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ABSTRACT
Soybean accounts for more than half of the global production of oilseed and more than a quarter of the
protein used globally for human food and animal feed. Soybean domestication involved parallel increases in
seed size and oil content, and a concomitant decrease in protein content. However, science has not yet
discovered whether these effects were due to selective pressure on a single gene or multiple genes. Here,
re-sequencing data from>800 genotypes revealed a strong selection during soybean domestication on
GmSWEET10a.The selection ofGmSWEET10a conferred simultaneous increases in soybean-seed size and
oil content as well as a reduction in the protein content.The result was validated using both near-isogenic
lines carrying substitution of haplotype chromosomal segments and transgenic soybeans. Moreover,
GmSWEET10bwas found to be functionally redundant with its homologueGmSWEET10a and to be
undergoing selection in current breeding, leading the the elite alleleGmSWEET10b, a potential target for
present-day soybean breeding. Both GmSWEET10a and GmSWEET10b were shown to transport sucrose
and hexose, contributing to sugar allocation from seed coat to embryo, which consequently determines oil
and protein contents and seed size in soybean. We conclude that past selection of optimalGmSWEET10a
alleles drove the initial domestication of multiple soybean-seed traits and that targeted selection of the elite
alleleGmSWEET10bmay further improve the yield and seed quality of modern soybean cultivars.
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INTRODUCTION
Studies have suggested that global agricultural pro-
duction needs to be doubled by 2050 to meet the
rapidly growing population and diet shifts [1–3],
translating into a need for increasing crop produc-
tion by 2.4% per year [4]. Soybean is a major, mul-
tiuse crop that globally makes up 56% of the oilseed
production and>25% of the protein used in human
food and animal feed [5]. At the current average rate
of annual-yield increase, only 55% of the necessary
increase in soybean production can be reached by
2050. Thus, breeding soybeans with higher yields is
urgently needed [4].

Cultivated soybean (Glycinemax [L.]Merr.) was
domesticated from wild soybean (G. soja Sieb. &

Zucc.) in China over a period of 5000 years [6].
Seedsofwild soybeans are generally smaller andcon-
tain higher levels of protein. Cultivated soybeans
produce larger seeds with higher oil content (Sup-
plementary Fig. 1).Thus far, it has not been reported
that a single gene can simultaneously alter seed size,
oil content and protein content, although a number
of quantitative trait loci (QTLs) that govern seed
size, oil content and protein content in soybeanwere
identified through previous genetic analyses (Soy-
Base, https://soybase.org/). Therefore, it remains
unclear whether the improvement in these traits was
achieved by selection of a gene with pleiotropic ef-
fects on these traits or by selection of individual
genes that only affect each trait.
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Sucrose is the main source of carbon energy de-
livered via the phloem to developing seeds [7] and
sugars derived from sucrosemetabolism play pivotal
roles in seed development for many species [7–13].
Previous studies have demonstrated that SWEET
proteins play important roles in sugar translocation
to seeds and consequently affect seed setting, fill-
ing and composition [14–18]. For example, in Ara-
bidopsis thaliana, mutation of AtSWEET11/12/15
impairs sucrose delivery from seed coat and en-
dosperm to embryo and results in severe seed de-
fects [16]. Similarly, knockout of OsSWEET11 and
OsSWEET 15 in rice results in a complete loss
of endosperm development [14,19]. Our previous
study also illustrated that knockout of both Gm-
SWEET15a and GmSWEET15b in soybean causes
an extremely high rate of seed abortion [20].

In this study, we found that a pair of SWEET
homologues, GmSWEET10a and GmSWEET10b,
underwent stepwise selection that simultaneously
altered seed size, oil content and protein content
during soybean domestication.Our findings provide
practical insights into how to improve soybean-seed
traits, in particular seed size and oil content, by
optimizing the combination of GmSWEET10a
and/orGmSWEET10b alleles.

RESULTS
GmSWEET10a underwent selection
during soybean domestication
Using whole-genome re-sequencing data from
>800 accessions with an average coverage depth
of >13X for each accession [21,22], we identified
a selective sweep on chromosome 15 from 3.87 to
4.0 Mb. The fixation of this enlargement was ob-
served by different methods, including calculating
the nucleotide diversity (π), the fixation index
(FST) and the cross-population extended haplotype
homozygosity (XP-EHH) (Fig. 1a). This selective
sweep overlapped with several reported QTLs that
related to seed size, oil content and protein content
[23–28] (Fig. 1a and Supplementary Table 1). The
results indicated that selected gene(s) in this region
may be responsible for the simultaneous alternation
of seed size, oil content and protein content in
soybean domestication.

This selective sweep included 18 gene orders,
among which Glyma.15G049200 (previously
named GmSWEET10a [20]) encoded a mem-
ber of the SWEET family of sugar transporters
(Fig. 1a). SWEET proteins play important roles
in seed development [14–16,19,20]. Tran-
scriptional profiling data from Phytozome 12
(https://phytozome.jgi.doe.gov/pz/portal.html#)

showed that GmSWEET10a was specifically ex-
pressed in seed and pod (Fig. 1b). Transcriptome
data from Gene Networks in Seed Development
(http://seedgenenetwork.net/soybean) indicated
that GmSWEET10a was mainly expressed in the
seed coat (Supplementary Table 2). Quantitative
RT-PCR (qRT-PCR) showed that the expression
ofGmSWEET10a in the seed coats progressively in-
creased during seed development and reached their
peaks at the full-seed stage (S5 stage in Supplemen-
tary Fig. 2 and Fig. 1c). In situ RNA hybridization
confirmed that GmSWEET10a was preferentially
expressed in the thick-walled parenchyma of the
seed coat (Fig. 1d and e), which are important for
sucrose translocation to the embryo [29–31]. The
known functions of SWEET proteins and the ex-
pression pattern of GmSWEET10a indicated that it
might be the gene responsible for the simultaneous
alternation of seed size, oil content and protein
content during soybean domestication.

Association between seed traits and
genetic variation of GmSWEET10a
To verify our hypothesis, we first investigated the
genetic variation of GmSWEET10a in wild and cul-
tivated soybeans using our previously reported re-
sequenced population [21,22]. After removing the
polymorphisms with minor allele frequency <0.01
(MAF <0.01), 10 SNPs and In/Dels were found
in GmSWEET10a in the re-sequenced population.
These 10 genetic variants sorted the population into
12 haplotypes, which were represented by one to a
few hundred accessions (Fig. 2a). Median-joining
network analysis grouped the 12 haplotypes into
three major groups, named H I (including H I-1
to H I-8), H II and H III (including H III-1 to
H III-3). H I was mainly present in wild soybeans,
H II in landraces and H III in cultivars (Fig. 2b).
Allele-frequency investigation demonstrated that
the proportion of H I was significantly decreased
in cultivated soybeans compared to that in wild
soybeans, whereas the proportion of H III was
significantly increased in cultivated soybeans, indi-
cating strong artificial selection of GmSWEET10a
during soybean domestication (Fig. 2c).

Second, we looked for associations between the
genetic variation ofGmSWEET10a and seed-related
traits, including seed size (indexed by 100-seed
weight), protein content and oil content (indexed
by total fatty acid) in the re-sequenced soybean ac-
cessions. The results showed that the seed size and
the oil content of H III were significantly higher
than those of H II and that these traits of H II were
significantly higher than those of H I. In contrast,

https://phytozome.jgi.doe.gov/pz/portal.html
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Figure 1. GmSWEET10awas identified as a candidate pleiotropic gene that influences seed size, fatty-acid content and pro-
tein content. (a) Genetic variations (π , FST and XP-EHH values) were calculated between G. soja (S) and the cultivar (C) across
the 1.2-Mb genomic region of the GmSWEET10a locus. The dashed horizontal lines indicate the genome-wide thresholds
(top 5% of the genome) of the selection signals. The solid lines above the plot represent genomic locations of QTLs retrieved
from SoyBase (https://soybase.org/; Supplementary Table 1). The red, orange and purple lines are QTLs for the seed size,
seed oil and protein contents, respectively. The black dashed lines above the x-axis are annotated genes in this region. The
red dots denote the GmSWEET10a gene, i.e. Glyma.15G049200. (b) Expression pattern of GmSWEET10a in different organs
in Glycine max (Gm). Expression values were obtained from Phytozome 12 (https://phytozome.jgi.doe.gov/pz/portal.html#).
F, flower; L, leaf; R, root; ST, stem; N, nodule; RH, root hair; SAM, shoot apical meristem; P, pod; S, seed; FPKM, fragments
per kilobase of exon per million mapped. (c) Transcript abundance of GmSWEET10a in seed coats at different stages. The
expression was detected by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Transcript levels were
calculated relative to soybean cyclophilin 2 (GmCYP2). (d) and (e) RNA in situ hybridization of GmSWEET10a showing specific
expression in the seed coats. Cross-sections of developing seeds at S2–S3 hybridized with antisense (d) or sense (e) probes
for GmSWEET10a. sc, seed coat; e, embryo; p, palisade layer; hg, hourglass; tnp, thin-walled parenchyma; tkp, thick-walled
parenchyma; al, aleurone layer. Scale bars, 200 μm.

the protein content of H III was significantly lower
than that of H II and that of H II was significantly
lower than that of H I (Fig. 2d). The results indi-
cated that selection at GmSWEET10a during soy-
bean domestication pleiotropically affected the seed
size, oil content and protein content. The decrease
in protein content could also be a consequence of a
rise in the seed size and oil content because the pre-
cursor supply may become limiting for protein syn-
thesis when the GmSWEET10a-mediated sugar un-
loading from seed coats increases the carbohydrate
state in developing embryos [32,33]. Since wild soy-
beans usually exhibit drastically smaller seeds, higher
protein content and loweroil content thancultivated
soybean (Supplementary Fig. 1), these three traits
were further compared among different haplotypes
only in the cultivated soybeans to eliminate the effect
of genetic differences between wild and cultivated
soybeans. Further, because only a few cultivated ac-
cessions had H I haplotypes, only the differences
between H II and H III cultivated soybeans were

compared. In H III haplotypes, the seed size and
oil content were significantly higher but the protein
content was lower than in H II haplotypes (Supple-
mentary Fig. 3).

GmSWEET10a simultaneously alters the
seed size, oil content and protein content
To verify whether GmSWEET10a simultaneously
affected the seed size, oil content and protein con-
tent, twopairs of near-isogenic lines (NILs)were de-
veloped: (i) NILsA carrying either H I (NILA-H I)
or H III (NILA-H III) through a cross of HJ117
(carryingH I) and JY101 (carryingH III) (Fig. 2e);
and (ii) NILsB carrying either H II (NILB-H II)
or H III (NILB-H III) through a cross of Enrei
(carrying H II) and Suinong 14 (carrying H III)
(Fig. 2f). Phenotypic analysis showed that NILA-
H III or NILB-H III lines had significantly higher
100-seed weight and oil content and lower protein

https://soybase.org/
https://phytozome.jgi.doe.gov/pz/portal.html
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Figure 2. GmSWEET10a is a domestication gene that contributes to soybean seed size, fatty-acid content and protein
content. (a) Haplotypes detected in the genomic region of GmSWEET10a. The SNP information of 871 re-sequenced ac-
cessions is derived from Zhou et al.’s data [21] and Fang et al.’s data [22]. The S/L/C indicates the accession number of
soja/landrace/cultivar. (b) Median-joining network representing the relatedness of 12 GmSWEET10a haplotypes, each rep-
resented by a circle. Gray, green and blue circles represent wild soybeans, landraces and improved cultivars, respectively.
(c) Frequency distribution of three haplotypes: H I, orange; H II, blue; H III, green. (d) 100-seed weight, fatty-acid content
and protein content of mature seeds in three haplotype populations (colors are the same as that in panel (c)). Box edges
depict the interquartile range. The median is marked by a black line within the box. The number of samples in each hap-
lotype (n) is shown under the haplotype label. The letters a, b and c indicate significant differences. P < 0.05 (Student’s
t-test). DW, dry weight. (e) and (f) Effect of two alleles of GmSWEET10a on seed traits. 100-seed weight, fatty-acid con-
tent and protein content of mature seeds from near-isogenic lines of GmSWEET10a with H I and H III haplotypes (e) or
with H II and H III haplotypes (f). NILsA derived from the hybrid combination between HJ117 (H I) and JY101 (H III). NILsB

derived from the hybrid combination between Suinong 14 (H III) and Enrei (H II). Data are means ± s.d. ((e) NILA (H I),
n= 12; NILA (H III), n= 9; (f) n= 5). ∗∗P< 0.01 (Student’s t-test).

content than did NILA-H I or NILB-H II, respec-
tively (Fig. 2e and f).

The functions of GmSWEET10a were further
confirmed by genetic manipulation. A knock-
out line, named sw10a, was generated by an
Agrobacterium-delivered CRISPR/Cas9 system
in the soybean cultivar Williams 82 (Fig. 3a).
Compared with Williams 82, sw10a seeds exhibited
significantly decreased seed size, lower oil content

and increased protein content (Fig. 3c–f). Two
independent GmSWEET10a-overexpression lines,
OE-10a-1 and OE-10a-2, were generated by intro-
ducing an additional copy of the GmSWEET10a
genomic sequence into the Williams 82 genome,
with a significantly increased transcript level of
GmSWEET10a (Fig. 3b). Compared with Williams
82, the seed size and oil content were significantly
increased and the protein content was significantly
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Figure 3. Effect of GmSWEET10a on seed size, fatty-acid content and protein content. (a) Genotype of the sw10a mutant
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(e) and (f) n= 5). ∗P< 0.05; ∗∗P< 0.01 (Student’s t-test).

decreased in OE-10a-1 and OE-10a-2 (Fig. 3c–f). A
recent study showed that a 9-base pair deletion in
the promoter of GmSWEET10a upregulates the ex-
pression of GmSWEET10a, which potentially leads
to increased oil content in cultivated soybeans [34].
Here, our results in transgenic soybean clarified that
the larger seed size, higher oil content and lower
protein content in H III cultivars are indeed caused
by the upregulation ofGmSWEET10a.

Ongoing selection of GmSWEET10b,
which is similar in function to
GmSWEET10a
GmSWEET10b is a close homologue of Gm-
SWEET10a. GmSWEET10b showed an expression
pattern similar to, but at higher levels than, Gm-
SWEET10a (Fig. 4a and b, and Supplementary
Table 2). In situ RNA hybridization showed that
GmSWEET10b also exhibited specific localization
in the thick-walled parenchymatous layer of the
seed coat, but not in the embryo (Fig. 4c and
d). We investigated whether GmSWEET10b also
played a role in controlling these three seed traits.
GmSWEET10b-knockout and -overexpression
lines were generated. The results demonstrated

that GmSWEET10b had a similar function to
that of GmSWEET10a (Fig. 4e–j). Moreover,
a double knockout of both GmSWEET10a and
GmSWEET10b in Williams 82 and Huachun 6
genetic backgrounds resulted in significantly smaller
seed size, lower oil content and higher protein
content than either of the single knockout lines
or the WT (Williams 82) (Supplementary Fig. 4),
indicating that GmSWEET10b and GmSWEET10a
have functional redundancy in controlling seed
development.

Similarly, the genetic variation ofGmSWEET10b
was investigated in the re-sequenced population.
The nucleotide polymorphisms of this gene classi-
fied the accessions into 26 haplotypes, which were
then sorted into three major groups by further
phylogenetic analysis (Fig. 5a). We found that,
although the ratios of H I to H II and H I to
H III were greatly decreased from wild soybeans
to cultivated soybeans (Fig. 5b), GmSWEET10b
did not show significantly artificial selection during
soybean domestication at the genome-wide level
(Fig. 5c). However, similarly toGmSWEET10a, the
haplotypesmainly present in cultivated soybeans ex-
hibited significantly higher seed size and oil content
but lower protein content than the haplotypemainly
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Figure 4. Effect of GmSWEET10b on seed size, fatty-acid content and protein content. (a) Expression pattern
of SWEET10b in different organs in Glycine max (Gm). Expression values were obtained from Phytozome 12
(https://phytozome.jgi.doe.gov/pz/-portal.html#). F, flower; L, leaf; R, root; ST, stem; N, nodule; RH, root hair; SAM, shoot
apical meristem; P, pod; S, seed; FPKM, fragments per kilobase of exon per million mapped. (b) Transcript abundance of Gm-
SWEET10b in seed coats at different stages. The expression was detected by reverse transcriptase quantitative polymerase
chain reaction (RT-qPCR). Transcript levels were calculated relative to soybean cyclophilin 2 (GmCYP2). (c) and (d) RNA in situ
hybridization of GmSWEET10b showing specific expression in the seed coats. Cross-sections of developing seeds at S2–S3
hybridized with antisense (c) or sense probes (d) for GmSWEET10b. sc, seed coat; e, embryo; p, palisade layer; hg, hourglass;
tnp, thin-walled parenchyma; tkp, thick-walled parenchyma; al, aleurone layer. Scale bars, 200 μm. (e) Genotypes of the
sw10b mutant edited by CRISPR/Cas9 system. The arrow indicates the target site in the region of exon 3 of GmSWEET10b.
Changes in DNA sequence in the targeted region and amino-acid sequence of the sw10bmutant are highlighted in red. Num-
bers inside brackets indicate the number of amino acids coded by the sequence. (f) Increased expression of GmSWEET10b
was achieved in transgenic soybean lines OE-10b-1 and OE-10b-2 by introducing additional copies of the genomic sequence
into the Williams 82 cultivar. (g) Seed appearance of sw10b mutant and overexpression lines. Scale bars, 1 cm. (h)–(j), 100-
seed weight (h), fatty-acid content (i) and protein content (j) of mature seeds from wild-type (WT), sw10b mutant, OE-10b-1
and OE-10b-2. DW, dry weight. Data are means± s.d. ((h) n= 10; (i) and (j), n= 5). ∗P< 0.05; ∗∗P< 0.01 (Student’s t-test).

present in wild soybeans (Fig. 5d–f), suggesting
that GmSWEET10b may still be undergoing
selection.

GmSWEET10a and GmSWEET10b
transport sucrose and hexose, likely from
seed coat to embryo
Previous studies have shown that SWEET pro-
teins can transport either mono- or disaccharides or

both [35–39]. To first test the sugar-transport ac-
tivities of GmSWEET10a and GmSWEET10b, we
used a newly improved, high-affinity sensor named
FLIPsuc-2-10μ [40] with new N-terminal and C-
terminal linkers and constructs with the 5’UTRs
and codons optimized for humans. When this sen-
sor was co-expressed with GmSWEET10a or Gm-
SWEET10b in the human embryonic kidney line
HEK293T, weak sucrose transport activity was de-
tected (as a negative ratio change) when 40 mM

https://phytozome.jgi.doe.gov/pz/-portal.html
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Figure 5. GmSWEET10b is a potential domestication gene that contributes to soybean seed size, fatty-acid content and protein content. (a) Haplotypes
detected in the genomic region of GmSWEET10b. The SNP information of 871 re-sequenced accessions is derived from Zhou et al.’s data [21] and Fang
et al.’s data [22]. (b) Frequency distribution of three haplotypes of GmSWEET10b. (c) Genetic variations (π , FST and XP-EHH values) were calculated
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sucrose was supplied (Fig. 6a). Sucrose transport
by GmSWEET10a and GmSWEET10b was further
confirmed by 14C-sucrose radiotracer uptake experi-
ments inXenopus oocytes (Fig. 6b). GmSWEET10a
and GmSWEET10b can also uptake glucose and
fructose in oocytes.

It is possible that the reduced seed weight in
the double sw10a;10b mutant is caused by the low
availability of sugars in embryos, similar to what
is observed in atsweet11;12;15. To investigate this,
sugar levels were measured in isolated seed coats
and embryos at the end of the transition phase (14–

16 DAF) and storage phase I (20–22 DAF) [41] in
WT (Williams 82) and sw10a;10b mutants. In the
embryos of the sw10a;10b mutants, the glucose,
fructose and sucrose levels were significantly lower
at both stages compared to those ofWT (Fig. 6c and
d). In contrast, in the seed coat of the sw10a;10b
mutants, the sucrose contentwas significantly higher
at 14–16 DAF and the hexose content was signifi-
cantly higher at 20–22 DAF compared with those of
WT.Our results indicated that the transport of these
three forms of sugar from the seed coat to the em-
bryo are impaired in the sw10a;10bmutant (Fig. 6c
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Figure 6. Sugar-transporter activities of GmSWEET10a and GmSWEET10b. (a) Characterization of GmSWEET10a and
GmSWEET10b sucrose-transport activity using FLIPsuc-2-10μ in HEK293T. Sensor only (black) and AtSWEET11 (green) were
used as negative and positive controls, respectively. Data are means ± s.d. (n ≥ 8). (b) Sugar-uptake transport activities
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domestication. The expression level of GmSWEET10a is significantly increased in cultivars at the seed-filling stage, which
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that of GmSWEET10a. Dark-blue arrows indicate the translocation of sugars from the seed coat to the embryo. Orange arrows
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and d). This suggests that GmSWEET10a and
GmSWEET10b largelydetermine sugarpartitioning
between the seed coat and the embryo.

Previous studies showed that sugar allocation af-
fects embryo development and regulates both fatty-
acid biosynthesis and protein biosynthesis [41,42].
Thus, we speculated that the increased seed size and
higher oil content that arose through soybean do-
mestication might be caused by increasing the sugar

content in the embryo through the selection of elite
GmSWEET10a alleles.

DISCUSSION
Seed size, oil content and protein content are es-
sential factors for soybean yield and quality. Each
of these quantitative traits is controlled by multiple
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genetic loci. At least 267, 299 and 225 QTLs have
been reported to be responsible for the seed size, oil
content and protein content in soybean, respectively
(retrieved from SoyBase, https://soybase.org/). In
the study, we have shown that GmSWEET10a and
GmSWEET10bare specifically expressed in the seed
coat, likely transport sugars from seed coats to em-
bryos and genetically regulate seed size and com-
position. GmSWEET10a is a QTL that genetically
regulates seed size and composition simultaneously,
andwas subjected to strong artificial selectionduring
soybean domestication. However, plots of the 100-
seed weight against the fatty-acid content and the
protein content from the natural population showed
that there are cultivated soybeans combining the
traits of large seed and high oil content or the traits
of large seeds and high protein content (Supplemen-
tary Fig. 1d and e). Thus, selections on other genes
that do not have pleiotropic effects on these three
traits likely occur.

A working model of GmSWEET10a and Gm-
SWEET10b function and their contribution to soy-
bean domestication is proposed (Fig. 6e). At the
seed-storage stage, sucrose, as the major carbon
source, is delivered to the seed coat via the funicular
phloem. Then sucrose, together with a few hexoses
(including glucose and fructose) presumably hy-
drolysed from sucrose, is exported into the cell-wall
space via GmSWEET10a and GmSWEET10b, and
subsequently imported into the embryo by other
sugar transporters [43]. Imported sugars are metab-
olized for energy generation and carbon skeleton
supply for the synthesis of storage compounds in-
cluding lipids, proteins and starch.

Sucrose concentrations in seed coats and em-
bryos reach a high and steady level at the rapid-
seed-growth stage [44]. Thus, sucrose flux across
seed coats is particularly important to meet the in-
creasing demand for a carbon source for a high rate
of seed growth. Haplotype III of GmSWEET10a
was selected during soybean domestication (from
G. soja to G. max) because it confers a relatively
higher expression of GmSWEET10a, which allows
more sucrose to flux to the developing embryos at
the rapid-seed-growth stage, and consequently leads
to a higher seed-growth rate, larger seed and higher
oil content. The selection of GmSWEET10b is cur-
rently ongoing and presumably leads to a selected
function in contributing to seed-size-storage compo-
nents, likeGmSWEET10a.

The positive contribution of GmSWEET10a and
10b to seed size and oil content can be attributed
to the following reasons. First, the elevated expres-
sion of the sugar transporterGmSWEET10a orGm-
SWEET10b can lead to the flux of more sugars into
embryos from maternal tissues. It may trigger em-

bryo cell division and expansion, and consequently
larger seeds. Second, the increased transport of sug-
ars into the embryos would result in an increase
in the carbon resources for lipid synthesis. Some
intermediates derived from glycolysis are directly
or indirectly shared by lipid- and protein-synthesis
pathways. Lipid synthesis may be enhanced due to
more precursor of acetyl-CoA available from gly-
colysis and thus more lipid can be produced and
accumulate. On the other hand, protein synthe-
sis depends on both carbon and nitrogen availabil-
ity. As GmSWEET10a or GmSWEET10b sugar-
transporter activities increase, the nitrogen availabil-
ity may become a limiting factor and thereby de-
crease the relative protein contents.

The knocking out of GmSWEET10a resulted in
a 7.4% and 7.2% decrease in the 100-seed weight
and fatty-acid content, but a 6.4% increase in the
protein content (Fig. 3d–f). A similar effect was ob-
served for its homologue GmSWEET10b (Fig. 4h–
j). When both GmSWEET10a and GmSWEET10b
were knocked out, the impact on these parame-
ters increased to –40.2%, –40.7% and +32.1%, re-
spectively (Supplemental Fig. 4b–d and f–h).These
seed phenotypes supported that GmSWEET10a
and GmSWEET10b are essential sugar transporters
for sugar unloading from the soybean-seed coat to
the embryos. It is worth noting that the knockout
ofGmSWEET10b has a stronger impact on the seed
weight, as well as the oil and protein content, com-
pared with GmSWEET10a (Figs 3d–f and 4h–j).
This indeed is consistentwith the transcript-level dif-
ference in their transcript abundance (Figs 1c and
4b), although not proportionate to the 10-fold dif-
ference at their transcript levels. It requires further
study to determinewhether their protein abundance
and transporter activities correspond to their tran-
script abundance.

In addition to that, we retrieved the expres-
sion data of all the members of the SWEET and
SUT/SUF family, which includes genes that have
been implicated in exporting sucrose from the seed
coat in pea and bean [45,46] in the seed coats from
Gene Networks in Seed Development (Supplemen-
tal Table 2). Among the 27 SWEET and SUT/SUF
genes analysed, onlyGmSWEET10s,GmSWEET13s
and GmSWEET14s were expressed in seed coats.
RT-qPCR showed that GmSWEET13s and Gm-
SWEET14s were indeed expressed in seed coats, al-
though at a lower level than in GmSWEET10a and
GmSWEET10b (Supplemental Fig. 5a and b).Thus,
whereas we speculate that, while GmSWEET10a
and GmSWEET10b play essential roles in sugar
unloading from the seed coats to the embryos,
other uncharacterized sugar transporters, such as
GmSWEET13s and GmSWEET14s, may also play

https://soybase.org/
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roles, either due to their inherent function or as a
compensation mechanism in the absence of Gm-
SWEET10a andGmSWEET10b.

Introduction of an additional genomic copy of ei-
therGmSWEET10a orGmSWEET10b into soybean
led to significant increases in yield, ranging from11%
to 20%,without the compromise of other agronomic
traits (Supplementary Fig. 6). Genome editing is
a powerful approach for targeted mutagenesis and
has been successfully used for crop-trait improve-
ment [47–50]. A recent study found that disruption
of MIR396e and MIR396f by CRISPR/Cas9 signif-
icantly improves rice yield under nitrogen-deficient
conditions [51]. We speculate that alteration of the
expression of GmSWEET10a and GmSWEET10b
by precise genome editing [52] may enhance seed
and oil yield in soybean. Furthermore, since Gm-
SWEET10b has not yet been fixed in cultivated soy-
beans, the further discovery andutilizationof elite al-
lele(s) ofGmSWEET10bmay provide a new avenue
for future soybean breeding. Anothermember of the
SWEET family, SWEET4, was found to be likely se-
lected during the domestication of both maize and
rice [15], indicating that a parallel selection of the
SWEET family members may exist across different
crop species during domestication. Identification of
these genes would facilitate the improvement of cur-
rent crops [53,54]. Thus, SWEET genes should be
priority targets across a wide range of species for the
improvement of crops and possibly even underused
or undomesticated plants.

MATERIALS AND METHODS
For details, please see Supplementary data.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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