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Abstract: Recently, recombinant monoclonal antibodies (mAbs) of three Ig isotypes (IgG, IgA,
and IgM) sharing the same anti-spike protein Fab region were developed; we evaluated their
neutralizing abilities using a pseudo-typed lentivirus coated with the SARS-CoV-2 spike protein and
ACE2-transfected Crandell–Rees feline kidney cells as the host cell line. Although each of the anti-
SARS-CoV-2 mAbs was able to neutralize the spike-coated lentiviruses, IgM and IgA neutralized the
viral particles at 225-fold and 125-fold lower concentrations, respectively, than that of IgG. Our finding
that the neutralization ability of Igs with the same Fab domain was dramatically higher for IgM and
IgA than IgG mAbs suggests a strategy for developing effective and affordable antibody therapies
for COVID-19. The efficient neutralization conferred by IgM and IgA mAbs can be explained by their
capacity to bind multiple virions. While several IgG mAbs have been approved as therapeutics by
the FDA, there are currently no IgM or IgA mAbs available. We suggest that mAbs with multiple
antigen-binding sites such as IgM and IgA could be developed as the new generation of therapy.
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Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has caused the second
pandemic of the 21st century, which so far has killed more than 2.5 million people and
infected more than 130 million in 223 territories globally (World Health Organization, 2021).

Current clinical management procedures for coronavirus disease 2019 (COVID-19)
include good hygiene practice, infection diagnosis, and supportive care such as supple-
mental oxygen and mechanical ventilatory support. The United States Food and Drug
Administration (FDA) has approved one drug, remdesivir (Veklury), for the treatment of
COVID-19; however, the World Health Organization does not currently recommend usage
of remdesivir. Favipiravir, an approved drug to treat influenza, has also been adminis-
tered to treat COVID-19, but its antiviral efficacy is still under debate [1]. Unfortunately,
no effective antiviral treatments for COVID-19 are currently available due to our limited
knowledge about SARS-CoV-2 and lengthy drug development time frames [2].

Antibodies collected from convalescent individuals can be used to treat infectious
diseases. Approximately 90% of individuals with mild-to-moderate COVID-19 produce
anti-SARS-CoV-2 antibodies. Immunoglobin (Ig) M and IgA are typically produced within
7 days [3], and IgG development occurs 10–18 days post-infection; antibody titres remain
stable for at least 5 months after infection [4]. Convalescent plasma containing neutralizing
antibodies may be able to modulate the inflammatory response of newly infected COVID-
19 patients and could therefore be used as a therapy for COVID-19 [5]. However, antibody
therapies carry the risk of triggering allergic/anaphylactic reactions, white blood cell/red
blood cell alloimmunization, lung damage and difficulty breathing, haemolytic transfusion
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reactions, and infections [6]. Moreover, the levels of virus-neutralizing antibodies in
convalescent plasma are often too low for effective treatment [7].

The passive administration of monoclonal antibodies (mAbs) is a promising antiviral
therapy for AIDS and COVID-19 [7–9]. Several anti-SARS-CoV-2 mAbs have been iso-
lated from the B cells of infected individuals. The majority of the mAbs isolated target
the receptor-binding domain of the SARS-CoV-2 spike protein, which interacts with the
angiotensin-converting enzyme 2 (ACE2) receptor to initiate the infection process [10–12].
The isolated mAbs effectively neutralize SARS-CoV-2 in vivo [9,13–15]. Combining multi-
ple mAb clones can have a synergetic effect on neutralizing SARS-CoV-2 by recognizing
different epitopes of the receptor-binding domain. Combination treatment of the anti-
SARS-CoV-2 mAbs casirivimab and imdevimab has been approved by the FDA for use in
mild-to-moderately ill high-risk patients [16].

The mass production of mAbs is laborious and expensive. Thus, researchers are
searching for ways to increase mAb potency and reduce the concentration of mAbs required
for effective treatment. The five classes of Igs are IgM, IgD, IgG, IgA, and IgE. All Ig
molecules contain a fragment antigen-binding (Fab) region, which recognizes antigens,
and fragment crystallizable (Fc) regions, which mediate the effector functions of natural
killer cells, macrophages and the complement system. IgG is monomeric, IgM is multimeric
(typically pentameric), and IgA exists in both monomeric and dimeric forms. The number
of antigen molecules trapped by each Ig molecule can influence the effectiveness of virus
neutralization [17].

Recently, recombinant mAbs of three Ig isotypes (IgG, IgA, and IgM) sharing the same
anti-spike protein Fab region were developed; we evaluated their neutralizing abilities
using a pseudo-typed lentivirus coated with the SARS-CoV-2 spike protein and ACE2-
transfected Crandell–Rees feline kidney cells as the host cell line [18].

Although each of the anti-SARS-CoV-2 mAbs was able to neutralize the spike-coated
lentiviruses, IgM and IgA neutralized the viral particles at 225-fold and 125-fold lower
concentrations, respectively, than that of IgG [18] (Figure 1a). Our finding that the neu-
tralization ability of Igs with the same Fab domain was dramatically higher for IgM and
IgA than IgG mAbs suggests a strategy for developing effective and affordable antibody
therapies for COVID-19. The efficient neutralization conferred by IgM and IgA mAbs can
be explained by their capacity to bind multiple virions [18] (Figure 1b). Underlying reasons
could be the enrichment of cross-linking of viral antigens, complement fixing, and the
neutralization of virus-infected cells. This is consistent with a recent report in which the
monomeric form of anti-SARS-CoV-2 IgA found in serum was two-fold less potent than
IgG, while the dimeric, secretory form of IgA was 10-fold more potent than monomeric
IgA [19].

Only the IgG type of mAbs has been clinically applied so far. The reasons could be
ascribed to difficulty of IgM purification compared to IgG and the less-stable nature of
IgM [20]. But these factors can be overcome by the recent progress of techniques such as
new chromatography strategies and Fc glycan modifications [21,22]. Additionally, dimeric
IgA and polymeric IgM can bind polymeric immunoglobulin receptors (pIgR). Owing
to pIgR, dimeric IgA and polymeric IgM are transferred from the lamina propria across
the epithelial barrier to mucosal surfaces [23]. Therefore, IgA and IgM could be injected
intravenously and also administered via the nasal pathway, delivering to mucosal organs
including the lungs.

While several IgG mAbs have been approved as therapeutics by the FDA, there are
currently no IgM or IgA mAbs available. Our finding about efficacy of the polymerization
of antibodies suggests to pharmaceutical companies that mAbs with multiple antigen-
binding sites such as IgM and IgA could be developed as the new generation of therapy.
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Figure 1. (a) Neutralization of pseudo-typed lentivirus coated with the SARS-CoV-2 Spike protein (LpVspike(+)) by anti-

SARS-CoV-2 monoclonal antibodies (mAbs). After pre-incubating LpVspike(+) with each anti-SARS-CoV-2 neutralizing 

mAb at a 100 TCID50 (50% tissue culture infectious dose), the mAb/virus mixtures were added to ACE2-expressing CRFK 

cells and cultured for 48 h, after which luciferase activity was measured. The IgG, IgM, and IgA mAbs were diluted serially 

three-fold, from an initial concentration of 10 μg mL−1 to 0.016 μg mL−1. The x- and y-axes are depicted in logarithmic scale 

[18]. (b) Neutralization of SARS-CoV-2 by three anti-SARS-CoV-2 neutralizing mAbs (IgG, IgM, and IgA). IgG has two 

antigen-binding sites, while dimeric IgA has four antigen-binding sites. Pentameric IgM has 10 antigen-binding sites and 

can bind 10 small antigens; however, due to steric restrictions, only five large viral antigens can be bound by one IgM 

molecule. IgG can bind to only one large antigen, whereas dimeric, trimeric, and pentameric IgA can bind to multiple 

large antigens. 
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Figure 1. (a) Neutralization of pseudo-typed lentivirus coated with the SARS-CoV-2 Spike protein (LpVspike(+)) by anti-
SARS-CoV-2 monoclonal antibodies (mAbs). After pre-incubating LpVspike(+) with each anti-SARS-CoV-2 neutralizing
mAb at a 100 TCID50 (50% tissue culture infectious dose), the mAb/virus mixtures were added to ACE2-expressing CRFK
cells and cultured for 48 h, after which luciferase activity was measured. The IgG, IgM, and IgA mAbs were diluted serially
three-fold, from an initial concentration of 10 µg mL−1 to 0.016 µg mL−1. The x- and y-axes are depicted in logarithmic
scale [18]. (b) Neutralization of SARS-CoV-2 by three anti-SARS-CoV-2 neutralizing mAbs (IgG, IgM, and IgA). IgG has
two antigen-binding sites, while dimeric IgA has four antigen-binding sites. Pentameric IgM has 10 antigen-binding sites
and can bind 10 small antigens; however, due to steric restrictions, only five large viral antigens can be bound by one IgM
molecule. IgG can bind to only one large antigen, whereas dimeric, trimeric, and pentameric IgA can bind to multiple
large antigens.
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