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Metabolomics is an emerging field that is based on the quantitative measurement of as many small organic molecules occurring
in a biological sample as possible. Due to recent technical advances, metabolomics can now be used widely as an analytical high-
throughput technology in drug testing and epidemiological metabolome and genome wide association studies. Analogous to chip-
based gene expression analyses, the enormous amount of data produced by modern kit-based metabolomics experiments poses
new challenges regarding their biological interpretation in the context of various sample phenotypes. We developed metaP-server
to facilitate data interpretation. metaP-server provides automated and standardized data analysis for quantitative metabolomics
data, covering the following steps from data acquisition to biological interpretation: (i) data quality checks, (ii) estimation
of reproducibility and batch effects, (iii) hypothesis tests for multiple categorical phenotypes, (iv) correlation tests for metric
phenotypes, (v) optionally including all possible pairs of metabolite concentration ratios, (vi) principal component analysis (PCA),
and (vii) mapping of metabolites onto colored KEGG pathway maps. Graphical output is clickable and cross-linked to sample and
metabolite identifiers. Interactive coloring of PCA and bar plots by phenotype facilitates on-line data exploration. For users of
commercial metabolomics kits, cross-references to the HMDB, LipidMaps, KEGG, PubChem, and CAS databases are provided.
metaP-server is freely accessible at http://metabolomics.helmholtz-muenchen.de/metap2/.

1. Introduction

Metabolomics is an emerging “omics” technology that
focuses on the identification and quantification of all
or, in practice, the largest possible set of low-molecular-
weight metabolites in a biological sample. In the series
of the “omics” technologies genomics-transcriptomics-
proteomics-metabolomics, metabolomics describes the
physiological endpoint arising from the interplay of all
regulatory and enzymatic processes in the biological system
under consideration at a given time [1–4]. In other words,
metabolomics analyses show the net effect of environmental
and genomic factors influencing the status of a biological
system.

In the recent years, advances in nuclear magnetic res-
onance (NMR) spectroscopy and mass spectrometry (MS)

have allowed for quantitating hundreds of metabolites
in blood and urine samples in a high-throughput man-
ner. Due to the development of modern MS/MS-based
analytical pipelines and metabolomics kits, application of
metabolomics analyses is no longer restricted to specialized
laboratories but can be used widely in biological and
pharmaceutical research. As an example, metabolomics kits
from Biocrates (AbsoluteIDQ) have been used to monitor
effects of specific drugs on the metabolism of diabetic and
nondiabetic mice [5] and in epidemiological studies to gain
new insights into the effects of nutrition or genotypes on
the human metabolism [6–8]. Other possible applications
could be to data acquired on a set of different commercial
platforms, such as MS data provided by Metabolon [9],
Phenomenome [10], or NMR data processed using the
Chenomx software suite [11].
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Analogous to chip-based gene expression analyses, the
enormous amount of data produced in high-throughput
metabolomics experiments poses new challenges for
automated data analysis. Various commercial and free
stand-alone analysis tools dedicated to metabolomics
data support experimentalists in aligning and binning
peaks in MS and NMR spectra, provide functionality
for annotating peaks with metabolites, or offer
statistical analysis [12–14]. Recently, two web-based
metabolomics data analysis tools have been published: (i)
MetaboAnalyst (http://www.metaboanalyst.ca) [15], a tool
that provides data analysis focusing on biomarker discovery
and classification with respect to a single two-class
phenotype (e.g., the sample phenotype treatment with the
two classes treated and untreated), and (ii) MeltDB (http://
www.cebitec.uni-bielefeld.de/groups/brf/software/meltdb
info/index.html) [16], which provides a data analysis
pipeline for raw GC- and LC-MS data sets including
metabolite identification. For preprocessed metabolite
quantities, MeltDB offers statistical data analyses (e.g.,
t-test and PCA) with respect to the classes of a single
phenotype. In contrast to MetaboAnalyst and metaP-
server, MeltDB requires login and password to get access.
While MetaboAnalyst and MetltDB are valuable tools for
estimating the associations of a single phenotype with
metabolite quantities, many experiments involve more
than one phenotype with often more than two classes per
phenotype. As an example, a metabolomics experiment for
drug testing in mice can comprise phenotypes such as sex,
strain (e.g., wild type/knock out strain), drug dose (e.g.,
0/20/40 mg), and days of treatment (days 1–5). In this case,
each sample measured is linked to the classes of multiple
different phenotypes (e.g., Sample01: female; wild type;
20 mg; day 2). For such experiments, new tools are needed
in order to get an overview over the observed trends in the
metabolomics data across all phenotypes involved.

Here, we present metaP-server, a web-based, easy-to-use
analysis tool for the statistical analysis of metabolomics data.
In contrast to the existing web-servers, metaP-server mainly
focuses on the interactive exploration and interpretation
of metabolomics data (whether metabolite concentrations
or peak lists) in the context of multiple multiclass (e.g.,
“treated with drug A, B, C”) and metric (e.g., weight,
age) sample phenotypes. Thus, the metaP-server supports
experimentalist in gaining first insights into how the dif-
ferent sample phenotypes affect the metabolite quantities
observed. These insights facilitate choosing the data subsets
and phenotypes that should be analyzed by using further
statistical methods for classification and biomarker discovery
(as, e.g., provided by MetaboAnalyst). metaP-server provides
hypothesis tests and correlation tests for nonmetric and
metric phenotypes, optionally including all possible pairs
of metabolite concentration ratios as quantitative traits. As
shown in previous metabolomics studies, using ratios can
reduce noise caused by individual differences in absolute
metabolite concentrations and, thus, strengthen the asso-
ciation [5, 7, 8]. Furthermore, the server offers principal
component analysis (PCA). PCA plots and barplots showing
the concentration of a particular metabolite in the samples

can be colored interactively by phenotypes. Moreover,
the graphical output is clickable and cross-linked to the
respective sample or metabolite pages. Concentrations of
metabolites in samples relative to the mean are mapped onto
colored KEGG pathway maps. Interactive coloring, cross-
linking, and pathway mapping particularly aim to facilitate
on-line data exploration in the context of multiple pheno-
types. For the special needs of kit-based high-throughput
experiments, we implemented functions for the estimation of
reproducibility and batch effects, as well as outlier detection.
For users of the Biocrates AbsoluteIDQ kit, original cross
references to the HMDB [17], LipidMaps [18], KEGG [19],
PubChem [20], and CAS databases have been derived and
are freely provided. The metaP-server is freely accessible at
http://metabolomics.helmholtz-muenchen.de/metap2/.

2. Data Input

To start a new analysis in metaP-server (link: “Start a new
run” on the main page), users are asked to provide the
metabolomics quantitation data table in semicolon separated
format, which can be exported from most spreadsheets.
Users can choose between three different input formats:
(i) “quant. data”, (ii) “quant. data with KEGG ids”, and
(iii) “AbsoluteIDQ kit”. The server expects samples to be
in rows and quantitated metabolites or peak intensities
in columns. While for AbsoluteIDQ, metaP-server directly
accepts the export file (extension. csv) as produced by the
MetIQ software (shipped with the kit), data from other
experiments can be provided as a table where the first
row contains identifiers for the metabolites and the first
column contains unique sample identifiers such as barcodes.
Optionally, a second column entitled “Sample Description”
can contain user sample identifiers that are not necessarily
unique. The server also accepts files with data starting at
another column than column two or three, when the users
specifies an additional parameter input frame for auxiliary
data. Optionally, the user can provide KEGG identifiers with
the data. For this purpose, the user must choose “quant. data
with KEGG ids” and must add one or more rows with the
keyword “KEGG” in the first column after the header row of
the table.

In principle, the processing of the data can be started
immediately after providing the metabolomics quantitation
data. However, for using the full functionality of the
server, phenotypes or experimental conditions related to the
samples measured can be specified in a separate file. The
first column of this table must contain the unique sample
identifiers of the respective samples. Following columns may
include any categorical (e.g., sex, strain) or metric (e.g.,
weight, age, drug dose) sample phenotype or experimental
condition (e.g., batch number). Categorical phenotypes are
not restricted in the number of categories. If phenotypes
are described by numeric values but are categorical rather
than continuous regarding the actual values (e.g., drug dose:
10 mg, 20 mg, 40 mg corresponding to low, medium, and
high dose), these phenotypes are analyzed using both the
hypothesis test for categorical phenotypes and the correla-
tion test for metric phenotypes. Special key words for column
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http://www.cebitec.uni-bielefeld.de/groups/brf/software/meltdb_info/index.html
http://www.cebitec.uni-bielefeld.de/groups/brf/software/meltdb_info/index.html
http://www.cebitec.uni-bielefeld.de/groups/brf/software/meltdb_info/index.html
http://metabolomics.helmholtz-muenchen.de/metap2/


Journal of Biomedicine and Biotechnology 3

C14.2.OH

C3.1
C5.1.DCC4.1

C6.1

C5.OH..C3.DC.M.

LysoPC.a.C6.0

C4.OH..C3.DC.
PC.aa.C24.0

0

0.2

0.4

0.6

0.8

1

V
ar

ia
ti

on
co

effi
ci

en
t

Metabolites sorted by mean

Amino acids
Carnitines
LysoPC a
PC aa
PC ae
Sphingomyelins

Sugars
10 percent
25 percent
No missing values
At least one missing value

Figure 1: Example for output generated by metaP-server: plot of coefficient of variation for replicated measurement of reference samples
(controls) as part of data quality checks.

headers such as “Replicates” and “Batches” can be used for
defining control samples (replicated reference samples) and
batches in the data set. By using these keywords in the
uploaded phenotype file, basically any subset of samples can
be specified as controls for the calculation of coefficients
of variation (cv) and the estimation of batch effects. For
this purpose, all control samples must be denoted by the
same word (e.g., “control”) in the “Replicates” column. For
data in AbsoluteIDQ format, replicated samples and batch
information is extracted automatically if available.

Before starting the processing, the user can specify a
job description and optionally provide an email address
for notification regarding the job status. By default jobs
are kept private. In this case, the data is only accessible
via the unique job id created by the server. Moreover, the
users can change the settings for several parameters (e.g., for
forcing deletion of reference samples, outliers, and/or noisy
metabolites before statistical data analysis, and forcing the
calculation of metabolite ratios). All job results remain on
the server for at least four weeks. Analysis results can be
downloaded as an archive (zip) file.

3. Processing and Methods

After submitting the job, the web-server first tests the
compliance of uploaded data with the format specified.
The server then starts several analyses that are related to
data quality control. Depending on the options chosen
on the submission page, the server either deletes outliers,
noisy metabolites, and reference samples before further data
analysis or the server continues analysis based on all data
points disregarding quality.

Though metaP-server does not explicitly restrict the
number of samples, quantitated metabolites/peak intensities,
or phenotypes that can be uploaded, the time required
for the complete analysis including the generation of
clickable images largely depends on these numbers. As an
example, data analysis for a typical data set from a kit-
based experiment with 96 samples and 163 metabolites
took 2 minutes for two phenotypes. For 1000 samples
and 200 metabolites the analysis of two phenotypes was
finished after 27 minutes, while the analysis of 100 samples
and 5000 peak intensities took 204 minutes When the
option for the calculation and analysis of all-against-all
metabolite ratios was chosen for the first example with 96
samples and 163 metabolites, the run time increased to
24 minutes.

3.1. Data Quality Control. If replicated measurements of ref-
erence samples (controls) are provided with the data, metaP-
server calculates the corresponding coefficient of variation
(cv) for each metabolite and tags all metabolites with a cv
above a given threshold. The cv for each metabolite is visu-
alized in a diagram (Figure 1). For estimating batch effects
in large metabolomics experiments, metaP-server provides p-
values for the association of metabolite concentrations with
batches. Boxplots showing the metabolomics data and, if
available, the corresponding reference data depending on
the batches help to immediately capture potential batch
effects. metaP-server also reports outliers among the samples.
Samples are considered as outliers if the metabolite quantities
measured for this sample lie 1.5 times the inter quartile range
(IQR) below or above the corresponding median for 30% of
the data columns.
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Figure 2: Examples for output generated by metaP-server: metabo-
lite barplot colored by the phenotype “groups” with the classes 1–4.

The uploaded phenotypes are matched with the samples
provided in the quantitation data according to the unique
sample identifiers. Empty columns and columns containing
nonnumeric values that have different values for all samples
are ignored for further analysis.

3.2. Data Analysis in the Context of Sample Phenotypes. The
main objective of metaP-server is allowing for the analysis of
metabolomics data in the context of sample phenotypes. The
following types of analyses are provided.

3.2.1. General Statistical Measures. metaP-server calculates
general statistical measures for the metabolite quantifications
including mean, median, and standard deviation in relation
to the mean. The server also provides histograms for
estimating the distribution of metabolite concentrations in
the samples. QQ-Plots plotting the actual distribution versus
the corresponding theoretical values for normal (red) and
log-normal (black) distributions allow for deciding which
of the theoretical distributions fits best. Metabolite barplots
show the concentrations of a particular metabolite in all
samples measured (Figure 2) and, vice versa, sample barplots
visualize the concentrations of all metabolite concentrations
measured for a particular sample (Figure 3). Metabolite
barplots can be easily colored by the phenotypes.

3.2.2. Principal Component Analysis. In general, principal
component analysis (PCA) transforms the original data into
a new system of orthogonal axes (components) with the
first components covering the major variance in the data.
Thus, looking at the projections of the data onto the first
principal components often reveals intrinsic groups in the
data. PCA is an unsupervised method and, thus, does not use
any prior phenotypic knowledge for calculating the principal
components. Principal components represent combinations
of the original dimensions (metabolites), whose contribu-
tions to the component can give hints which metabolites
separate intrinsic groups (if any) best. Please note that
groups becoming apparent on a PCA plot do not neces-
sarily correspond to phenotype classes, since PCA—as an
unsupervised method—is only based on the metabolomics
data matrix without using any phenotypic information
on groups. The so-called loadings of the components are
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Figure 3: Examples for output generated by metaP-server: sample
barplot with green color denoting high and red color denoting
low concentration of the respective metabolite relative to the mean
value.

provided for download in table format (semicolon separated
values). Before PCA analysis, metaP-server scales the original
data to mean 0 and standard deviation 1 in order to make
the concentrations of the metabolites comparable. The server
shows the proportion of variance covered by the first ten
principal components and plots for the projections of the
data to the first three components. The user can color
the data points (each representing a specific sample) by
the categorical phenotypes uploaded (Figure 4). Moreover,
each data point is cross-linked to a sample page describing
the details for the respective sample and showing the
sample barplot described previously. Typical representatives
of specific phenotypic groups as well as extreme samples can
thus be picked easily.

3.2.3. Hypothesis Tests and Correlation Analysis. For testing
the association of metabolite concentrations with categori-
cal phenotypes, we use the Mann-Whitney nonparametric
hypothesis test for two-class phenotypes and the non-
parametric Kruskal-Wallis test for multi-class categorical
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Figure 4: Examples for output generated by metaP-server: PCA plot
colored by phenotype.

phenotypes. For visualizing potential association, the server
creates boxplots for the metabolite concentrations depending
on the classes of the respective phenotype. The calculated
P-values are given within the boxplots. With respect to
the problem of multiple testing, only those metabolite-
phenotype associations are marked as significant that show
a P-value below the significance level after Bonferroni
correction. Thereby “∗” denotes a significance level of 5%
(after correction) and “∗∗” denotes a significant level of 1%
(after correction). If the user provides only two phenotypes
with categorical values, metaP-server additionally performs
hypothesis tests for the first phenotype depending on the
different classes of the second phenotype and vice versa (see
Section 5 and Figure 5). For each phenotype column con-
taining numeric values, metaP-server tests the correlation of
the metabolite concentrations with the phenotypes using the
non-parametric Kendall method. The resulting correlation
coefficients are visualized in a heatmap showing negative
association in red and positive correlations in green. P-values
and correlation coefficients are provided for download in
table format (semicolon separated values).

3.2.4. Ratios. If the user has chosen the respective option,
metaP-server calculates all-against-all metabolite concentra-
tion ratios (with logarithmic scaling). In this case, the server
automatically tests for associations between all ratios and the
phenotypes as described above. Using ratios instead of single
metabolites can bring up new associations if the underlying
metabolites are, for example, closely linked by occurring in
the same pathway [5, 8].

3.2.5. Mapping Metabolites on KEGG Pathways. In the
sample barplots, the metabolite quantities measured for a
sample are shown relative (up/down) to the metabolites’
mean derived from the complete uploaded data set. These
relative concentrations can be mapped onto KEGG pathway
maps by coloring the corresponding KEGG compounds red
in case of metabolites with low concentration and green in
case of metabolites with high concentration relative to their
mean values.

3.2.6. Cross-References for Kit Metabolites. For AbsoluteIDQ
data, detailed information on the kit metabolites including
cross references to HMDB, LipidMaps, KEGG, PubChem,
and CAS numbers are provided.

3.3. Implementation. The web-server is mainly based on Perl
CGI scripts. For statistical analyses, we rely on the open
source R-project (http://www.R-project.org). For coloring
metabolites on KEGG pathway maps, we use the forms
provided by KEGG.

4. Interpreting the Results

In order to illustrate how the results of metaP-server server
analysis can be interpreted, we provide two walk-through
examples from typical applications. (i) LC-MS/MS data
(raw area counts) from a drug dosing study in liver tissue
(Metabolon Inc., 2006). In this case, the phenotypes “(drug)
dose”, “day”, “group”, and “weight” are provided. (ii) Human,
mouse, and bovine plasma samples are measured using
AbsoluteIDQ. Users can easily upload the example data files
(via hyperlinks) onto the job submission page and rerun the
examples at any time.

After completion of the processing, there are several
starting points for exploring the data. The walk-through
examples contain detailed descriptions of these starting
points and of the analysis results produced by metaP-server.
Here, we only highlight a few specific possibilities how the
server can be used for data exploration in the first example.
The user can, for instance, immediately check whether the
concentrations of a specific metabolite shows the expected
difference between the control group and the treated groups.
For this purpose, the user can click on that metabolite in the
metabolite overview and color the appearing barplot by the
phenotype “groups” (Figure 2). Analogously, using PCA as
a starting point, the user can check whether the grouping
of samples in the PCA reflects the grouping given by the
various uploaded phenotypes such as “(drug) dose” or “day”
(Figure 4). The user can also pick a representative sample
for a specific group and check immediately on the sample
page which of the metabolites are up or down compared to
other samples (Figure 3). These relative concentrations can
also be automatically mapped onto KEGG pathway maps.
The user can then screen the colored maps for situations
where all metabolites downstream of a certain metabolite are
red whereas the metabolites upstream are green. Hypothesis
tests provided by the metaP-server server are another starting
point for data exploration. In particular, tests performed for

http://www.R-project.org
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Figure 5: Examples for output generated by metaP-server: boxplots produced for groupwise hypothesis tests applied to the data set from the
walk-through example provided with metaP-server; the association between ophthalmate and drug dose is tested for each day of treatment
separately producing three separated box plots.

a phenotype separately for the different classes of a second
phenotype can easily highlight effects that are otherwise only
seen by using more sophisticated statistical methods. In the
drug testing example, for instance, the metabolite ophthal-
mate is not significantly associated with the phenotype day
when hypothesis testing is performed on complete data.
However, in case of separated analysis as shown in Figure 5
the dependency of ophthalmate concentrations on the day of
treatment for the group taking the drug becomes apparent.
The concentration of ophthalmate is significantly increased
at day three and day five for drug intake versus control
whereas it is not significantly increased on day one.

5. Conclusion

The main objective of metaP-server is responding to
the raising need for interpretation of high-throughput
metabolomics data with respect to multiple sample pheno-
types on an easy-to-use web-server-based platform, espe-
cially in the context of identifying metabolic biomarker for
drug testing, therapy and diagnosis, and in epidemiological
and metabolome wide association studies. metaP-server is
mainly adapted to quantitative metabolomics data from kits
and commercial platforms, such as Biocrates, Chenomx,
Metabolon, and Phenomenome, but may also be used with
any other metabolomics data set that is available in tabular
format. The server has been developed in close cooperation
with experimentalists and, as a result, focuses more on
interactive and intuitive data exploration in the context of

multiple multiclass phenotypes rather than on providing
a large set of different statistical methods. Nonetheless,
the spectrum of analysis tools implemented ranging from
estimation of reproducibility and batch effects, hypothesis
and correlation tests, PCA analysis, to pathway mapping
still covers various types of typical approaches used in data
analysis. Of particular interest for the community is probably
the ability of metaP-server to directly analyze metabolite
concentration ratios, which corresponds to a relatively high
computational effort. Moreover, special emphasis has been
put on the mapping of metabolite identifiers of the Biocrates
AbsoluteIDQ kit to the major metabolomics databases. As
the metabolomics community and the number of kits will
increase, we intend to implement new features in close
cooperation with the relevant parties.
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