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Abstract: In this paper, we present a new approach to model the steady-state heat transfer in
heterogeneous materials. The multiscale finite element method (MsFEM) is improved and used to
solve this problem. MsFEM is a fast and flexible method for upscaling. Its numerical efficiency is
based on the natural parallelization of the main computations and their further simplifications due
to the numerical nature of the problem. The approach does not require the distinct separation of
scales, which makes its applicability to the numerical modeling of the composites very broad. Our
novelty relies on modifications to the standard higher-order shape functions, which are then applied
to the steady-state heat transfer problem. To the best of our knowledge, MsFEM (based on the special
shape function assessment) has not been previously used for an approximation order higher than
p = 2, with the hierarchical shape functions applied and non-periodic domains, in this problem. Some
numerical results are presented and compared with the standard direct finite-element solutions. The
first test shows the performance of higher-order MsFEM for the asphalt concrete sample which is
subject to heating. The second test is the challenging problem of metal foam analysis. The thermal
conductivity of air and aluminum differ by several orders of magnitude, which is typically very
difficult for the upscaling methods. A very good agreement between our upscaled and reference
results was observed, together with a significant reduction in the number of degrees of freedom. The
error analysis and the p-convergence of the method are also presented. The latter is studied in terms
of both the number of degrees of freedom and the computational time.

Keywords: heat transfer; multiscale finite-element method; homogenization

1. Introduction

Numerical modeling of the heterogeneous materials is a very active research field [1–7].
This is due to the fact that such materials are widely used in many important industry
branches, e.g., civil engineering [1,2,6,7], automotive engineering [3,4], aerospace engineer-
ing [8] and many others. The composite’s superior performance is due to its manifold
mechanisms, among others:

• A specific composite type, e.g., laminate [9,10] or matrix-inclusion [1,5];
• The specific properties, shapes [11] and weight/volume ratios of the constituents;
• A very high adhesion between the constituents [5,11].

The major aspects, listed above, are analyzed at their respective scale, i.e., atomistic,
micro-, meso- or macroscale, in order to optimize the overall composite performance at
the higher scale. The design process of the new composites is enhanced with numerical
analyses that are complementary to laboratory experimentsm and provide an evident
speed-up. A number of numerical methods are used to model composites. The most
frequent applications are based on the finite-element method [1,11], the finite-difference
method [2], the discrete element method [12] and other methods [5,13]. In our research, we
make use of the higher-order, finite-element method. In this paper, only the p-convergence
is studied, i.e., we keep the same mesh and sequentially increase the approximation order
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p within all elements. However, in our previous studies [14], we presented the application
of the automatic hp-adaptivity [15,16] coupled with the multiscale finite-element method.
The automatic hp-adaptivity enhances the whole framework due to its expected exponential
convergence. In this paper, the scope is narrower concerning this aspect. The benefits of
the higher-order multiscale-finite element method with the modified hierarchical shape
functions in the multiscale analysis are demonstrated in Section 4.

A direct numerical analysis of the composite at the heterogeneity scale is frequently
infeasible or unnecessary [17,18]. The analysis itself would be challenging in the context
of the computational resources, as well as time-consuming. When completed, the results
would provide an amount of data that could be impractical to present and demanding to
store. Thus, a variety of upscaling methods was used to reduce the computation cost with
the simultaneous incorporation of the lower-scale information in analyses carried out at
the higher scale. Extensive revisions of the most popular upscaling methods can be found,
for instance, in [19–22]. In our research, we made use of the multiscale finite-element
method (MsFEM) in a form developed in [14,18,23,24]. A concise description of this is
provided in Section 3.1. The outline and the specific features of the method are provided
therein. Selected other multiscale finite-element methods [19] and similar approaches used
for heat transfer analysis (or Poisson equations in general) are also presented in Section 3.1.

We mainly use MsFEM due to its flexibility. In the case of the composites’ analysis,
the method exhibits a very important advantage that should be stressed here. Namely, it
is free of the assumption regarding the distinct separation of the bridged scales. In some
applications (e.g., asphalt pavement), this feature is useful in effective multiscale analysis.
This is due to the relationship between aggregate particle diameters and layer thicknesses.

The natural parallelization, without any special amendments, introduced to the in-
dependent problems solved within neighboring subdomains, guarantees a substantial
speed-up to the computations. A number of observations, which are thoroughly dis-
cussed in Section 3.1, give rise to additional computational time savings, which facilitate
MsFEM implementation.

The main novelty of this paper consists of the application of the higher-order, mul-
tiscale, finite-element method to the steady-state heat transfer problem. The approach is
based on a modified shape function construction. The auxiliary boundary value problem
was introduced, and used for the heat transfer problem. In our previous papers [14,18,23,24],
we applied a higher-order MsFEM to other partial differential equations (PDEs), namely,
to the elasticity and viscoelasticity.

In this paper, we demonstrate an effective MsFEM performance and also test its p-
convergence in order to illustrate the benefits of the higher-order approximation in a steady-
state heat transfer problem. It is additionally discussed in terms of the computational time.

Finally, the proposed method was tested on very challenging numerical problems
with a large contrast in terms of its material parameters (several orders of magnitude).

Ensuring the effective and reliable heat transfer analysis of the composites is one of
the challenging numerical problems. Multiscale methods are the common approach in this
case, due to the reasons given in the above paragraph. State-of-the-art papers devoted to
the review and classification of multiscale methods developed for the heat transfer problem
are present in the literature [25–27]. The main distinction refers to the analysis scale [27];
therefore, one can distinguish:

• The microscale modeling using molecular dynamics (MD) with the motion analysis of
every single atom/molecule in the domain [28,29];

• The particle-based mesoscopic modeling based on a coarse-grained analysis, e.g., Monte
Carlo method, lattice Boltzmann method [30];

• The macroscale modeling with the assumption of the continuum of the domain [2,13,
31,32].

In order to avoid the problem of the excessively large amount of the information
obtained in the direct composite analyses at any scale, a number of hybrid and multiscale
methods are used for the heat transfer problem [27,28,30,31]. They can be classified in a
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manifold manner. In [27], they are mainly grouped according to the scales they bridge,
e.g., molecular dynamics—continuum description, molecular dynamics—particle-based
description. Below, following the distinction used in [27], we briefly present the selected
methods using a description of the respective resolution, in order to subsequently upscale
this. However, it should be noted that the coupling of scales is not exclusively performed
for two neighboring scales. For instance, a hierarchical bridging between several scales can
be performed, as in [33]. Thus, the coupling possibilities are not limited to those presented
in the next section.

In this paper, the focus is only on the macroscale modeling. Namely, at both bridged
scales, the assumption of the continuum of the domain is used. The purpose of describing
the methods referring to lower analysis scales is to place the multiscale, finite-element
method among other approaches. In the case of micro- and mesoscale analysis, we arbitrar-
ily selected the most representative methods. For an extensive review of these, we refer the
reader to [27,28,30,31]. In the case of the macroscale modeling, the description is slightly
different. We present several representative methods, as well as a group of approaches that
share similar concepts, as the multiscale finite-element method used in this study.

1.1. Microscale Modeling

In molecular dynamics, we analyze the motion of every single atom. An atom’s
motion is described by Newton’s second law and interactions between atoms are described
by the potential functions [27,30]. In the case of large domains, this approach is very
time-consuming and provides an excessive amount of information. Thus, the research
interest was to simplify the modeling.

The first coupled MD-continuum analysis was described in [34], and referred to the
flow in a channel. The whole domain was divided into an atomistic and continuum
region with a hybrid solution interface (HSI), where both of the descriptions were valid.
The development of the methodology presented in [34] was mainly associated with the
numerical treatment of the atomistic region and its coupling with the continuum region [35]
(coupling by states). A coupling strength parameter ξ was introduced, due to the constrained
dynamics used to transfer the data at the HSI. The study on this parameter led to further
improvements [36,37] in the methodology presented in [34]. In [38], these two regions
(continuum and MD) were coupled, introducing the fluxes in the HSI (coupling by fluxes).
The USHER algorithm was also proposed [39] for both types of coupling to conserve the
overall energy, momentum and mass by manipulating the number of atoms at the HSI.

The methods presented above constitute a group of hybrid methods, which use two
regions with a different description resolution. Although these approaches are not purely
heat-transfer-oriented, their methodologies can also be applied to the leading problem of
this paper and to other elliptic problems. Due to the necessity of partial MD analysis in the
domain, they remain relatively computationally demanding.

In order to actually bridge the MD scale with the continuum scale, a number of
methods that originated from the heterogeneous multiscale method (HMM) [40] were
developed. The main analysis was carried out at the continuum level with the local transfer
of information from the atomistic scale.

1.2. Mesoscale (Particle-Based) Modeling

Unlike in the molecular dynamics, where we analyze the motion of every single
atom/molecule, mesoscale modeling is based on a coarse-grained analysis [26,27]. This ap-
proach can be regarded as a kind of microscale analysis upscaling. A group of molecules is
represented by the computational particle, and the mechanisms of such particles’ evolution
were assumed. The differences between the main representatives of this group consist of a
description of the particle evolution mechanism. The macroscale description was based on
the continuum assumption at the higher scale, and the microscopic description at the lower
scale is discrete. The mesoscale modeling is situated between these, i.e., the description is
discrete but the scale of analysis (spatial and temporal) is substantially reduced.
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When the particle motion is characterized by a probabilistic description, the direct
simulation Monte Carlo method (DSMC) was established [27,30]. When the hydrodynamic
behavior of the particles was mainly modeled by the addition of the dissipative force,
dissipative particle dynamics (DPD) are used. Two other main representatives of this
approach are the lattice gas automata (LGA) and the lattice Boltzmann method (LBM),
which are based on the simplifications introduced to the collision term in the Boltzmann
equation [27].

For the multiscale techniques bridging the microscale and mesoscale modeling, one
can look at, e.g., the methods transferring the velocities between the scales [41] (MD, DPD
and the continuum) or their distributions [42].

1.3. Macroscale Modeling

As far as the heat transfer modeling is concerned, the continuum assumption is
typically used. It is also the main scale of interest within this paper. The methods which
are most frequently [27] used to numerically solve the heat transfer problem at this scale
are the finite-element method (FEM), the finite-difference method (FDM), the finite-volume
method (FVM) and a number of further modifications. In our research, we make use of the
higher-order finite-element method due to its expected exponential convergence, especially
when combined with the automatic hp-adaptivity, as mentioned in Section 1.

The methods used to bridge between lower observation scales and the continuum
description were mentioned in Sections 1.1 and 1.2. It is natural that the processes occurring
at these scales affect the macroscale response. The scope of this paper is narrower. Namely,
we are only interested in multiscale analysis at the continuum level. The constituent
properties are assumed to be known (e.g., from the laboratory test), but we analyze the
effective response of a composite.

The very basic engineering approach is made to assess the effective properties of the
material (the conductivity, in this case) on the basis of its underlying microstructure. In fur-
ther analysis, the material is numerically modeled as the homogeneous one. For instance,
direct or inverse mixture rule is used for this purpose.

In the case of the periodic domains, a theoretical approach to the asymptotic homoge-
nization [43,44] was primarily used. This is based on the auxiliary BVP solution for a unit
cell. Practically, a number of such BVPs are solved for the increasing unit cell sizes. This
version of the homogenization for the Poisson equation was used, e.g., in [45,46]. Unlike
this method, the improved MsFEM used in this study does not require the periodicity of
the domain. It needs an auxiliary BVP to be solved, but the subdomain (a coarse mesh
element) used for this purpose is typically selected only once.

The most popular approach used in the numerical analyses is the computational
homogenization [5,22], which is based on the representative volume element (RVE) ap-
proach. Using the auxiliary BVP solution for every RVE (typically associated with the
Gauss integration point), the quantities at the macroresolution are assessed using the
Hill–Mandel condition. It is also free of the assumption of domain periodicity. If the finite
element method is used at both analysis levels, the approach is known as FE2 homoge-
nization [47,48]. The advantage of computational homogenization is that we do not need
to assume a constitutive equation at the macroresolution, but can transfer the tangent
stiffness tensor from the lower scale. The main limitation to this is the separation of the
scales’ condition in the RVE analysis. Namely, the ratio of the characteristic dimensions of
the micro- and macroscale should not exceed 0.1. In some structures, this condition does
not hold. The improved MsFEM, used in this study, does not require this condition to be
fulfilled. The computational homogenization for the heat transfer problem is discussed,
e.g., in [49]. In a recursive manner, macro- to microscale transitions are performed. The
pointwise macroscale response is transferred to the lower scale in a form of the boundary
conditions for the BVP solved in the RVE (and associated with this point). From this
microscale level, the averaged quantities are transferred to the macroscale.
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In [13,31], the multiscale seamless-domain method (SDM) is presented. It has some
similarities to both the computational homogenization and the multiscale finite-element
method used in this paper. The macroscale solution is sought at the so-called coarse-
grained point. Its surrounding subdomain is discretized arbitrarily (regardless of the mesh
generated for a subdomain associated with neighboring coarse-grained point). The solu-
tions sought are interpolated within these subdomains. Subsequently, the final solution
is obtained using the SDM scheme to “average” the solutions resulting from the overlap-
ping subdomains. In MsFEM, discretizations for the neighboring subdomains need to be
compatible. Moreover, MsFEM is the FE2 scheme, unlike the SDM or the computational
homogenization, which can be employed for any numerical method at the microscale level.

For instance, using the proper orthogonal decomposition (POD) at the RVE level
constitutes the FEPOD method [50]. Therein, POD is used to reduce the basis and to
speed-up the computations.

MsFEM shares a similar substructuring concept to the superelements [51]. This is
a smart way of obtaining the fine mesh solution, using static condensation and solving
the reduced problem only for the nodes associated with the skeleton. Consequently,
the discretizations within the neighboring superelements need to be compatible. Unlike this
concept, MsFEM first delivers the upscaled coarse-mesh solution, which can be transferred
elementwise to the corresponding fine meshes.

As was noted in [27], not all the multiscale frameworks can be easily classified using
the distinction on the bridged scales. The multiscale finite-element method improved in this
paper does not fall within the above-mentioned classification. Like, e.g., the computational
homogenization [22], it uses the same material description level (continuum) at both
bridged scales.

The similarities between the MsFEM presented in this paper and the heterogeneous
multiscale method (HMH) [40] should be underlined, since, in both cases, the microscale
coupling u and macroscale U variables can be performed mutually by the respective op-
erators. The means of their assessment constitutes the main part of the aforementioned
methods. In HMH, the underlying microstructure is taken into account during the integra-
tion of the respective entries of the macroscale stiffness matrix and load vector. MsFEM
enables the effective computation of these quantities through the multiplication operations
of the assembled (within a coarse element) fine-mesh quantities.

A short comment on the nomenclature is necessary. There is a variety of so-called
multiscale methods. The MsFEM version we use is based on a special shape function
concept. There are also other approaches with a similar name. In [52], for instance,
a multiscale finite-element method, based on the asymptotic expansion, is presented in
applications to a periodic microstructure.

For a comprehensive description of the other existing homogenization methods, we
refer to [20–22].

The remaining part of this paper is organized as follows. Section 2 constitutes a brief
description of the analyzed heat transfer problem. For the sake of clarity, we limit this
paper to the steady-state heat-transfer problem. In Section 3 an outline of the developed
MsFEM version is presented, together with the formulation of the boundary value problem
used to assess the special shape functions. Additionally, some comments on the numerical
implementation are provided. In Section 4, the numerical results are shown to illustrate the
performance of the introduced method. Finally, in Section 5, the findings of this paper are
recapitulated and discussed.

2. Problem Formulation

We selected the steady-state heat-transfer equation as the test problem for the devel-
oped version of MsFEM. Thus, we limit our problem to the resulting Poisson equation of
the following form:

∂qx

∂x
+

∂qy

∂y
+

∂qx

∂z
= f (1)
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Herein, f denotes the internal heat source; qx, qy and qz denote the respective heat flux
components. Using Fourier’s law, the latter can be expressed in terms of the temperature
T(x, y, z), as:

qx = −k ∂T
∂x

qy = −k ∂T
∂y

qz = −k ∂T
∂z

(2)

where k is the thermal conductivity coefficient. We limit this study to the isotropic material,
so k is independent of direction. This assumption is not necessary; therefore, we used it
to simplify the description. Moreover, the materials analyzed in this study exhibit such
behavior. Inserting (2) to Equation (1), we obtain:

− ∂

∂x

(
k

∂T
∂x

)
− ∂

∂y

(
k

∂T
∂y

)
− ∂

∂z

(
k

∂T
∂z

)
= f (3)

for every subdomain with C1-continuous k, with both temperature and normal flux com-
ponent continuity on the subdomain interfaces. In this paper, we use only two types of
boundary conditions, i.e.,

• Dirichlet boundary conditions: T(x, y, z) = TD on ∂ΩD;
• Neumann boundary conditions: qxnx + qyny + qznz = qN on ∂ΩN (n is the unit

outward normal vector, qN denotes the heat flux across ∂ΩN).

3. Upscaling

In this chapter, the MsFEM outline is described and illustrated. Some comments
on the implementation of the presented approach are also provided, to emphasize the
potential benefits of its application in the numerical modeling of composites.

3.1. Idea

As was mentioned in the Introduction, MsFEM shares a similar concept to HMM [40].
Namely, there is a distinct hierarchy of scales. Let us name them the microscale and the
macroscale. Unlike in the Introduction, they both refer to the continuum level, but the
microscale resolves the heterogeneous material structure and the macroscale is the scale
of the analyzed effective material response. The mappings between the micro- (u) and
macroscale (U) degrees of freedom must be determined in the first step. As a result of the
analysis, we obtain the macroscale solution, and the microscale one can be derived in the
post-processing phase.

The construction of the prolongation operator P, which allows us to express the
microscale solution in terms of the macroscale one (u = PU), as well as in the other way
(U = PTu), is the core of the argued methodology.

We proceed with two sets of compatible meshes. The whole domain is discretized at
the macroresolution level with a coarse mesh. Then, each of its elements is substantially
refined in order to capture all the heterogeneities at the microresolution level. In this man-
ner, the coarse mesh is naturally compatible with this set of the corresponding fine meshes.
In [14], we demonstrated the potential of hp-adaptivity application at the macroresolution
level. Thus, this is also used here.

In order to generate the prolongation operator P, we modify the standard coarse-
element shape functions to account for the microstructure, by the solution of the auxiliary
problem in coarse elements [14,23]. In Figure 1, we present a standard bilinear shape
function and its modified counterpart, which was obtained as an exemplary composite.
Knowledge of the operator P is used to compute the effective stiffness matrices and load
vectors. Instead of integrating the modified shape functions over the coarse elements, we
can immediately compute the effective stiffness matrix KH and load vector fH using the
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corresponding fine mesh quantities Kh and fh, which are assembled locally within a single
coarse mesh element, since

KH = PTKhP
f H = PT f h

(4)

(a) (b)

Figure 1. Exemplary bilinear standard (a) and modified (b) shape functions for the unit square coarse element.

For a number of tests on the special shape functions, we refer to [18]. Therein, MsFEM
was used to solve the linear elasticity and viscoelasticity problems.

The general algorithm of the MsFEM application to the steady-state heat-transfer prob-
lem is analogous to the one presented in [18] for the linear elasticity. The difference, beside
the different governing partial differential equation (PDE) to be solved (Equation (3)), con-
sists of the other auxiliary boundary value problem (Equation (5)), which was consequently
used for the special shape function assessment. This is marked in blue in Algorithm 1.

Algorithm 1 Solve a heat transfer problem within a heterogeneous domain.

Require: define the problem (heterogeneous domain and boundary conditions)
Ensure: a coarse mesh and an appropriate refinement of each coarse element

for n=1 to Nel do {loop over coarse mesh elements}
for m=1 to M do {loop over n-th element shape functions}

solve local problem (5) in the n-th element for the m-th shape function
end for
compute KH and f H for the n-th element

end for
solve the coarse mesh problem using the effective matrices KH and vectors f H

3.2. Formulation

The problem formulation for the assessment of the modified shape function is pre-
sented below. This is solved within a subdomain Ωs (occupied by a single coarse mesh
element) of the whole analyzed domain Ω. We need to solve problem (5) for every coarse-
element shape function. The degrees of freedom obtained for the m-th standard shape
function Ψ are the m-th column of the prolongation operator P. The problem presented
below expresses the equality of the residuum of the solution (temperature) interpolant and
residuum of the interpolated function Φm.

Given Ψm, which is a coarse mesh scalar-valued shape function (m = 1, . . . , M), we look for
its scalar-valued counterpart Φm, which is a discrete solution of the following Dirichlet boundary
value problem 

∂
∂xi

(
k ∂Φm

∂xi

)
= − ∂2

∂x2
i
Ψm ∀i =1,2,3, x ∈ Ωj

s ⊂ Ωs ⊂ Ω

Φm = Φ̂m on ∂Ωs

+ interface continuity conditions

(5)
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where k is the thermal conductivity of the material at a given location x, Ωj
s denotes the j-th

constituent of the composite.
For the finite-element-method computations, we need a variational formulation, which

is presented below.
Find Φm ∈ V0 + Φ̂ such that∫
Ω

k∇v ·∇ΦmdΩ =
∫

Ω
v∆ΨmdΩ ∀v ∈ V0 where V0 = {v ∈ H1(Ωs) : v = 0 on ∂Ωs} (6)

This was obtained via the multiplication of (5) by the test function v, and the further
integration of both equation sides over Ωs (integrating by parts was also used at the left-
hand side to transfer the derivative to the test function v). Practically, we additionally
scaled the bubble functions in such a way that the extreme values were equal to 1.

Definition of the Dirichlet boundary conditions Φ̂m needs special treatment regarding
the dimensionality of the problem:

• In 1D, we only solve the reduced Equation (5) (i = 1), obtaining the modified shape
function. For the linear shape functions, we use 0 and 1 as the boundary conditions.
For the “bubble” ones, Φ̂m is equal to zero. Exemplary standard and modified “bubble”
shape functions for this case are shown in Figure 2. The horizontal thick lines represent
the material distribution; thus, the standard shape function (Figure 2a) is the solution
of problem (5) for the material with constant thermal conductivity in Ω1D

s . The solution
presented in Figure 2b was obtained using 50 finite elements, which comply with the
microstructure schematically marked with the horizontal line. The green material is
characterized by a thermal conductivity 10 times larger than the other one;

• In 2D, we first solve the 1D problems along all necessary Ω2D
s edges, as described

above. Then, we use these solutions as Φ̂m for the Equation (5) solved for i = 1, 2. The
exemplary result of such a two-step strategy is presented in Figure 1b;

• In 3D, we need to solve reduced problems (5) along the edges and, subsequently,
within the faces of the domain. Finally, Equation (5) is solved with the Dirichlet
boundary conditions resulting from the lower scales auxiliary computations. A num-
ber of 3D-modified shape function examples for the linear elasticity problem can be
found in [14,18].

(a) (b)

Figure 2. Exemplary “bubble” (a) standard and (b) modified shape functions for the unit 1D coarse element.

3.3. Implementation

We implemented [14,18] MsFEM for the linear elasticity and viscoelasticity problems.
In this paper (Section 4), we present the results of the 2D analysis of the steady-state heat
transfer using modified MsFEM.

To facilitate the multiscale computations, one can take advantage of two approaches,
which are almost equivalent in terms of time saved:
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• For the periodic heterogeneous domains, we compute the effective stiffness matrix
KH once, and use it for every coarse mesh element—the effective load vectors fH are
different in most cases;

• For non-periodic heterogeneous domains, we can parallelize the computations of the
coarse-mesh-element matrices and vectors KH and fH .

The second option is general, and the only time losses are due to the transfer of the
local fine mesh computation (KH and fH) to the global solver.

Another advantage of MsFEM, in the context of computational efficiency, is the
possible low cost of Equation (5) solution. In fact, this is the main computational cost of
the whole approach, since it has to be solved for every standard coarse-element shape
function Ψm. However, it can be observed that Equation (5) leads to a system of algebraic
equations with multiple right-hand sides. Let us denote the number of the functions Ψm as
M, and the time required for the solution of Equation (5) for a single Ψm as tm

Ψ . The overall
computational time TP leading to the full operator P assessment is not, therefore, equal
to M × tm

Ψ but TP � M × tm
Ψ , and it is of the order of tm

Ψ . This is due to the fact that
the computational time necessary to solve the system of linear algebraic equations with
multiple right-hand sides does not significantly exceed the computational time used for a
single system of linear algebraic equations.

In addition to the above discussion, one can observe that the matrix Kh, present in (4),
is the same as the left-hand side of (5) for the arbitrary coarse element. Thus, the assembly
can be performed once and is primarily used for Equation (5), and subsequently for
Equation (4), which can also provide a further speed-up to the computations.

Preserving the global continuity of the solution is necessary in the MsFEM work-
flow. In the case of the irregularly shaped constituents (see Figure 3a), the solution to
Equation (5) along the edges of the coarse elements (denoted with numbers from 1 to 4) is
straightforward. For instance, one of the modified linear shape functions for the common
edge of elements 2 and 4 (marked with a red dotted line) is of the form shown in Figure 3b.

(a) (b)

Figure 3. Exemplary shape function assessment: (a) analyzed domain—colors denote various thermal conductivities of the
constituent, (b) modified linear shape function along the dotted edge.

A situation where the coarse element edge coincides with different material interfaces
needs special attention. When solving Equation (5) along an edge, thermal conductiv-
ity k needs to be used for a given x. Using different values for the common edge in a
loop over coarse elements would not preserve the continuity of the sought function Φ
within a 2D domain. To overcome this problem, we always take the average thermal
conductivity at a given Gauss point ( k(x+ε)+k(x−ε)

2 , where ε is a small vector, orthogonal
to the edge). This operation was performed to provide the continuity of the solution.
If this was skipped, one could observe “jumps” in the solution of the interface (in the
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discussed situation). The accuracy would decrease with the increasing contrast between
the constituents’ parameters.

4. Numerical Results
4.1. Asphalt Concrete

In this test, we analyzed a sample with the dimensions 10 cm × 15 cm, made of
asphalt concrete (AC), as shown in Figure 4b. AC is a standard asphalt mixture that can be
applied for all asphalt layers constituting the flexible pavement structure. It comprises two
main phases: mastic (the asphalt binder mixed with the filler) and the aggregate particles.
The detailed procedure of the AC microstructure generation used for this test is presented
in [24]. Given the prescribed gradation curve in asphalt concrete, we used the approach
based on the shrunk Voronoi cells to generate a microstructure realizing this requirement.
Using the method presented in [24], we generated a non-periodic microstructure in a coarse
element with “periodic boundary conditions”, which enabled us to easily multiply this
geometry. The temperature along the bottom edge was fixed and equal to 15 °C. The upper
edge was subjected to heating with q = 30 W/m. The remaining edges were insulated
(q = 0). Thermal conductivity was equal to 4 W/(mK) for the aggregate particles and
0.8 W/(mK) for the asphalt binder. In this test, we neglected the presence of the air voids.

In Figure 5, we present the temperature distributions obtained using direct FEM
analysis (p = 1) and MsFEM (p = 5). The corresponding cross-section plots, performed at
half the specimen height, are shown in Figure 6. The modified shape functions for the
coarse elements are similar to those presented in Figure 1b. The temperature distributions
for the lower approximation orders, used at the macroscale, were skipped for the sake
of brevity. They are visually indistinguishable from the solution presented in Figure 5b.
Instead, the convergence plots are presented in Figure 7. They illustrate the applicability of
MsFEM with respect to both the number of degrees of freedom and computational time.

We measure the error using the following formula

|Th − TH |
|Th|

(7)

where Th is the value of temperature at a given position obtained using the fine mesh and
TH is the corresponding temperature obtained using the coarse mesh. By the fine mesh
solution, we mean the reference solution plotted in Figure 5a. This was obtained using
about 100,000 degrees of freedom.

(a) (b)

Figure 4. Synthetic asphalt concrete microstructure: (a) within a single coarse element, (b) within a whole domain.
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(a) (b)

Figure 5. Temperature distribution [°C]: (a) direct FEM solution, (b) upscaled solution (plotted for p = 5).

Figure 6. Temperature [°C] along the selected segment (at the half of the specimen height).

(a)

(b)

Figure 7. Convergence test for the increasing approximation orders at the macroscale (logarithmic
scale) w.r.t. (a) number of degrees of freedom and (b) relative time (the ratio of the computational
time used for the upscaled and reference solutions).
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The additional modeling error introduced by the upscaling is very small; even for the
bilinear shape functions used at the macroresolution its norm, it is smaller than 0.4%. It
should be noted that, in this case, we used only 12 degrees of freedom. For the approxi-
mation order equal to 5 at this scale, the number of degrees of freedom (NDOF) is equal
to 176 and the error norm drops to about 0.1%. The number of coarse elements is kept
constant and equal to 6. The reduction in degrees of freedom between the reference and
upscaled solutions range from about 570 to about 8300. The results of this test confirm the
p-convergence of MsFEM. The h-convergence was not studied in this paper. The focus was
on the verification of the higher-order approximation applicability at the macroscale. In our
previous papers [14,23], we also tested this type of convergence for the elasticity problem.

In our academic code, we only implemented the approximation of the order p, equal
up to 5, for the heat transfer problem. The code would have to be modified to numerically
verify the further shape of the convergence plot for this example. It should be noted that the
macroscale p-convergence is affected by the microscale, and the corresponding discretiza-
tion at this scale. A theoretical example of p→ ∞ would be cumbersome for this method.
A prohibitively expensive fine mesh would have to be generated in order to approximate,
with linear shape functions (typically used at the microscale level), a macroscale shape
function of a very high order. This would be the case even for a very simple geometry.
Practically, the order p = 5 is very rarely exceeded in numerical applications.

4.2. Metal Foam

In the second test, we present the application of MsFEM in steady-state heat-transfer
analysis of the metal foam. This lightweight material is used in many industry branches.
In the context of the numerical modeling of heat transfer, the metal foam, analyzed with
the application of any upscaling methods, can be regarded as a very challenging problem.
This is due to the large difference between the constituents’ thermal conductivity. In this
test, we analyzed the idealized aluminum foam sample with a matrix thermal conductivity
equal to 236 W/(mK) and the thermal conductivity of the air was set as 0.0262 W/(mK).
The rectangular sample of dimensions 2 cm × 8 cm was heated along the upper edge with
q = 300 W/m. Along the bottom edge, the temperature is equal to 15 °C and the remaining
edges are insulated. The material distribution, as well as the reference and upscaled
solutions, are presented in Figure 8. The corresponding cross-section plots, performed at
half of the specimen height, are shown in Figure 9. The air voids are modeled as circles
with a random radii distribution.

In this test, the reference solution was obtained using more than 69,000 degrees of
freedom. The fine mesh within a single coarse element is shown in Figure 10.

The upscaled solutions were obtained using 10 ÷ 126 degrees of freedom for the
approximation order p = 1 ÷ 5, consecutively. The number of coarse elements is equal to
4. In Figure 11, we present the error convergence plots for the increasing approximation
orders used at the macroscale. The convergence is demonstrated with respect to both the
number of degrees of freedom and the computational time.

In this test, the L2 norm of error (see Figure 11), measured according to 7, is equal to
about 1.6% for p = 1 at the macroscale, and drops below 1.2% for the approximation order
p = 5. The reduction in the number of degrees of freedom spans from about 550 (p = 5) to
about 6900 (p = 1).

In Figure 12, we present the upscaling error distribution for this test (for p = 1, 3, 5). We
compute the error according to Formula (7). The differences span from about 0.76% (p = 5)
to about 2% (p = 1). These discrepancies are acceptable from the engineering perspective.
The character of error distribution around the air voids closest to the boundary is the
result of a small number of finite elements, generated between this boundary and the void
(see Figure 10).
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(a) (b) (c)

Figure 8. Material distribution (a) and temperature maps [°C]: (b) direct FEM solution, (c) upscaled solution (plotted
for p = 5).

Figure 9. Temperature [°C] along the selected segment (at the half of the specimen height).

Figure 10. Fine mesh within a coarse element.
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(a)

(b)

Figure 11. Convergence test for the increasing approximation orders at the macroscale (logarithmic
scale) w.r.t. (a) number of degrees of freedom and (b) relative time (the ratio of the computational
time used for the upscaled and reference solutions).

Both convergence plots were created using the logarithmic scale to demonstrate the
impact of the higher-order approximation at the macroscale on the result correctness.
Technically, the comparisons between the reference and upscaled solutions are justified,
since the mesh was generated as follows. First, the mesh was generated for a single coarse
element. Then, it was copied several times to model the whole domain. In this manner, we
compare the solutions obtained using meshes of the same densities.

A short discussion regarding the error convergence plots shown in Figures 7b and
11b is necessary. Compared to the NDOF reduction in the upscaled solution, the observed
speed-up is not equally impressive. This is due to the additional time necessary for the
prolongation operator P assessment. It should be noted that this is highly affected by
the implementation itself, as well as the discretizations at both scales. Moreover, MsFEM
and other upscaling methods are addressed for problems, where the direct solutions
are prohibitively computationally expensive or unfeasible to obtain. In this latter case,
the computational time is less important than the ability to obtain the solution.
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(a) (b) (c)

Figure 12. Error distribution for the increasing approximation order: (a) p = 1, (b) p = 3, (c) p = 5, consecutively.

5. Concluding Remarks

In this paper, we proposed a higher-order MsFEM for the steady-state heat-transfer
problem. The main novelty consists of the modified shape function assessment for this
problem, presented in Section 3.2, and numerical confirmation of the upscaled solution
p-convergence for a very large material contrast. We demonstrated the convergence of this
method with respect to both the number of degrees of freedom and the computational time.

The proposed approach was verified on two tests, which were performed for the real-
istic materials. The first presents the application of MsFEM to the steady-state heat-transfer
analysis of the asphalt concrete sample. In this example, the focus was on the method
performance for a non-trivial microstructure, and there was not a large difference between
the constituent thermal conductivity. The second test presented the application of MsFEM
to a very challenging numerical problem. The steady-state heat transfer analysis of the
aluminum foam was presented. In order to illustrate the superiority of the method, the air
voids were included in the numerical modeling. Its presence implies the necessity of special
composite modeling. Namely, we deal with a material with constituent parameters varying
by several orders of magnitude. This is a very difficult problem for any upscaling method.

In both of the presented tests, a large reduction in the degrees of freedom was observed
for the upscaled solutions. Compared to the reference fine mesh solutions, this was equal to
570 ÷ 8300 (asphalt concrete sample) and 550 ÷ 6900 (metal foam sample). It should be noted
that, even for the harder test (metal foam) and the bilinear approximation, the maximum
error is equal to about 2%. In both tests, the p-convergence was observed. Considering
the large disproportion of the material parameters and the obtained NDOF reduction, this
result is acceptable.

In terms of the computational time, the applicability of MsFEM was also demonstrated.
The relative time, i.e., the ratio of the computational time necessary for the upscaled and
reference solutions, is much smaller than the unity for both tests. The possible speed-up is
highly affected by the implementation and discretizations at both scales. Thus, this can be
increased. However, this was not the focus of this study.
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Our further research effort is to extend the proposed framework to thermoelastic
analysis. Such an approach is necessary, e.g., in the context of asphalt concrete modeling,
where the thermal effects are very significant.
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