. In both cases, this

leads to broadband reflectivity from the skin of the organism.

In the third case, the superlattice for the silvery fish is character-

ized by Parker as ‘chaotic’ with no underlying order to the

thicknesses of the lattice layers (i.e. they are modelled as

purely random). However, such ‘chaotic’ geometries found in

Nature may, in fact, arise from an underlying order that can

be mimicked through variable fractal geometry.

Such ‘chaotic’ or disordered multi-layer reflectors are pre-

sent in many animals, as indicated by the survey presented in

[7]. Stacks of alternating guanine crystals and cytoplasm with

random layer thicknesses occur within some silvery fish to

produce broadband reflectivity [7,8], whereas similar chaotic

stacks of protein platelets and cytoplasm occur within the iri-

dophores of cephalopods [7,9]. The models proposed for

these structures consist of normal or uniform distributions

for the thicknesses of each material, and the number of

layers typically found within the organisms [7]. Upon gener-

ating several hundred samples of chaotic stacks and

averaging their reflectivity, similar broadband reflectivity

was found to that which results from the actual organism

[7]. While this model is able to reproduce the broadband

reflectivity of the organism skin, in some cases, it ignores

thicker layers of cytoplasm which are present within the

skin, such as demonstrated by the ribbonfish [8].

Both these ordered and chaotic regions indicate that there

is a potential design space that can be explored using fractal

geometry. By introducing fractal-random structures [2], the

accessible design space is extended from completely
deterministic on the one hand to completely random on the

other hand. For example, random fractal trees with multiple

generators have been previously explored to help solve a

longstanding bandwidth limitation in antenna array design

[14–16]. In the past, periodic antenna arrays were typically

used, because they are well understood as well as easy to

model and build, but they also suffer from large grating

lobes for antenna element spacings larger than a half wave-

length when the main radiation beam is steered away from

broadside. Completely random arrays, on the other hand,

do not exhibit large grating lobes, but the sidelobe levels

are unacceptably high for antenna applications and must be

reduced via optimization. Random arrays are also difficult

to optimize because of the large number of parameters

involved in the optimization, but by employing multi-

generator fractal trees to simultaneously introduce variability

into the antenna array configuration and reduce the number

of optimization parameters, it was feasible to synthesize large

arrays using a customized genetic algorithm (GA) [14–17].

In his studies, Petko demonstrated large fractal random

antenna arrays with no grating lobes and relatively low side-

lobe levels for element spacings up to 20l, representing a

robust antenna array layout capable of operating over an

ultra-wide bandwidth [15].

While multi-generator fractal trees were well suited to

represent the arrangement of antenna elements in an array,

a more natural choice of a fractal geometry for representing

superlattices would be the Cantor bar, which is composed

of one-dimensional line segments. This class of fractals has

previously been studied as a basis for producing superlattices

[18], where deterministic Cantor bar superlattices were found

to have a characteristic, ordered structure and scattering spec-

tra with many peaks and nulls in the reflection. However, if

variability is introduced into the Cantor bar [4], then super-

lattices can be generated that appear less regular and more

natural. Such random fractal Cantor superlattices live in the

space between deterministic structures on the one hand and

purely random structures on the other hand. By controlling

the degree of variability in the placement of the generators,

the space between the two extremes of completely ordered

and completely random structures can be systematically
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Figure 2. (a) Deterministic Cantor bar fractal and corresponding superlattice. (b) Random fractal Cantor bar superlattice including three generators that are randomly
assigned throughout the fractal growth and corresponding superlattice. (Online version in colour.)
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explored. A GA is also used in order to evolve optimal fractal

random Cantor superlattices with varying degrees of structure

to possess specific filter functions, including a broadband

reflectivity and single or multiple passbands.
2. Cantor bar superlattices
In 1883, Georg Cantor proposed a one-dimensional fractal

that begins with a line segment from which segments are

removed at every stage of growth [4]. Figure 2a illustrates

the classic triadic Cantor bar, which has a gap size of 1/3

and deterministic growth. This one-dimensional fractal has

drawn the interest of the electromagnetics community for

its application to generating superlattices [18–22]. Jaggard

initially formed superlattices from the triadic Cantor bar by

replacing the line segments and gaps by two dielectric

materials with contrasting refractive indices and simulated

the scattering parameters at several stages of fractal growth

[19]. He found that as the number of stages increased the scat-

tering spectra became increasingly complex with many peaks

and valleys in the reflection and transmission coefficients.

Later, Jaggard & Jaggard [20] investigated the effect that

increasing the number of gaps in the generator had on the

superlattice scattering properties. More recently, Cantor bar

superlattices have been studied as waveguides for optical

light [21,22], optical filters [23,24] and light amplifiers [25].

Just as deterministic fractal trees determined from a single

generator do not appear to our eyes to be natural, determinis-

tic Cantor bar fractals are also unnaturally regular in shape.

In order to generate geometries that better mimic Nature,

variability can be introduced into the fractal growth process.

We propose to accomplish this by specifying more than one

generator to be employed in the growth of the fractal geome-

try. Each of the generators can be assigned during the fractal

growth according to a pre-specified pattern or in a random
fashion. Figure 2b illustrates such a random fractal Cantor

bar that employs three generators applied randomly through-

out the fractal growth. In this illustration, the generators have

a mixed number of gaps, with generators 0 and 1 inserting a

single gap into the previous line segment and generator 2

inserting two gaps into the previous line segment. The fractal

at stage 3 appears much less regular than its deterministic

counterpart shown in figure 2a. A superlattice defined by

the stage 3 multi-generator fractal, also shown in figure 2b,

appears as though it could be a chaotic superlattice, such as

the ones identified in the silvery fish skin. If the number

and variety of generators used in the random fractal is lim-

ited, then superlattices can be produced that span the space

between deterministic and random structures. For instance,

if, on the one hand, only a single generator is permitted to

be used in building a Cantor bar fractal, the resulting super-

lattice will be completely determined, whereas, at the other

extreme, randomly assigning generators from an infinite

pool of possible candidates would produce a superlattice

that is truly chaotic. Another illustration of how a variable

Cantor superlattice is well suited to represent the chaotic

stack found in the ribbonfish [8] is shown in figure 3. The rib-

bonfish skin has several stacks of guanine crystals and

cytoplasm that are separated by larger layers of cytoplasm,

as shown in figure 3a. A 19 mm portion of this superlattice

is illustrated in figure 3b and then approximated by a stage

5 variable Cantor superlattice with five generator gap sizes

given by gn ¼ f0.085, 0.16, 0.31, 0.46, 0.66g, where n indica-

tes the generator number, and gn is multiplied by the

length of the line segment to determine the gap length that

will be inserted into the line segment by the generator.

While the Cantor superlattice illustrated in figure 3c is only

an approximate representation of the ribbonfish skin, it is

able to capture the large lacunarity observed in the original

structure. This does not imply that Nature has optimized

the fish iridophore for broadband reflectance using a variable
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Figure 3. (a) Transmission electron microscopy (TEM) image showing a cross section of ribbonfish skin [8]. Scale bar, 5 mm. (b) Superlattice of cytoplasm and
guanine crystal layers matching the dashed red line in (a). (c) Five-stage Cantor bar approximating the superlattice in (b). (Online version in colour.)
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Cantor superlattice. However, the variable Cantor fractal has

the capability to produce structures that appear ordered, dis-

ordered or somewhere in between, and while the approach

presented here has been inspired by the ribbonfish irido-

phore, it is much more flexible and general such that it is

not limited to only those structures that Nature can produce.

Our goal in this study is to explore the space in between

deterministic and chaotic superlattices by evolving random

fractal Cantor bars that produce superlattices with desired

spectral properties.
3. Genetic algorithm synthesis of random fractal
Cantor superlattices

In order to exploit the multi-generator Cantor bar fractal to

generate superlattices with desired spectral properties, a

GA was employed to evolve the superlattice structure.

The GA is a robust stochastic optimizer that has been used

to solve a variety of challenging electromagnetic design

problems [17]. The GA is a popular optimizer within the elec-

tromagnetics community, because it is simple to implement

and capable of solving problems with many design par-

ameters. The GA itself is inspired by Nature as it emulates

the natural evolutionary process, so combining it with the

multi-generator fractal model allows us to not only mimic

the superlattice geometries identified in Nature, but also to

evolve optimum designs as would happen in Nature. The

operating principle of the GA comes from the Darwinian

notion of natural selection, where a population of design can-

didates competes for survival at each iteration of the

optimization process. The operation of the GA is illustrated

by a flowchart in figure 4a. Each population member has a

binary chromosome, or a string of bits, into which the

design parameters are encoded. At every iteration in the
design process, all population members are evaluated for fit-

ness and then ranked according to the individual member

fitness. Members with better fitness are selected for procrea-

tion via tournament selection and then mated by crossing

over their genetic data to produce two new offspring in the

next generation. Crossover is accomplished by randomly

selecting a point along the chromosome and then swapping

the data from both chromosomes after the crossover point to

produce two offspring that both contain genetic data from

the two parents. A mutation operator is also applied to the

new population members that randomly flips a small percen-

tage of bits in their chromosomes, so that new regions of the

parameter space are continually explored. The crossover and

mutation operations are illustrated in figure 4b.

Just as in natural selection, the genetic data from the fittest

population members are more likely to be passed on to sub-

sequent generations, so at each iteration the GA focuses its

search in the areas of the parameter space that appear more

promising in terms of design performance. Mutation intro-

duces new parameter variations that were not previously

present in the design pool. Elitism is also enforced in the

GA, which copies over the chromosome of the best perform-

ing member into the new generation, ensuring that the best

overall performance is always maintained or improved

throughout the optimization.

In order to optimize a multi-generator fractal Cantor bar

superlattice, the parameters that define the Cantor bar must

be encoded into the binary chromosome. For the Cantor bar,

this includes the description of each generator and also the gen-

erator assignment during the growth of the fractal. If only two

generators are used in the Cantor bar design, the placement can

be defined by a single binary digit, where ‘0’ and ‘1’ represent

generators 0 and 1, respectively. If the number of generators is

increased, then the number of bits for assigning each generator

must be increased accordingly. For problems with four
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generators, two bits are used to assign each generator. The gen-

erators themselves are defined by a single parameter indicating

the gap size, gn. Bounds are placed on gn in order to properly

limit the length of the line segments or gaps in the final stage of

the fractal, so that any fabrication considerations are met. For

optimizations with mixed gap generators, i.e. generators with

a different number of gaps, enough generator assignment bits

are included in the chromosome to account for all line seg-

ments assuming that the generator with the greatest number

of gaps is assigned to every node in the Cantor bar fractal.

The unused generator assignment bits in a particular chromo-

some are ignored. The remaining parameters to optimize for

the superlattice may include the permittivity of the constituent

dielectric materials, the order in which the materials appear in

the lattice, and the total thickness of the superlattice. Any real-

valued parameters, such as the generator gap sizes, per-

mittivities and superlattice thickness, are encoded as eight-bit

strings that represent 256 increments spanning the allowed

parameter ranges. The mapping of a binary chromosome,

offspring1, into its equivalent four-stage multi-generator

Cantor superlattice is illustrated in figure 4b, where the real-

valued gn parameter range is f0.25, 0.75g.
The cost for each design is determined by first building

the multi-generator Cantor superlattice from the parameters

encoded in the chromosome and then calculating the reflec-

tion and transmission coefficients from the superlattice

using an analytical solution for a one-dimensional dielectric

stack [12]. For each optimization, a target filter function is

specified in terms of stop and pass frequencies, where high

reflection is desired at stop frequencies and high transmission

is desired at pass frequencies. The cost is then calculated for

each design according to the following equation:

cost ¼
X

stopfreqs

ð1� jRj2Þ þ
X

passfreqs

ð1� jTj2Þ, ð3:1Þ
where R is the reflection coefficient and T is the transmission

coefficient. As the cost approaches zero, the superlattice

approaches perfect reflection at the stop frequencies and per-

fect transmission at the pass frequencies. The targeted

performance was 210 dB suppression in transmission and

reflection for the stop and pass frequencies, respectively.
4. Results and discussion
The multi-generator fractal Cantor superlattice synthesis tech-

nique presented here was developed with the objective of

imitating the broadband mirror behaviour of the silvery fish

skin. While the silvery fish is highly reflective over the

range from UV through visible wavelengths, similar filter

functions for the mid-infrared (mid-IR) and near-infrared

(near-IR) regimes, as defined by the 2–10 mm and 1–2 mm

wavelength ranges, respectively, were targeted where practi-

cal fabrication of the superlattices could be considered taking

advantage of the refractive index contrast between deposited

a-Si and SiO2 layers [26]. The first three superlattice examples

presented here are broadband mirrors for the mid-IR and

near-IR. Two multi-spectral examples for the near-IR

follow, which show that the multi-generator fractal Cantor

superlattice synthesis technique introduced, in this paper,

can be extended to a variety of desired filter functions.

In the first example, a superlattice composed of two theor-

etical materials is synthesized to have a broad mirror band in

the mid-IR over the range from 3 to 5 mm. Forty-one stop fre-

quencies were distributed uniformly over this range, so that

the GA would optimize for high reflection. The GA opti-

mized two single-gap generators and their assignments

within a four-stage multi-generator Cantor bar fractal. The

GA also optimized the permittivity of two theoretical

materials, with the first material having a permittivity in

the range from 1 to 4 and the second in the range from 5
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to 11. The total superlattice thickness could range from 20

to 80 mm. The gap sizes for both generators were permitted

to vary between 0.05 and 0.5. The GA optimized a population

of 32 members over 1000 generations, converging on the

random fractal superlattice shown in figure 5. Although the

cost typically stopped improving around 500 generations,

the GA was allowed to continue for 1000 generations to

ensure that it had converged. The total thickness for the opti-

mized superlattice is 38.4 mm, and the generator gap sizes are

g0 ¼ 0.148 and g1 ¼ 0.369. The generator assignment is indi-

cated in figure 5a. The optimized permittivities for the

theoretical materials are 1r1 ¼ 1.01 and 1r2 ¼ 11.0, indicating

that better superlattice performance was achieved by a

large difference in material permittivities. The simulated

reflection and transmission shown in figure 5b reveal

that the optimized superlattice has very high reflectivity

over the entire 3–5 mm range with no transmission peaks

above 210 dB.

For the following examples, practical design parameters

were imposed on the superlattice optimization. In the case

of the theoretical example, the permittivities for the materials

exhibited a large contrast. Thus, a-Si and SiO2 were chosen as

the materials for practical superlattice designs because they

have a large contrast in permittivity. Measured dispersive

permittivities of a-Si and SiO2 were used in the analytical

model for the superlattice and are approximately 11.6 and
2.0 in the bands of interest in the near-IR and mid-IR.

Figure 6 shows the measured dispersive permittivity for

a-Si and SiO2 over a wider band in the near-IR and mid-IR.

These practical superlattice designs are also placed on a

thick glass substrate. The intended fabrication procedure

is to form the superlattice layers by iteratively depositing

a-Si and SiO2. The minimum layer thickness is set to be

around 20 nm.

For the first a-Si and SiO2 design, the same cost function

was used as for the theoretical superlattice. However, the

total thickness range was limited to between 5 and 40 mm,

and instead of optimizing the permittivity for the two dielec-

tric materials, the GA optimized whether the line segments in

the Cantor bar would represent either a-Si or SiO2. After evol-

ving a population of 32 members for 1000 generations, the

GA converged to the multi-generator Cantor superlattice

shown in figure 7a with a total thickness of 27.9 mm and gen-

erator gap sizes g0 ¼ 0.495 and g1 ¼ 0.189. In the optimized

superlattice, the Cantor bar line segments are replaced by

a-Si, and the gaps are replaced by SiO2. The minimum layer

thickness in the structure is 220 nm, which is well above

the minimum for fabrication. The simulated transmission

and reflection for this design show a high reflectivity over the

entire optimized band with all transmission peaks suppressed

under 225 dB. Although the optimization was conducted at

normal incidence, the simulated scattering curves at 308 off-

normal incidence in figure 7c also show high reflectivity over

the entire 3–5 mm band for both transverse electric (TE) and

transverse magnetic (TM) polarizations, indicating that these

broadband reflectors could be useful for applications requiring

moderate angular insensitivity.

While the broadband mid-IR mirror met the goals for fab-

rication, the total thickness of the superlattice and number of

layers make fabrication challenging. In order to reduce the

total thickness and number of layers, several adjustments

were made to the optimization. In the next example, the

target mirror band is moved to the near-IR band from 1 to

1.6 mm. In the cost function, 36 stop frequencies are specified

covering this mirror band. The number of Cantor bar stages

is also reduced to three in order to reduce the number of

total layers by about half. Reducing the Cantor bar stages

decreases the flexibility the GA has in varying the layer thick-

ness in the final superlattice, so two additional generators are

included in the chromosome to allow for more flexibility

during the optimization. The gap size for all four generators
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was permitted to vary within the range from 0.02 to 0.36,

whereas the total superlattice thickness could range from

0.5 to 3 mm. Once again, the GA evolved a population of

32 members for 1000 generations to produce the superlattice

shown in figure 8a. The total thickness of 2.38 mm for this

structure is much less than the previous, mid-IR examples,

and the minimum layer thickness of 84 nm is well within

the fabrication target. The optimized generator gap sizes

are g0 ¼ 0.161, g1 ¼ 0.083, g2 ¼ 0.037 and g3 ¼ 0.075. Interest-

ingly, only three of the four generators are assigned to nodes

in the Cantor bar, indicating that the GA should be able to

find a good solution with fewer generators to optimize. In

the superlattice, the line segments and gaps are replaced by

SiO2 and a-Si, respectively. The final optimized structure

also appears approximately periodic with the a-Si layer thick-

nesses varying by 3.2%, indicating that the multi-generator

Cantor bar fractal can produce geometries that span a range

of appearances from nearly random to ordered. The simu-

lated reflection and transmission spectra shown in figure 8b
reveal that the superlattice performs well with high reflectiv-

ity over the 1–1.6 mm band for both normal and 308 off-

normal incidence. The thicknesses of the a-Si and SiO2

layers are both approximately l/4 within the optimized

mirror band, meaning that the GA converged on a superlat-

tice that is operating similar to a quarter-wave stack [5].
Although periodic superlattices have a characteristically

narrow spectral peak, this approximately periodic structure

is truncated to seven periods, which broadens the reflection

bandwidth. For larger target mirror bandwidths or for

larger superlattice dimensions, the GA could converge on a

more disordered superlattice.

In addition to mimicking the broadband reflectivity

found in the silvery fish, the multi-generator Cantor superlat-

tice synthesis procedure should be equally valid for other

filter functions such as pass band, stop band, high/low

pass and multi-spectral functions. In the next example, a

filter function is targeted with a single pass band from 1.15

to 1.25 mm and stop bands on either side from 1 to 1.1 mm

and from 1.3 to 1.4 mm. Six stop or pass frequencies are speci-

fied for each band in the cost function. For this example, the

number of Cantor bar stages is again limited to three, so

that the superlattice stack will have fewer layers. Four genera-

tors are optimized by the GA with a mixed number of gaps.

Generators 0 and 1 introduce a single gap into the previous

line segment, whereas generators 2 and 3 introduce two

gaps into the previous line segment. The gap sizes for the

first two generators were limited to between 0.1 and 0.2,

and the gap sizes for the last two generators could vary

from 0.1 to 0.15. The total thickness for the superlattice was

allowed to range from 0.5 to 2 mm in the GA. The GA
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optimized 32 population members for 1000 generations to

reach the multi-generator Cantor bar superlattice illustrated in

figure 9a. The total thickness for this superlattice is 2.0 mm,

which is at the larger edge of the allowed range. The

optimized generator gap sizes are g0 ¼ 0.107, g1 ¼ 0.200,

g2 ¼ 0.133 and g3 ¼ 0.145. In contrast to the previous

example, this superlattice contains much more variation in

layer thickness and does not possess an intuitive order,

once again indicating that the GA is capable of evolving frac-

tal Cantor bars that span the range from ordered to chaotic.

This optimized superlattice replaces the line segments

with a-Si and the gaps with SiO2, and the minimum layer

thickness is 17.2 nm. The transmission and reflection

shown in figure 9b have excellent pass band and stop band

performance over the optimized wavelength ranges.

The final example extends the pass band filter to a multi-

spectral function with two pass bands surrounded by three

stop bands in the near-IR. In the cost function, five pass fre-

quencies are specified for each of two bands from 1.18 to

1.22 mm and from 1.38 to 1.42 mm, six stop frequencies are

specified for the bands from 1 to 1.1 mm and from 1.5 to

1.6 mm, and five stop frequencies are specified from 1.28 to

1.32 mm. The GA optimized a four-stage Cantor bar with

two single-gap generators. The generator gap sizes could

vary from 0.02 to 0.12, and the total thickness was allowed

to range from 5 to 20 mm. After evolving a population of 32

members over 1000 generations, the GA converged to the
superlattice shown in figure 10a. The optimized generator

gap sizes for this Cantor bar are g0 ¼ 0.071 and g1 ¼ 0.119,

and the total superlattice thickness is 9.35 mm. The line seg-

ments in stage 4 of the optimized Cantor bar are replaced by

a-Si, whereas the gaps are replaced by SiO2. Interestingly, the

optimized generator assignment is uniform for each stage,

with generator 1 assigned to every bar in stages 0 and 2 and

generator 0 assigned to every bar in stages 1 and 3. Hence,

the superlattice shown in figure 10a has a somewhat regular

shape similar to that of the deterministic Cantor bar. The simu-

lated scattering coefficients show that pass bands and stop

bands have the desired high transmission and reflection mag-

nitudes, respectively. However, there is a narrow transmission

peak in the shortest wavelength stop band that slipped in

between the sampling frequencies. Nevertheless, this superlat-

tice shows that the multi-generator Cantor bar can be exploited

by the GA to achieve even complex filter functions.
5. Conclusion
While superlattices in Nature that give rise to broadband

reflectivity have been classified as having various ordered

and chaotic (i.e. random) structures, it is believed that the

underlying order should arise from fractal geometry.

Random fractals are useful for exploring the space between

the ordered and chaotic extremes, because the variability in
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the fractal can be limited by the number and variety of genera-

tors used in its construction. We successfully employed a GA

to evolve multi-generator Cantor bar superlattices that mimic

the broadband filter functionality found in Nature. Among

the broadband reflector and multi-spectral filter designs pre-

sented, the GA evolved structures that were highly ordered

and ones that appeared chaotic. Further design flexibility of

the multi-generator Cantor superlattice synthesis method

was demonstrated by evolving more complex examples that

had single and dual pass bands surrounded by stop bands.
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