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This review highlights the growing importance of protein epitope mimetics in the discovery of new biologically active
molecules and their potential applications in drug and vaccine research. The focus is on folded b-hairpin mimetics, which
are designed to mimic b-hairpin motifs in biologically important peptides and proteins. An ever-growing number of protein
crystal structures reveal how b-hairpin motifs often play key roles in protein–protein and protein–nucleic acid interactions.
This review illustrates how using protein structures as a starting point for small-molecule mimetic design can provide novel
ligands as protein–protein interaction inhibitors, as protease inhibitors, and as ligands for chemokine receptors and folded
RNA targets, as well as novel antibiotics to combat the growing health threat posed by the emergence of antibiotic-resistant
bacteria. The b-hairpin antibiotics are shown to target a b-barrel outer membrane protein (LptD) in Pseudomonas sp., which is
essential for the biogenesis of the outer cell membrane. Another exciting prospect is that protein epitope mimetics will be of
increasing importance in synthetic vaccine design, in the emerging field of structural vaccinology. Crystal structures of
protective antibodies bound to their pathogen-derived epitopes provide an ideal starting point for the design of synthetic
epitope mimetics. The mimetics can be delivered to the immune system in a highly immunogenic format on the surface of
synthetic virus-like particles. The scientific challenges in molecular design remain great, but the potential significance of
success in this area is even greater. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.
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Introduction

Protein epitope mimetics (PEMs) are rapidly gaining prominence
as a source of novel leads in drug and vaccine research. PEMs are
designed to mimic the three-dimensional (3D) surface regions of
peptides and proteins recognized by biological receptors.
Considerable effort has focused already on the design of PEMs
as potential inhibitors of protein–protein and protein–nucleic
acid interactions [1]. However, exciting opportunities are now
also arising for the use of PEMs in the structure-based design of
synthetic vaccines, targeting a wide range of infectious diseases
and chronic human health problems such as allergies,
Alzheimer’s, and cancer. Research on epitope mimetics has been
driven forwards over the past decade by progress in high-
throughput genomics and proteomics, as well as by the massive
growth in the 3D structural database of biological macromole-
cules and the complexes they form. This is exemplified by the
rapid recent growth in the number of crystal structures of
antibody fragments derived from antibodies that protect against
infection by an invading pathogen, bound to their pathogen-
derived antigens (vide infra). Knowing at a structural level how anti-
bodies recognize protective epitopes on pathogens heralds a new
era of structural vaccinology, where this information can be
exploited in rational structure-based approaches to vaccine design
[2]. Nevertheless, it still remains a considerable scientific challenge
to transform this 3D structural information into rationally designed
molecules with the desired chemical and biological properties.

A crystal structure may reveal the surface shape and comple-
mentarity of protein–protein interfaces but not the energetic
origins of binding affinity and specificity. Part of the problem lies
J. Pept. Sci. 2013; 19: 127–140
in identifying the energetically important interactions that influ-
ence the stability of protein–protein and protein–ligand complexes.
An important advance came with the identification in many
protein–protein interfaces of a select group of ‘hot-spot’
residues that typically make a disproportionately large contribu-
tion to binding energy and can be easily identified by alanine-
scanning mutagenesis [3]. The ‘hot’ residues often cluster on
each surface at the center of interfaces, typically constitute less
than half of the contact surface, and are often surrounded by
other surface residues that appear to contribute relatively little
in binding energy [4–6]. Not surprisingly, hot spots have become
a major focus of interest in protein–protein interaction inhibitor
design [7]. Double-mutant cycle analyses have revealed more
recently that many protein–protein interfaces appear to be built
in a modular fashion, with clusters of residues on each side
involved in networks of strong intracluster interactions but with
weak intercluster connections [5,8–10]. Within a small group of
test protein complexes, the size and extent of cooperativity of
interactions within a network cluster, rather than the surface area
Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.
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of the interface per se, seemed to correlate with higher binding affin-
ity [10]. These and other studies have revealed that a higher network
organization of interactions can occur at protein interfaces, as well as
in protein–ligand and enzyme–inhibitor interactions, which may be
important in accounting for ligand binding affinity and specificity
[11,12]. Finally, the relationship between protein structure and the in-
ternal dynamics is also important for ligand binding. Although for
most proteins, internal dynamics are only poorly or remain uncharac-
terized, new results suggest that both fast and slower internal dy-
namics can influence ligand binding and in ways that are difficult
to predict from only the protein’s ground state structure [13]. Collec-
tively, these insights suggest limitations to the ‘knobs-into-holes’ ap-
proach, based upon maximizing surface complementarity, which is
commonly taken in protein–ligand design studies.
b-Hairpin Epitope Mimetics

Much of the work reviewed here has been focused upon the
design of b-hairpin mimetics, based on motifs seen in protein
crystal structures. b-Hairpin motifs are often found in proteins
to mediate protein–protein and protein–nucleic acid interac-
tions. A b-hairpin is comprised of two consecutive hydrogen-
bonded antiparallel b-strands connected by a loop sequence.
Many variations are observed in backbone conformation in
b-hairpin loops in folded proteins, depending upon the
hydrogen bonding (HB) pattern between the two antiparallel
b-strands and the loop length (for reviews, see [14,15]). This
structural diversity can be captured, at least to some extent, in
b-hairpin mimetics designed by transplanting the hairpin loop
from a protein of known structure onto a semirigid hairpin-
stabilizing template, to afford a macrocyclic, conformationally
constrained, template-bound b-hairpin mimetic [16]. The posi-
tion of backbone cyclization, the conformational bias imposed
by the constraining template, and the influence of the hairpin
loop length and sequence can all influence the conformational
stability of the folded b-hairpin structures. One very convenient
template to use is the dipeptide D-Pro-L-Pro, which itself
is known to adopt a stable type II0 b-turn [17–19]. When
incorporated into cyclic peptide mimetics, this template
nucleates b-hairpin conformations possessing the preferred
right-handed twist typically observed between adjacent anti-
parallel b-strands in proteins. An early example of this approach
was the design of hairpin mimetics based upon b-hairpin
complementarity-determining region (CDR) loops in the anti-
gen-binding site of antibodies (Figure 1). Excellent structural
mimicry was observed between several cyclic hairpin mimetics
and the corresponding CDR loops in antibody Fab fragments
wileyonlinelibrary.com/journal/jpepsci Copyright © 2013 European Pe
[20]. In the design of mimetics, it is important to recognize that
paired cross-strand residues on opposite b-strands can exist at
HB and non-HB (NHB) positions, and their side chains point to
different sides of the hairpin [14,21]. When a b-hairpin loop is
transplanted from a known protein structure onto D-Pro-L-Pro,
the template must be inserted at an NHB position. The
N-terminal and C-terminal loop residues will then be forced into
an HB position, and the ensuing HB pattern should be main-
tained along the hairpin (Figure 1). Lengthening a loop, by
inserting one residue at the C-terminus, causes all the residues
in HB positions along this strand to move into NHB positions,
and vice versa, thus altering the distribution of side chains on
the two sides of the hairpin dramatically. This effect was
observed in a series of b-hairpin mimetics based upon the V3 loop
from the HIV-1 envelope glycoprotein gp120, as discussed in detail
in the following [22]. The template, therefore, stabilizes the hairpin
backbone conformation and fixes the hairpin register.

Another b-hairpin mimetic was based upon a disulfide-bonded
phage display peptide that binds to the Fc region of an antibody. A
crystal structure of the phage peptide bound to the Fc protein
revealed a b-bulge in one of the b-strands [23]. A b-bulge occurs
when two residues on one strand lie opposite a single residue
on the other strand. b-Bulges affect not only the directionality of
the backbone but also and more dramatically the orientation of side
chains with respect to the b-hairpin plane. This feature was also
observed in a b-hairpin mimetic derived from the phage display
peptide (Figure 2A) [24]. The b-bulge places side chains of two con-
secutive residues (Val10–Trp11) onto the same side of the hairpin,
where they can both interact with the surface of the target Fc protein.

Most b-hairpins in proteins of known 3D structure have loops of
≤5 residues [14]. In two residue hairpin loops, type I0 and II0 b-turns
are strongly favored over type I and type II b-turns. A type I0 b-turn
was observed at the tip of a 12-residue b-hairpin mimetic derived
initially from the Tat protein, which binds to a nucleic acid target,
the transactivation response element (TAR) RNA of HIV-1 [25,26].
The mimetic was found to adopt stable b-hairpin structures in free
solution and when bound in themajor groove of the TAR RNA hair-
pin (Figure 2B). In the RNA–peptidomimetic complex, side chains
on both sides of the peptide hairpin are seen to make intimate
contacts with the RNA, involving both hydrophobic and polar
electrostatic interactions [26]. The tip of a b-hairpin may also
contain larger loops [14]. A greater propensity for the occurrence
of cis-peptide bonds is observed in four-residue and five-residue
loops, involving Xaa-Pro peptide bonds in type VI b-turns. cis-
Peptide bonds have been observed in a family of b-hairpin
mimetics derived from a sunflower seed trypsin inhibitor
(Figure 2C). For example, both 11-residue and 7-residue cyclic
mimetics were shown to adopt a stable backbone hairpin fold with
a five-residue loop and a stable cis Ile–Pro peptide bond at the tip of
the hairpin. Both mimetics were also potent trypsin inhibitors [27].

An attractive feature of such b-hairpin mimetics is their ease
of synthesis. Typically, a linear precursor can be assembled by
solid-phase peptide chemistry and then cyclized in solution and
deprotected. This assembly process is robust and amenable to
parallel synthesis methods, allowing the production of small
libraries of hairpin mimetics, for example, containing sequence
variations [28]. Proteinogenic and nonproteinogenic amino acids,
as well as an array of related building blocks, can be used for
synthesis as a means to tailor and optimize the structure and
biological properties of a mimetic. In this way, a family of b-hairpin
peptides that canmimic an a-helical epitope in the p53 protein and
bind with high affinity to its interaction partner, the HDM2 protein
ptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2013; 19: 127–140



Figure 2. b-Hairpin mimetics have been discovered that bind with high affinity to the targets shown. The complexes with the Fc fragment (A) and
trypsin (C) are computer models based upon crystal structures of target-bound phage (1DN2) or natural product (1SFI) leads. The complexes shown with
TAR RNA (2KDQ) (B), HDM2 (2AXI) (D), and CXCR4 (3OE0) (E) are crystal or NMR structures, available in the Protein Data Bank database.

Figure 1. A b-hairpin loop identified in a protein crystal structure (left) can be transplanted onto a D-Pro-L-Pro template (right), resulting in cyclic b-hairpin
mimetic (center). The template in the mimetic helps to stabilize folded b-hairpin conformations and fixes the hairpin register. A comparison of one NMR
structure of a CDR loop mimetic (blue) with the same loop in the protein crystal structure is shown (right) [20].
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(Figure 2D) [29–31], was identified. In other examples, a family of
b-hairpin mimetics that bind with high affinity and specificity to
the chemokine receptor CXCR4 (Figure 2E) [32] was discovered,
and yet another was found to bind and inhibit the bacterial b-barrel
outer membrane (OM) protein LptD (discussed in detail later [33]).
J. Pept. Sci. 2013; 19: 127–140 Copyright © 2013 European Peptide Society a
b-Hairpin mimetics, therefore, based upon folded b-hairpin
motifs found in naturally occurring peptides and proteins, ap-
pear to represent an interesting source of novel ligands, with
obvious potential for applications in drug and vaccine research
[34,35].
nd John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/jpepsci



Figure 3. Naturally occurring b-hairpin-shaped CAPs provide a starting
point for mimetic design. The mimetic L27-11 is a potent antibiotic acting
selectively against Pseudomonas sp. [33]. The bacterial target of L27-11
was shown to be the OM protein LptD. The photoprobe PAL-1, which
contains photoproline in place of L-proline and a biotin tag at position
1, photolabels LptD selectively.
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b-Hairpin Antibiotics Derived from Peptides
of the Innate Immune System

Some very interesting naturally occurring b-hairpin-shaped pep-
tides are found within the large family of cationic antimicrobial
peptides (CAPs), which play important roles in innate immunity
in many different organisms [36–40]. CAPs are produced in verte-
brates (including humans), where they often provide a first line of
defense against bacterial and viral infections. They typically
display a fascinating and complex spectrum of biological activi-
ties. Many show broad-spectrum antimicrobial activity against
Gram-positive and Gram-negative bacteria, as well as antiviral
activity. In addition, many are known to exert complex immuno-
modulatory effects in animals, the mechanisms of which are still
rather poorly characterized. Not surprisingly, therefore, the CAPs
have become a hot target in peptidomimetic research.
Many CAPs kill bacterial cells in the micromolar range by

mechanisms culminating in disruption of the bacterial cell
membrane [41]. The cationic peptides are first attracted electro-
statically to the outer bacterial cell surface because of the
presence of excess negatively charged phospholipids and glyco-
lipids. They then invade and disrupt the membrane bilayer(s),
eventually causing cell lysis. This process was captured recently
in a series of time-resolved quantitative microscopy images of
the human cathelicidin LL-37 attacking Escherichia coli cells [42].
However, CAPs can also lyse (typically at a higher concentration)
mammalian cell membranes, which is a potential source of
toxicity and one factor that has so far prevented their application
for the treatment of systemic human bacterial infections. On
the other hand, some CAPs clearly have different mechanisms
of action, which do not involve membrane lysis (for recent
reviews, see [36–40]).
Although a diverse array of different folded secondary struc-

tures are found among the CAPs, one group possess b-hairpin
structures stabilized by disulfide bridges, including the prote-
grins, polyphemusins, tachyplesin, arenicin, and θ-defensin. One
approach to mimic such CAPs is to exploit the properties of a
hairpin-stabilizing template to generate macrocyclic PEMs with
folded structures (Figure 3). The mimetics may contain sequences
related to the b-hairpin CAPs, but without relying on the
presence of constraining disulfide bridges for folding. The struc-
tural mimicry, coupled with the ease of synthesis (and therefore
optimization), opened the way recently to the discovery of a
new family of cyclic PEMs with a novel type of antimicrobial
activity [33]. This family is represented by the cyclic peptide
L27-11 (Figure 3), which shows antimicrobial activity in the
nanomolar range specifically against Gram-negative Pseudomonas
sp. The lead compound, L27-11, does not cause lysis of bacterial cell
membranes, and only one enantiomer of the molecule has
antimicrobial activity (MIC� 0.01mg/ml against Pseudomonas
aeruginosa); the enantiomeric form is essentially inactive
(MIC ≥ 32 mg/ml). The amino acid sequence of L27-11 is unre-
lated to that of any known naturally occurring CAP, although like
the CAPs, it does contain a mix of hydrophobic (aromatic) and
cationic residues. Given the potent antimicrobial activity against
the important human pathogen P. aeruginosa and its likely novel
mechanism of action, efforts have been made to develop a lead
for clinical development. A related molecule, called POL7001,
has a much-improved stability towards proteolysis in human
plasma, due to the replacement of multiple Lys/Arg residues by
diaminobutyric acid residues [33]. These substitutions do not
have a large effect on antimicrobial activity but remove cleavage
wileyonlinelibrary.com/journal/jpepsci Copyright © 2013 European Pe
sites for trypsin-like proteases. Another lead called POL7080 has
optimized absorption, distribution, metabolism, elimination, and
toxicity properties and has recently completed successfully a
human phase I clinical trial [43]. A new narrow-spectrum antibi-
otic targeting P. aeruginosa would be a welcome addition to
the range of antibiotics currently available to treat serious
hospital-acquired infections, as life-threatening difficult-to-treat
drug-resistant strains are arising with increasing frequency both
in hospitals and in the wider community [44].

The first indication of a likely mechanism of action came from
photoaffinity labeling experiments with the photoprobe PAL-1
(Figure 3) and from a forward genetic screen for resistance deter-
minants in P. aeruginosa [33]. Both approaches identified the
same b-barrel OM protein LptD as a likely target. Most proteins
in the OM of Gram-negative bacteria contain a b-barrel domain
embedded in the lipid bilayer. In contrast, transmembrane
ptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2013; 19: 127–140
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proteins located in the inner membrane (IM) typically contain
a-helical segments. Whereas transmembrane helical domains are
commonly found in human membrane proteins (e.g. G protein-
coupled receptors), b-barrel domains do not occur on the
surface of human cells, although they are found in mitochondrial
membranes. Many crystal structures of b-barrel proteins are
known. For example, the OmpX protein from E. coli has
an eight-strand b-barrel, whereas the E. coli porin OmpF has a
16-strand b-barrel that forms a trimer in the E. coli OM [45]. LptD
is much larger and is predicted to contain a C-terminal b-barrel
domain possibly containing up to 26 b-strands and an N-terminal
domain of unknown structure that sits on the periplasmic side of
themembrane. Over the past 10 years, much has been learnt about
the function of LptD in E. coli and related Gram-negative bacteria
(reviewed in [46–48]). LptD exists in a complex with the lipidated
protein LptE in the OM of most Gram-negative bacteria [49], where
it functions in the final step of lipopolysaccharide (LPS) transloca-
tion to the cell surface.

The IM of Gram-negative bacteria is a lipid bilayer composed of
phospholipids, whereas the OM is an asymmetric bilayer com-
posed of phospholipids in the inner leaflet and LPS in the outer
leaflet (Figure 4) [46]. Divalent Ca2+ and Mg2+ ions cross-link
phosphate groups in LPS molecules, which strengthens consider-
ably the OM and renders it highly impermeable to most small
molecules including most antibiotics. LPS contains a hydrophobic
lipid A moiety, comprising five to seven fatty acid chains
connected to a disaccharide composed of N-acetylglucosamine.
The lipid A is attached typically to an octasaccharide carbohy-
drate core, which in turn is often linked to a highly immunogenic
O-antigen oligosaccharide [50,51]. How the LPS molecules are
transported across two membranes and the intervening
periplasm is only now starting to be unraveled. Seven essential
LPS transport (Lpt) proteins are known to mediate this transport
process [46–48]. The heteromeric ABC transporter (LptBFG) forms
a complex in the IM, together with the membrane protein LptC
(Figure 4). LptC then interacts with the periplasmic protein LptA,
Figure 4. The OM protein LptD is the last component in the LPS
transport pathway in Gram-negative bacteria [46–48]. LptD translocates
LPS from the periplasm into the outer leaflet of the asymmetric OM.

J. Pept. Sci. 2013; 19: 127–140 Copyright © 2013 European Peptide Society a
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which in a head-to-tail oligomeric form likely creates a bridge
across the periplasm. The LptA bridge makes contact to the
N-terminal periplasmic domain of LptD in the OM [52]. This trans-
envelope protein bridge provides a highway across which LPS
molecules are shuttled from the IM to the OM in an ATP-dependent
process [53]. The lumen of the C-terminal b-barrel domain of LptD
appears to be at least partially occupied by LptE [49]. The LptD/E
complex accepts LPS molecules from LptA in the periplasm and
subsequently translocates them by an unknown mechanism into
the outer leaflet. Upon exposure to L27-11, large accumulations
of membrane-like material can be seen by transmission electron
microscopy associated with the OM within P. aeruginosa cells [33].
Similar accumulations of membrane-like material are seen in E. coli
when lptD, or other essential genes in the Lpt pathway, are down-
regulated [54,55], most likely because of the accumulation of LPS
molecules in the IM.

A photolabeling experiment demonstrated that the antibiotic
binds to LptD [33]. The photoprobe (PAL-1) (Figure 3) contains
a photolabile amino acid L-photoproline, as well as a biotinylated
Glu residue at position 1 in the hairpin. This photoprobe is still a
potent antibiotic (MIC� 0.05 mg/ml) against P. aeruginosa, despite
the presence of the biotinylated side chain. After UV irradiation of
cells exposed to PAL-1, a selective photolabeling of the LptD
protein could be detected in membrane protein extracts. Recent
studies provided further evidence that L27-11 inhibits LPS trans-
port to the OM in P. aeruginosa [56]. In particular, L27-11 elicited
changes to LPS structure and membrane morphology in wild-
type P. aeruginosa cells that were identical to those seen in cells
of a conditional mutant in which the lptD gene was downregu-
lated. The results obtained are consistent with restricted LPS
translocation to the OM, caused either by inhibition by L27-11
or by downregulation of lptD and its accumulation in the IM.

Recently, the folding pathway for native LptD in the E. coli OM
has been studied in detail. LptE is required for LptD to fold
correctly in E. coli [57]. The b-barrel domain is folded in the OM
in a process catalyzed by the Bam machinery, a conserved com-
plex of proteins responsible for folding and inserting b-barrel
proteins in the OM of Gram-negative bacteria [58]. The rate-
determining step in LptD/E assembly appears to be b-barrel
folding, which is remarkably slow (20min, corresponding to about
one third of the cell cycle) [59]. After the b-barrel is folded, an
intermediate form of LptD is a substrate for the periplasmic
oxidase DsbA, which catalyzes formation of two nonconsecutive
intramolecular disulfide bonds [59,60]. The E. coli LptD contains four
Cys residues, two in the periplasmic domain (residue 25-202; Cys31

and Cys173) and two in the b-barrel domain (residue 203-784;
Cys724 and Cys725). Interestingly, Cys residues corresponding to
both Cys173 and Cys725 are conserved in >95% of over 1000
Gram-negative LptD proteins, including that from P. aeruginosa.
The LptD from P. aeruginosa PAO1 strain is larger (residue
34-924) than that from E. coli, with much of the difference arising
because of a �90-residue insertion within the N-terminal peri-
plasmic domain (Figure 5). Cysteines corresponding to those
found in E. coli LptD are present in the P. aeruginosa LptD
(Cys39, Cys270, Cys858, and Cys859). However, two additional
cysteines (Cys49 and Cys134) are present in P. aeruginosa LptD,
flanking the �90-residue insert within the periplasmic domain.
Although LptD is required in most Gram-negative bacteria for
biogenesis of the OM, it is clear that differences in size and
sequence of the protein do occur in different microorganisms,
and these differences may account for the unusual selectivity
of the b-hairpin antibiotic for Pseudomonas sp.
nd John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/jpepsci



Figure 5. The LptD OM protein is essential in both P. aeruginosa (PA) and
E. coli (EC), and the sequences share significant homology. The folded
proteins lack the signal peptide (residues 1–33 in PA or residues 1–24 in
EC), both contain a periplasmic domain and a C-terminal b-barrel domain.
However, differences in sequence, length, and the number of disulfide
bonds (proven in EC, full lines [59]; likely in PA, dotted lines) are seen
between LptD in these organisms. These sequence differencesmay account
for the selective action of the antibiotic L27-11 for Pseudomonas sp.
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There have so far been only a few reports of CAPs that interact
with OM proteins or lipoproteins in bacteria. Another example is
the recently reported binding of a-helical CAPs to the lipoprotein
OprI in P. aeruginosa [61]. It is a tantalizing prospect, however,
that other CAPs or mimetics might be found that target, for
example, LptD or other important membrane proteins in other
Gram-negative human pathogens.
Epitopes Recognized by Protective Antibodies

Vaccine development began in the 18th century with the use of
whole microorganisms to generate protective immune responses
in humans. However, live attenuated and inactivated whole viral
and bacterial vaccines still belong to some of the most successful
human vaccines in use today, e.g. oral polio, measles (standalone
and in measles/mumps/rubella combination), influenza, typhoid,
cholera, and Bacillus Calmette–Guérin, although there have been
recurring problems associated with product contamination,
genetic instability, and residual virulence. Although some early
vaccines were based upon protein subunits or toxins that could
be extracted from bacterial cells (e.g. diphtheria, tetanus, flu,
anthrax, and rabies), it was the emergence of the tools of molec-
ular biology that signaled a new era in vaccine development. The
stimulation of protective antibody responses is still key to the
success of almost all of the preventive vaccines in use today.
Rather than using whole microorganisms as vaccines, identifying
and producing individual molecular targets of protective
wileyonlinelibrary.com/journal/jpepsci Copyright © 2013 European Pe
antibodies, such as surface proteins or polysaccharide capsules,
became an important focus of vaccine research. The challenging
problem of identifying suitable surface antigens on bacterial
pathogens, able to confer protection, has been approached more
recently by applying large-scale genomic and proteomic technol-
ogies. Putative surface proteins on bacteria can be identified by
bioinformatics, produced as recombinant proteins, and tested
immunologically in a high-throughput fashion for their ability
to elicit protective immune responses, an empirical approach
that has been termed ‘reverse vaccinology’ [62–65]. The success
of this approach in identifying protective antigens has now
been demonstrated, even in some cases where conventional
approaches to vaccine development had failed [66–68]. However,
the use of recombinant proteins as vaccines continues to rely on
the co-administration of suitable adjuvants to provide a sufficient
boost to the immune system, and this remains problematic
because of adjuvant toxicity [69].

Over the past few years, advances in structural biology have
led to a dramatic increase in structural knowledge about how
antibodies recognize vaccine antigens. The crystal structure of a
pathogen-derived antigen bound to a cognate protective anti-
body reveals the folded antigen conformation against which a
protective humoral immune response was elicited. This raises
the prospect of a new era in ‘rational’ vaccine development,
called structural vaccinology [2,70,71], in which this 3D structural
information is used to rationally design novel and improved
vaccine antigens. Several recent examples document how this
approach can lead to the development of new viral and bacterial
vaccine candidates [2,72,73]. The implications of this approach
could be substantial, given the many pathogens for which no
vaccines presently exist (e.g. malaria, HIV-1, hepatitis C, and
Staphylococcus aureus), as well as the prospect that novel immu-
notherapeutic approaches might be developed to treat chronic
human diseases, such as cancer.

Recently published crystal structures of protective monoclonal
antibody (mAb) fragments bound to their protective epitopes are
listed in Table 1. Most examples represent epitopes on viral
proteins, with the largest number being from HIV-1. In many
cases, new biological methods were exploited to isolate these
neutralizing antibodies from human sources (e.g. by human
memory B-cell immortalization [74]). Viruses typically display only
a few proteins on their surface, which facilitates the identification
of suitable antigens and their protective epitopes.

How has structural knowledge of epitopes recognized by
protective antibodies been used for vaccine design? One
approach involves epitope grafting, using the tools of protein
engineering. Here, the epitope of interest is transferred onto a
new protein scaffold (perhaps more stable, or easier to produce,
or more immunogenic) that can display the epitope in the
correctly folded conformation. Several recent examples docu-
ment how structure-based methods and modeling can allow
prediction of proteins that might be useful as scaffolds for the
newly grafted epitopes [72,75–83]. In some cases, however, it
might still be technically difficult to produce the correctly folded
protein subunit vaccine. Moreover, other nonprotective epitopes
on the surface of a recombinant protein may still dominate the
immune response, thereby deflecting attention away from the
protective epitope and leading to a poorly effective vaccine. Also,
co-administration with an adjuvant will again be required to
boost immunogenicity.

An alternative approach is to exploit advances in synthetic
peptide and protein engineering, which use the tools of organic
ptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2013; 19: 127–140



Table 1. Crystal structures of protective mAb fragments bound to their target epitopes derived from various human pathogens

Target antigen/protective monoclonal antibody Epitope conformation Reference Protein Data Bank file

HIV-1
Membrane proximal external region of gp41 recognized

by mAb 10E8

a-Helical [125] 4G6F

MPER of gp41 recognized by mAb 2F5 a-Helical [126–128] 1TJG/H/I 2F5B 3D0L

MPER of gp41 recognized by mAb 4E10 a-Helical [87,129,130] 1TZG 2FX7/8/9 3H3P

MPER of gp41 recognized by mAb Z13/Z13e1 a-Helical [131] 3FN0

gp41 inner core HR1 trimer bound by human mAb D5 a-Helical [132] 2CMR

gp41 inner core HR1 trimer bound by mAb 8066 a-Helical [133] 3MA9

gp41 inner core HR1 trimer bound by human mAb HK20 a-Helical [134] 2XRA

V1/V2 domain of gp120 from two HIV-1 strains recognized

by mAb PG9

b-Hairpin glycosylated [79] 3U4E 3U2S

V3 loop of gp120 bound to human mAb 447-52D b-Hairpin [104,105] 1Q1J 2ESX

V3 loop of gp120 bound to human mAb F425-B4e8 b-Hairpin [135] 2QSC

V3 loop of gp120 bound to human mAbs 537-10D

and 447-52D

b-Hairpin [103] 3GHB 3GHE

V3 loop of gp120 bound to human mAbs 2557,

1006-15D, 3074, and 268-D

b-Hairpin [136] 3MLR/S/T/U/V/W/X/Y/Z 3GO1

V3 loop of gp120 bound to human mAb 2219 b-Hairpin [102] 2B0S/2B1H/2B1A

CD4 binding site on gp120 bound by mAb 17b b-Sheet [137] 1GC1

CD4 binding site on gp120 bound by mAb b12 Complex [138] 2NY7

CD4 binding site on gp120 bound by mAb VRC01 Complex [139] 3NGB

CD4 binding site on gp120 bound by mAbs VRC-PG04

and VRC03

Complex [140] 3SE8/9

CD4 binding site on gp120 bound by mAbs b13 and F105 Complex [141] 3IDX/Yc

Hepatitis C virus
Hepatitis C virus envelope glycoprotein bound to mAb HCV1 b-Hairpin [142] 4DGY 4DGV

Envelope glycoprotein and mAb AP33 b-Hairpin [143,144] 4GAG/J/Y

Influenza virus
H5N1 hemagglutinin stem region bound to mAb F10 (Fv) a-Helical [145] 3FKU

Hemagglutinin stem region bound to mAb CR6261 a-Helical [146] 3GBN/M

Hemagglutinin head bound to mAb CH65 Complex [147] 3SM5

Hemagglutinin stem region bound to mAb CR8020 Hairpin + loop [148] 3SDY

Hemagglutinin H1N1 with neutralizing human mAb 2D1 Complex [149] 3LZF

Sialic acid binding site on hemagglutinin +mAb S139/1 Complex [150] 4GMS/T

Respiratory syncytial virus
RSV F glycoprotein-derived peptide bound to motavizumab Helix–loop–helix [151,152] 3IXT

RSV F glycoprotein-derived peptide bound to mAb 101F Extended [152,153] 3O41/45

Human metapneumovirus
Anti-HMPV F-neutralizing mAb DS7 Complex [154] 4DAG

Ebola virus
Ebola-neutralizing mAb KZ52 Complex [155] 3CSY/3INU

Murine mAb 13F6-1-2 protecting against Ebola in mice Linear [156] 2QHR

Ebola-neutralizing mAb 14G7 Tandem b-hairpin [157] 2Y6S

Dengue virus
Neutralizing mouse mAb 4E11 Complex [158] 3UZQ/V/E/3UYP

Dengue-neutralizing mAb 1a1D-2 Complex [159] 2R29 2R69

Serotype cross-reactive and neutralizing mouse mAb 2H12 Complex/hairpin loop [160] 4AL8/4ALA/4AM0

Hepatitis B virus
Neutralizing mAb HzKR127 b+310 helical turns [161] 2EH8

Bacillus anthracis
Anti-anthrax protective antigen mAb M18 Complex [162] 3ETB
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and peptide chemistry for the production of folded proteins and
related epitope mimetics. Conformational flexibility is one key
parameter that must be addressed in the design of synthetic
J. Pept. Sci. 2013; 19: 127–140 Copyright © 2013 European Peptide Society a
epitope mimetics. The use of flexible peptides as immunogens
often elicits antibodies that bind weakly (≥micromolar KD) to con-
formational epitopes in folded proteins. However, antibodies that
nd John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/jpepsci
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bind tightly (≤nanomolar KD) to an antigen are usually required to
protect against infection, and their efficient production in an immune
response will require the use of correctly folded epitope mimetics.

Protein Epitope Mimetics in Vaccine Design

Many of the protective epitopes shown in Table 1 contain loop, b-
hairpin, or a-helical motifs. So conformationally constrained syn-
thetic epitope mimetics based on these structures may be useful
as immunogens in vaccine design. For example, a number of differ-
ent technologies for the stabilization of helical conformations in pep-
tides have been developed (reviewed in [84]). Helical conformations
can be stabilized through the insertion of amino acids with restricted
conformational space, such as a-methylated amino acids (e.g. Aib),
by side-chain cross-linking or ‘stapling’, and the use of helix caps
and hydrogen-bond surrogates. Some of these approaches have
been explored already in vaccine design efforts, for example, the
use of Aib residues to favor helical turns [85–88], hydrazone cross-
links as hydrogen bond surrogates [89–91], Freidinger-like lactams
and pseudoprolines to stabilize turns [92,93], and cross-linked (or
‘stapled’) side chains to stabilize helical epitopes [87,94]. It seems
likely that these technologies will continue to be refined and applied
to larger synthetic protein and glycoprotein scaffolds.
b-Hairpin mimetics might also be very useful in synthetic vaccine

design (Table 1). For example, the b-hairpin V3 loop is a highly im-
munogenic region of the HIV-1 envelope glycoprotein gp120 that
becomes exposed on the viral surface once the CD4 receptor on
target cells binds to the viral gp120 glycoprotein (Figure 6) [95].
The tip of the V3 loop in gp120 is then able to dock with the cellular
chemokine coreceptor (CXCR4 or CCR5), which ultimately leads to vi-
rus entry into the cell. Many crystal structures are now available for
neutralizing antibody fragments bound to peptides derived from
the HIV-1-gp120 V3 loop (Table 1). The V3 loop has been the focus
of many earlier studies in epitope mimetic design. V3-loop-derived
linear peptides themselves are flexible in solution and do not adopt
folded structures. The strategies used so far for loop mimetic design
include macrocyclization of linear peptides [96,97], introduction of
nonnatural amino acids to stabilize turn conformations [85,91–93],
or introduction of one or more cross-strand disulfide bridges to sta-
bilize loop conformations [98–100].
V3 loopmimetics can also be designed by transplanting the loop

sequences from gp120 onto the hairpin-stabilizing D-Pro-L-Pro
template discussed earlier [22]. The D-Pro-L-Pro template can serve
Figure 6. Crystal structure (Protein Data Bank 2B4C) of a complex
formed by an engineered gp120 HIV-1 glycoprotein with domains from
the cellular receptor CD4 and with a mAb Fab fragment [124]. The V3 loop
of gp120 is in red.

wileyonlinelibrary.com/journal/jpepsci Copyright © 2013 European Pe
both to stabilize b-hairpin conformations and to fix the hairpin
register of amino acids in HB and NHB positions. Crystal structures
of V3-derived peptides bound to the mAbs F425-B4e8 [101],
2219 [102], 537-10D [103], and 447-52D [104,105] reveal the V3 loop
in b-hairpin conformations that differ in the hairpin register. With
mAb 2219, the I307 and F317 side chains point to the same side
of the hairpin and occupy an HB position, whereas with
mAb F425-B4e8, I307 and Y318 are the HB pair, and in the complex
with 537-10D, the pair H308 and F317 are at an HB position. Four b-
hairpin mimetics (called IY, IF, HF, and HY, Figure 7) were designed
by transplanting each loop such that an HB pair is directly attached
to the D-Pro-L-Pro template. 1H-NMR studies revealed for each
mimetic an extensive network of long-range NOEs between back-
bone protons in cross-strand residue pairs, as well as between the
side chains of residues located on the same face of the hairpin,
which leaves no doubt that b-hairpin structures are highly
populated and adopt the expected hairpin registers.
Synthetic Virus-like Particles in Vaccine Design

The synthetic epitope mimetics described earlier are not
expected to be immunogenic on their own and so require an
appropriate method of delivery to the immune system. The tradi-
tional approach taken to generate immune responses against
weakly immunogenic peptides and other small molecules (e.g.
haptens) involves coupling to a carrier protein, such as keyhole
limpet hemocyanin, and administration by subcutaneous injec-
tion together with an immunostimulatory adjuvant. Often, the
effects upon peptide and protein structure of both the conjuga-
tion process and administration with either an oil-in-water-based
or particulate (e.g. alum) adjuvant are unknown. These problems
of antigen delivery have long been recognized and fortunately
can now be addressed as a result of progress made over recent
decades in understanding, at cellular and molecular levels, the
mechanisms by which the immune system is activated [106].

The immune system is activated very efficiently by viruses and
bacteria because they incorporate key signals that initiate an
immune response. Thus, viruses and bacteria display a repetitive
and closely spaced array of epitopes across their surface. Such an
arrangement of epitopes is specifically recognized as foreign by
B cells [107]. Multiple copies of an epitope on the pathogen
may engage multiple B-cell receptors (BCRs) on individual B cells.
The cross-linking of multiple BCRs at the cell surface generates a
powerful signal, which initiates the process of B-cell activation
and maturation [108]. In addition, the proteins in viruses and
bacteria contain peptide sequences that can function as T-cell
epitopes to activate the T-cell arm of the immune system, includ-
ing the CD4+ T cells that provide crucial help to B cells and the
CD8+ T cells required for cell-mediated immunity [109]. Further-
more, viruses are typically 20–100-nm spheres, an ideal size and
shape for trafficking through the lymphatic system to the many
lymph nodes (�450) in the human body and then for presenta-
tion to B cells by follicular dendritic cells (DCs) [110]. Circulating
naïve B and T lymphocytes halt in the lymph nodes, where they
encounter antigens and antigen-presenting cells (APCs) draining
through in interstitial fluids from peripheral tissues. Here, intact
antigens are presented to B cells whereupon epitope BCR recog-
nition can occur. APCs present T-cell epitopes as linear peptides
bound to major histocompatibility complex molecules for recog-
nition by T-cell receptors on T cells. The B and T cells become
activated in a dance that finally leads to the production of
ptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2013; 19: 127–140



Figure 7. Design of four b-hairpin mimetics (called IY, IF, HF, and HY) based upon V3-derived peptides bound to four different neutralizing mAbs [163].
The hairpin loops have different hairpin registers in the four complexes. The hairpin registers are fixed after transfer to the D-Pro-L-Pro template. For
each, the left side shows the bound V3 loop conformation taken from the Protein Data Bank file, and the right side shows one typical NMR structure
of each mimetic. The template is shown in orange at the bottom of each structure.
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antibody molecules optimized to bind the antigen [111]. Finally,
viruses and bacteria contain molecules unique to themselves
(called pathogen-associated molecular patterns), which the
innate immune system recognizes as being foreign, using pattern
recognition receptors, such as the Toll-like receptors [112,113].
The pathogens can interact directly with several types of human
immunocytes containing pattern recognition receptors, including
monocytes, macrophages, and myeloid and plasmacytoid DCs.
These interactions induce various innate immune responses,
including the production of proinflammatory cytokines, as well
as lead to the maturation and migration of DCs to lymph nodes,
thereby promoting adaptive immune responses.

One promising approach to vaccine delivery exploits the potent
immunostimulatory properties of virus-like particles (VLPs) and re-
lated artificial nanoparticles [114–116]. VLPs may integrate the key
immune stimulatory signals in one nano-sized particle, resulting in
potent immunological activity [114]. VLPs are typically made of viral
capsid proteins that self-assemble into particulate structures
(20–100-nm diameter) closely resembling the natural viruses from
which they are derived. They lack genetic material and so are nonin-
fectious and replication incompetent. Examples of VLP-based
vaccines in current use are the hepatitis B vaccine made from the
surface antigen [117] and the human papillomavirus vaccine
(Cervarix and Gardasil) made from the L1 surface protein [118],
which both spontaneously form VLPs in solution. The hepatitis B
vaccinemade from the surface antigen was also the first widely used
recombinant protein vaccine to be invented.

Many other VLP-based systems are now under development for
use as carriers in vaccine research and development [114,115].
One idea is to engineer the capsid proteins so that protective foreign
epitopes can be inserted and displayed on the surface of the parti-
cle. Of course, suitable sites in the capsid protein must be identified,
into which foreign domains containing the protective epitope can
J. Pept. Sci. 2013; 19: 127–140 Copyright © 2013 European Peptide Society a
be inserted and displayed on the VLP surface. The inserted domain
must fold correctly, and the engineered capsid protein must still be
able to self-assemble into VLPs, which is not always easy to predict.
Alternatively, a chemical coupling approach can be taken to conju-
gate epitopes to VLPs. Apart from biotechnological VLPs, however,
there is also great interest in chemical approaches to VLP-like nano-
particles for use as vaccine carriers [116].

One chemical approach reported recently exploits the unique
chemical and physical properties of designed synthetic lipopep-
tide building blocks, which in aqueous buffers spontaneously
self-assemble into homogeneous nanoparticles in the 20–30-nm
size range, called synthetic VLPs (SVLPs) (Figure 8) [22,119,120].
The lipopeptide building blocks include a coiled-coil sequence
capable of forming a parallel trimeric helical bundle, fused to a
CD4+ T-helper epitope. The lipid portion is typically a phospho-
lipid (phosphatidylethanolamine) or a bacterial Toll-like receptor
ligand such as Pam2Cys or Pam3Cys, which is coupled to the
terminus of the peptide chain. A synthetic protein epitope
mimetic can then be coupled close to the other end of the
peptide chain. Self-assembly into SVLPs then occurs spontane-
ously in aqueous solution, driven by formation of trimeric helical
bundles and then by association of multiple bundles into a
micelle-like particle with the lipid chains buried in the core of
the nanoparticle [120,121]. The dimensions (20–30-nm diameter)
and constitution (peptide + lipid) of the nanoparticles resemble
those of some natural viruses, but the SVLPs are produced by
chemical synthesis. SVLPs present a dense array of about 70–80
copies of the epitope mimetic over the surface of the nanoparti-
cle. A recent study showed that DCs bind rapidly to SVLPs, which
are then internalized using multiple endocytic routes, dominated
by caveolin-independent lipid raft-mediated macropinocytosis
[122]. Processing then occurs more slowly by proteolytic cleavage
of the lipopeptides. The processing is highly effective, however,
nd John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/jpepsci



Figure 8. SVLPs are produced by spontaneous self-assembly from
lipopeptide building blocks, in which the peptide sequence includes a
coiled coil linked to a T-cell epitope. Epitope mimetics can be linked to
the lipopeptide, for example, the V3 mimetic shown can be linked to a
C-terminal Cys residue. The model of the resulting SVLP nanoparticle is
based upon extensive biophysical characterization [22,119–121].
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as evidenced by the strong immune responses induced by SVLPs
in animals, without need for external adjuvants [22,119,120].
Epitopemimetics can be linked to SVLPs site specifically andwith

high efficiency using a variety of coupling chemistries. For example,
a b-hairpin V3 loop mimetic was coupled to SVLPs using a unique
Cys residue near the C-terminus of the lipopeptide building block
(Figure 8) [22]. A computer model of the resulting SVLPs shown in
Figure 8 is supported by extensive biophysical data and illustrates
the dense array of epitope mimetics displayed on the particle
surface. The V3-SVLPs are highly immunogenic in animal models.
In rabbits, high titers of V3-mimetic-specific IgG antibodies are
induced by these V3-SVLPs, including antibodies that bind specifi-
cally to recombinant gp120 by ELISA [22]. The HIV-1-neutralizing
activity of the affinity purified anti-V3 mimetic IgG was also tested
using a whole-cell luciferase reporter-gene assay, based upon a sin-
gle round infection with molecularly cloned Env-pseudotyped
viruses. However, in this experiment, only infection by the labora-
tory MN strain was successfully inhibited by the IgG. No inhibition
was seen for neutralization-insensitive tier 2 HIV-1 strains isolated
from HIV-infected humans, unless the viruses were first engineered
by deleting the V1V2 loop region. This result, however, is in agree-
ment with recent studies showing that V3 loop antibodies often fail
to reach their target on intact envelope trimers on the viral surface
wileyonlinelibrary.com/journal/jpepsci Copyright © 2013 European Pe
because of active shielding by the V1V2 loops, which in most cases
results in only marginal or no neutralization activity [123]. New
strategies that overcome this V1V2 shielding and/or that directly
target protective epitopes in V1V2 are now needed [79].

Nevertheless, these studies illustrate one approach for the
structure-based rational design of vaccine candidates. The
approach is structure and chemistry based and should allow
the design of vaccine candidates that focus the immune
response on selected protective epitopes, delivered in a highly
immunogenic format. The next step will be to demonstrate that
a functional protective vaccine can be made using this approach.
There are certainly plenty of important targets for vaccine
research awaiting attention.
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