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Abstract

The ability to synthesize information across multiple senses is known as multisensory inte-

gration and is essential to our understanding of the world around us. Sensory stimuli that

occur close in time are likely to be integrated, and the accuracy of this integration is depen-

dent on our ability to precisely discriminate the relative timing of unisensory stimuli (cross-

modal temporal acuity). Previous research has shown that multisensory integration is

modulated by both bottom-up stimulus features, such as the temporal structure of unisen-

sory stimuli, and top-down processes such as attention. However, it is currently uncertain

how attention alters crossmodal temporal acuity. The present study investigated whether

increasing attentional load would decrease crossmodal temporal acuity by utilizing a dual-

task paradigm. In this study, participants were asked to judge the temporal order of a flash

and beep presented at various temporal offsets (crossmodal temporal order judgment

(CTOJ) task) while also directing their attention to a secondary distractor task in which

they detected a target stimulus within a stream visual or auditory distractors. We found

decreased performance on the CTOJ task as well as increases in both the positive and neg-

ative just noticeable difference with increasing load for both the auditory and visual distractor

tasks. This strongly suggests that attention promotes greater crossmodal temporal acuity

and that reducing the attentional capacity to process multisensory stimuli results in detri-

ments to multisensory temporal processing. Our study is the first to demonstrate changes in

multisensory temporal processing with decreased attentional capacity using a dual task par-

adigm and has strong implications for developmental disorders such as autism spectrum

disorders and developmental dyslexia which are associated with alterations in both multi-

sensory temporal processing and attention.
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Introduction

Temporal influences on multisensory integration

As we interact with the world around us, we encounter many stimuli that are perceptible to

multiple senses. The field of multisensory integration studies the neurological processes that

combine these disparate unisensory stimuli into one unified perception of the world and the

resulting changes in perception and behavior [1]. Several stimulus features modulate the likeli-

hood and strength of multisensory integration and have been termed the principles of multi-

sensory integration. For example, unisensory stimuli that share a close temporal and spatial

correspondence are more likely to be integrated [2,3]. Additionally, greater integration has

been observed in response to stimuli that are relatively less salient [4]. Evidence for the impor-

tance of the temporal principle was first established in multisensory neurons in the superior

colliculus (SC) of anesthetized cats [3]. Two unimodal stimuli presented closely in time were

more likely to produce a response that was superadditive relative to the sum of both unisensory

components [5]. Furthermore, the magnitude of the multisensory enhancement decreased as

the paired stimuli are presented at larger temporal asynchronies, although some neurons

respond most strongly to particular temporal offsets between unisensory stimuli [3]. This

effect has been demonstrated for audiovisual, visual-somatosensory, and auditory-somatosen-

sory stimulus pairs [4]. The temporal principle has also been shown to apply to human percep-

tion, and several constructs have been developed to quantify differences in multisensory

temporal processing [6,7]. The temporal window of integration describes the interval of time

over which two stimuli may be perceptually bound into a unified percept, and this window has

been shown to differ across individuals [8], recalibrate based on task demands [9–11], and nar-

row due to training [6,12–14]. Closely related to the temporal window of integration is the

concept of crossmodal temporal acuity which describes the amount of time necessary for a

participant to distinguish temporal features across sensory modalities [8,15]. Importantly, dis-

ruptions in the temporal processing of multisensory information have been strongly linked to

several developmental disorders including autism spectrum disorder, dyslexia, and schizo-

phrenia [16–19]. Multisensory temporal processing is also known to develop across childhood

and reach adult-like levels in adolescence [20,21].

Top-down and attentional influences on multisensory integration

In addition to the bottom-up stimulus features discussed in the previous section, several top-

down processes such as attention also interact with and modulate multisensory integration

(for general review see [22]). In crossmodal attentional cuing, a stimulus in one sensory

modality can spatially direct attention to benefit the processing of a target in a different modal-

ity [23–26]. Similarly, attentional resources that are captured by a stimulus in one modality

can spread to an unattended stimulus in another modality as long as they share a high tempo-

ral correspondence [27–30]. Lastly, a non-spatial, task irrelevant auditory or tactile stimulus

can direct attention to a visual target in a complex, dynamic environment [31,32].

Several studies have also investigated whether multisensory integration can occur pre-atten-

tively or is dependent on top-down attentional processes. While some studies suggest that

attention is necessary for the integration of multisensory stimuli [33–38], other studies provide

evidence that integration is independent of the effects of attention [39–42]. Aspects of the mul-

tisensory stimulus may modulate whether attention is necessary for multisensory integration.

For example, multisensory speech integration has been consistently shown to lessen under

high attentional demands [36–38]; however, emotional multisensory stimuli may be integrated

pre-attentively [41]. Additionally, multisensory stimuli of varying modalities are more effective
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at capturing exogenous attention, particularly in highly distracting circumstances [43,44].

However, a recently published study has shown that attention is necessary for multisensory

integration regardless of the complexity of the multisensory information being integrated [38].

Interaction between multisensory attention and temporal processing

As discussed above, both bottom-up features, such as the temporal relationship between

unisensory stimuli, and top-down processes such as attention influence the likelihood that uni-

sensory stimuli will be perceptually combined. A growing number of studies have begun to

explore how multisensory temporal processing and attention interact to inform our under-

standing of multisensory events in our environment. A group of studies have found that the

crossmodal effects of attention decrease with increasing temporal disparity between the uni-

sensory subcomponents [30,31,45]. For example, the crossmodal spread of attention between

an attended stimulus of one modality to an unattended stimulus of another modality decreases

as the two stimuli are separated in time [30].

Attention also alters the speed of processing of stimuli such that attended objects come to

our conscious awareness earlier than unattended objects. This phenomenon is described by

the law of prior entry [46]. In a multisensory context, when attention is directed to a single

modality, objects in that modality will be perceived earlier than objects in another modality.

This prior entry effect has been observed across several modality pairings [47–52]. Prior entry

in a crossmodal context is usually assessed using crossmodal temporal order judgment (CTOJ)

or simultaneity judgment (SJ) tasks. In these tasks, participants either judge the temporal

order (CTOJ) or simultaneity (SJ) of stimuli across two modalities that are separated by varied

stimulus onset asynchronies (SOA). For both CTOJ and SJ tasks, a point of subjective simulta-

neity (PSS) can be determined that represents the temporal relationship between the two

unimodal stimuli that is perceived as simultaneous by the participant. If a participant is

directed to specifically attend to one modality, the PSS will shift toward the participant perceiv-

ing the attended modality earlier [46].

Multisensory researchers have begun to explore how attention may alter multisensory tem-

poral processing by changing the temporal window of integration or crossmodal temporal acu-

ity. A previous study conducted by Vatakis and Spence (2006) presented paired visual and

auditory stimuli at various SOAs within a stream of unimodal or multimodal distractors to

investigate temporal crowding in a CTOJ experiment. They observed changes in crossmodal

temporal acuity (increases in the just noticeable difference (JND)) as a function of position in

the distractor stream and the modality of the distractor stream with audiovisual distractors dis-

rupting TOJ performance the most. The results of this study demonstrate that temporal

crowding may decrease crossmodal temporal acuity [53]. Alternatively, Van der Burg et al

investigated the effects of spatial crowding on crossmodal temporal acuity in a novel syn-

chrony judgment task. Participants viewed complex and dynamic stimuli, 19 discs uniquely

modulating in luminance one of which matched an amplitude modulated tone, while judging

which visual stimulus was synchronous to the tone. Synchrony judgment performance was

unchanged by number of discs indicating that visual spatial crowding does not significantly

alter crossmodal temporal acuity [54]. Donohue et al sought to determine whether attention

would influence the size of the temporal window of integration. They used a selective attention

paradigm for which attention was directed to the left or right hemisphere, and stimuli could be

attended or unattended (i.e. occurring in the attended or unattended hemisphere). Three dis-

tinct behavioral tasks gave three different patterns of interactions between attention and the

temporal window of integration, indicating that the effect of attention on multisensory tempo-

ral processing is complex [55].
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Current study questions and hypotheses

Although a handful of studies have investigated the links between attention and multisensory

temporal processing, their lack of consistency suggests that we are far from a complete under-

standing. Thus far, no studies have investigated changes in crossmodal temporal acuity while

increasing attentional load. Similar dual-task study designs have revealed that an attentionally

demanding secondary task can decrease multisensory integration [37,38,56]. Additionally,

only one study has investigated whether distractor modality differentially impacts multisen-

sory temporal processing [53]. The present study investigated whether increasing attentional

load would decrease crossmodal temporal acuity in a CTOJ task by utilizing a dual-task para-

digm. Participants were asked to judge the temporal order of a flash and a beep presented at

various SOAs while also directing their attention to a secondary distractor task, in which the

subject must detect a target stimulus within a stream of visual or auditory distractors. We

hypothesized that crossmodal temporal acuity would decrease with increasing load and that

the modality of the distractor would modulate the extent of the effect for visual—leading ver-

sus auditory-leading stimulus pairs. We did find decreases in crossmodal temporal acuity with

increasing attentional load; however, these effects were indistinguishable across distractor

modalities.

Materials and methods

Participants

A total of 88 (55 females, 18–38 years of age, mean age of 22) typically developing adults are

included in the data analysis for this study. 73 (44 females, 18–38 years of age, mean age of 22)

participants completed the CTOJ task along with visual distractors (RSVP experiment), and 29

(17 females, 18–28 years of age, mean age of 21.5) completed the CTOJ task along with audi-

tory distractors (RSAP experiment). 14 participants completed both experiments in separate

sessions. Some participants completed additional experimental tasks while completing the cur-

rent study procedures. Participants were excluded from final analysis if they did not complete

all load conditions for either the RSVP or RSAP experiment [RSVP: 9 participants (7 females,

mean age of 20.0); RSAP: 0 participants] or did not have a total accuracy of at least 70% on the

distractor task for both load conditions [RSVP: 4 participants (3 females, mean age of 20.8);

RSAP: 19 participants (14 females, mean age of 21.1)]. Participants reported normal to cor-

rected-to-normal hearing and vision and no history of developmental disorders or seizures.

Participants gave written informed consent and were compensated for their time. Study proce-

dures were approved by the Oberlin College Institutional Review Board and were conducted

under the guidelines of Helsinki. Data was collected for the RSVP experiment from June 2013

through July 2014 and for the RSAP experiment June 2014 through January 2015. Participants

were recruited through flyers distributed across and the Oberlin College campus and online

for the Oberlin community. Potential participants contacted the lab through email or phone to

receive more information about study participation and to schedule an appointment if inter-

ested in participating.

Experimental design overview

All study procedures were completed in a dimly lit, sound-attenuated room. Participants were

monitored via closed-circuit cameras for safety and to ensure on-task behavior. All visual sti-

muli were presented on a 24” Asus VG 248 LCD monitor at a screen resolution of 1920 x 1080

and a refresh rate of 144Hz that was set at a viewing distance of 50cm from the participant. All

auditory stimuli were presented from Dual LU43PB speakers which were powered by a Lepai
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LP-2020A+ 2-Ch digital amplifier and were located to the right and left of the participant.

Stimulus and SOA durations were confirmed prior to data collection using an oscilloscope

and photodiode to measure visual stimuli. SuperLab 4.5 software was used for stimulus presen-

tation and participant response collection. Participants indicated their responses on a Cedrus

RB-834 response box, and responses were saved to a text file.

This study employed a dual task design to determine whether distracting attention from a

multisensory task would alter crossmodal temporal acuity and whether this effect depended

on the modality of the distractor. Similar dual task designs have been shown to reduce atten-

tional capacity [57–59]. Participants completed a primary crossmodal temporal order judg-

ment (CTOJ) task and were also presented with either a rapid serial visual presentation

(RSVP) stream or a rapid serial auditory presentation (RSAP) stream in three conditions of

increasing perceptual load. Participants were asked to detect a target stimulus within the RSVP

or RSAP stream while they completed the CTOJ task. Perceptual load was varied for the dis-

tractor tasks to titrate the attentional resources distracted from the CTOJ task. All study proce-

dures related to each distractor modality were completed together. Participants completed the

CTOJ task at varying perceptual loads of the distractor task, and each load condition was sepa-

rated into blocks. Further, the order of the load condition blocks was randomized across par-

ticipants. Thus, each block tested a particular distractor modality by perceptual load condition.

For each block, participants first practiced the CTOJ task without any distracting stimuli. They

then practiced the CTOJ task with the additional instructions for that perceptual load.

Crossmodal temporal order judgment task (Fig 1A)

Visual stimuli consisted of a gray flash at the border of the screen subtending 1.7˚ from the

edge of the screen. (Fig 1A) The flash was presented 28.1˚ horizontally and 15.9˚ vertically

from central fixation for 21ms. Auditory stimuli consisted of a 3500Hz pure tone beep pre-

sented centrally for 21ms at 70dB SPL. For each trial, there was a 500ms pre-stimulus interval

during which either an RSVP or RSAP stream was presented. For negative SOA trials, the beep

was then presented followed by the flash at varying SOAs. For positive SOA trials, the flash

was presented before the beep at varying SOAs. The SOA increments were: -500, -400, -300,

Fig 1. Experimental design and stimuli. A: Participants completed a CTOJ task during which they determined whether a flash (gray

border at the edge of the screen) or a beep occurred first. SOAs ranged from -500–500 with negative SOAs indicating that the beep occurred

first. B: Some participants completed the CTOJ task while completing a secondary task with visual distractors. Participants were instructed

to either ignore the distractors (NL), report a yellow letter (LL), or report a number (HL). C: The remaining participants completed the CTOJ

task while completing a secondary task with auditory distractors. Participants were instructed to either ignore the distractors (NL), report a

tone that was two octaves above the standard tones (LL), or report a tone that was twice the length of the standard tone (HL).

https://doi.org/10.1371/journal.pone.0179564.g001

Auditory and visual distractors disrupt multisensory temporal acuity in the crossmodal temporal order judgment task

PLOS ONE | https://doi.org/10.1371/journal.pone.0179564 July 19, 2017 5 / 20

https://doi.org/10.1371/journal.pone.0179564.g001
https://doi.org/10.1371/journal.pone.0179564


-200, -150, -100, -50, 0, 50, 100, 150, 200, 300, 400, and 500 ms. The SOA of 0ms indicates that

the auditory and visual stimuli were presented simultaneously. Positive and negative SOA tri-

als were repeated eight times per block across two blocks for a total of 16 trials. Simultaneous

trials were repeated 16 times per block across two blocks for a total of 32 trials. The RSVP or

RSAP stream continued during the presentation of the CTOJ stimuli and for 500ms after.

Then, a response screen was presented that asked “which came first?” Participants indicated

their response with a “flash” or “beep” button press. Once participants responded to the CTOJ

task, they were asked to report with a “yes” or “no” button press whether they detected a target

in the RSVP or RSAP streams in the LL and HL blocks. In the NL block, the next trial started

after the participant reported on the CTOJ task. Participants first completed a practice round

to establish baseline accuracy for each block. In the practice round, each trial was repeated

until participants could correctly identify whether the flash or beep came first. The practice

round included -500, -400, -300, 300, 400, and 500 ms SOAs. After completing the practice,

participants completed two identical blocks and were given the opportunity to take a short

break between blocks. The trials within blocks were presented in random order.

Visual distractor task (Fig 1B)

This visual distractor task was similar to the previously reported methods in Gibney et al 2017

[38]. (Fig 1B) Stimuli consisted of rapid serial visual presentations (RSVP) of white and yellow

letters and white numbers subtending a 3.5˚ visual angle and presented at center. Some letters

(I, B, O) and numbers (1, 8, 0) did not appear in the RSVP streams because the visual similarity

between the letters and numbers would be confusing for participants. The RSVP stream was

presented continuously before and after the CTOJ stimuli. Each letter/number in the RSVP

stream was presented for 100ms with 20ms between letters/numbers. The distractor task

included three condition types: no perceptual load (NL), low perceptual load (LL), and high

perceptual load (HL). The participant was presented with an RSVP stream and either asked to

ignore it (NL), detect infrequent yellow letters (LL), or detect infrequent white numbers (HL).

Previously published dual task studies have utilized similar RSVP streams composed of letters

and numbers with a color change representing a low load target and/or a number representing

a high load target because a color difference is easier to detect than a graphemic difference and

would thus require less attentional resources to process [60–63]. Each RSVP stream had a 25%

probability of containing no numbers or yellow letters, a yellow letter only, a number only, or

a yellow letter and number resulting in a 50% probability of a target being present for the LL

and HL conditions. After each trial, participants were asked to respond first to the CTOJ task

then report with a “yes” or “no” button press whether they observed a target for that trial. Each

load condition was completed in a separate block, and participants were able to take breaks

between blocks. The order that participants completed the load condition blocks was random-

ized and counterbalanced across participants.

Auditory distractor task (Fig 1C)

Stimuli consisted of rapid serial auditory presentations (RSAP) of musical notes presented cen-

trally at 60dB SPL. (Fig 1C) The musical notes were pure tones whose frequency fell on an

accepted musical note in a twelve point scale within the C4-C5 octave (262–523 Hz) range.

The RSAP stream was presented continuously before and after the CTOJ stimuli. Each musical

note in the RSAP stream was presented for 100ms (25ms rise and fall time) with 20ms between

notes. The distractor task included three condition types: no perceptual load (NL), low percep-

tual load (LL), and high perceptual load (HL). The participant was presented with an RSAP

stream and either asked to ignore it (NL), detect infrequent notes of a much higher frequency
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(two octaves above the frequency range used for non-targets: 1046–2093 Hz) (LL), or detect

infrequent tones that were double the duration (200ms) as non-target tones (HL). Previously

published dual task studies have utilized similar RSAP streams with frequency and duration

changes identifying targets [64–67]. Preliminary data in the lab confirmed that the duration

change was more difficult to detect than the frequency/pitch change and was thus assumed to

require more attentional resources to detect. Each RSAP stream had a 25% probability of con-

taining no frequency or duration targets, a frequency target only, a duration target only, or

both a frequency and duration target resulting in a 50% probability of a target being present

for the LL and HL conditions. After each trial, participants were asked to respond first to the

CTOJ task then report with a “yes” or “no” button press whether they observed a target for

that trial. Each load condition was completed in a separate block, and participants were able to

take breaks between blocks. The order that participants completed the load condition blocks

was randomized and counterbalanced across participants.

Data analysis

Crossmodal temporal order judgment task. Participants who completed both RSVP and

RSAP experiments were included in the analysis with participants who completed one experi-

ment because the experimental effects did not differ in this subgroup. Percent flash first reports

were calculated for each SOA within load condition for each participant. Percent flash first

reports were then averaged across participants. All statistical analyses were completed using

SPSS software. We conducted a Repeated Measures Analysis of Variance (RMANOVA) on

percent flash first reports with SOA and perceptual load as within-subjects factors separately

for the RSVP and RSAP experiments. We also calculated the partial η2 for the perceptual load

main effect, SOA main effect, and the SOA by load interaction to determine whether auditory

and visual distractors had similar effect sizes on CTOJ performance. The effect size was calcu-

lated post-data collection and was not used to determine sample size for the experiment. We

then conducted paired sample t-tests between NL and LL/HL to compare differences in per-

cent flash first reports across perceptual loads for each SOA. Alpha error was controlled by

adjusting the alpha level to p = .0017 (.05/30 comparisons). To compare across the RSVP and

RSAP experiments, we calculated difference scores (HL-NL and LL-NL) in accuracy for each

SOA excluding 0ms since there is no correct answer. We then conducted a RMANOVA on

the difference scores with SOA, sign (positive versus negative SOA), and perceptual load as

within-subjects factors and distractor modality as a between-subjects factor because few partic-

ipants completed both experiments. Significant effects were explored using post-hoc paired

sample t-tests and a bonferroni-adjusted alpha level of p = .0021 (.05/24 comparisons).

Calculation of the psychometric function. We individually fit each participant’s per-

cent flash first reports across SOA data to a psychometric function using the curve fitting

toolbox in Matlab for each perceptual load using the following four factor sigmoidal function

[68,69]:

y ¼ ðA � DÞ=ð1þ
x
C

� �B
� �

Þ þ D

We used the following starting values for each of the four factors: A (upper asymptote) =

100, B (slope) = 5, C (inflection point) = 0, D (lower asymptote) = 0. Furthermore, A was

restricted to a range of 75–100, and D was restricted to a range of 0–25. Participants were

excluded from this component of the data analysis if the r2 value of their psychometric func-

tion was less than 75% for any perceptual load. We then determined the point of subjective

simultaneity (PSS) as the inflection point (factor C in the above equation) which indicates the
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point on the curve for which participants are equally likely to report that the flash or beep

occurred first [11]. We calculated the negative just noticeable difference (nJND) as the differ-

ence in SOA between 25% and 50% flash first reports and the positive JND (pJND) as the dif-

ference in SOA between 50% and 75% flash first reports. We conducted RMANOVAs on the

PSS, nJND, and pJND values separately with load as a within-subjects factor and distractor

modality as a between-subjects factor. We then conducted paired-sample t-tests for the PSS,

nJND, and pJND between NL and LL/HL separately for the visual and auditory distractor ver-

sions of the task. Alpha error was controlled by adjusting the alpha level to p = .0125 (.05/4

comparisons). We determined the effect size of the influence of load on the positive and nega-

tive JNDs by calculating the Cohen’s d for the NL/HL difference scores for both auditory and

visual distractors to determine whether the effect sizes were equivalent across distractor

modalities.

Performance on the distractor task. We calculated percent accuracy on the distractor

task for each participant across SOAs separately for each load and distractor modality. We

then conducted a RMANOVA on accuracy with perceptual load as a within-subjects factor

and distractor modality as a between-subjects factor.

Results

Participants completed a dual task paradigm that included a CTOJ task and a distractor task

that was composed of either visual or auditory distractors and varied in perceptual load (NL,

LL, HL). These tasks were used to determine whether directing attention away from the CTOJ

task would decrease crossmodal temporal acuity and whether the modality of the distractor

modulated this effect. Participants judged the relative order of a visual flash and auditory beep

separated by varying SOAs and reported which they perceived as coming first. Average percent

visual first reports were calculated for each SOA and load condition separately for the visual

and auditory distractors.

Performance on the crossmodal temporal order judgment task

We conducted a RMANOVA on percent flash reports for the visual distractor version of the

task with perceptual load and SOA as within-subjects factors. We found a significant main

effect of SOA [F(14,1008) = 583.44, p< .001; partial η2 = .890], indicating that our CTOJ task

was successful in testing crossmodal temporal performance. (Fig 2) Perceptual load did not

significantly influence percent flash reports [F(2,144) = 0.44, p = .643; partial η2 = .006]; how-

ever, the SOA by perceptual load interaction was significant [F(28,2016) = 8.30, p< .001; par-

tial η2 = .103], indicating that perceptual load did alter percent flash first reports differently

across SOAs. We next conducted paired-sample t-tests between loads at each SOA. The follow-

ing SOAs were significant after correcting for multiple comparisons: NL/LL [no SOAs] and

NL/HL [-500 (t(72) = 3.37, p = .001); -400 (t(72) = 4.11, p = 1.04x10-4); -300 (t(72) = 4.11,

p = 1.04x10-4); -200 (t(72) = 7.15, p<10−5); -150 (t(72) = 5.28, p<10−5); -100 (t(72) = 4.09,

p = 1.11x10-4); 200 (t(72) = 4.00, p = 1.52x10-4); 300 (t(72) = 4.08, p = 1.15x10-4); 400 (t(72) =

3.43, p = .001); 500 (t(72) = 3.57, p = .001)].

We conducted a RMANOVA on percent flash reports for the auditory distractor version

of the task with perceptual load and SOA as within-subjects factors. We found a significant

main effect of SOA [F(14,392) = 273.29, p< .001; partial η2 = .907], indicating that our CTOJ

task was successful in testing crossmodal temporal performance. (Fig 2) The main effect of

perceptual load approached significance [F(2,56) = 3.12, p = .052; partial η2 = .100]; however,

the SOA by perceptual load interaction was significant [F(28,784) = 3.79, p< .001; partial

η2 = .119], indicating that perceptual load did alter percent flash reports more strongly at
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particular SOAs. We next conducted paired-sample t-tests between loads at each SOA. The fol-

lowing SOAs were significant after correcting for multiple comparisons: NL/LL [-100 (t(28) =

3.85, p = .001)] and NL/HL [-200 (t(28) = 4.32, p = 1.77x10-4)]. Taken together, our results

clearly demonstrate that increasing perceptual load in both the visual and auditory modalities

interferes with performance on the CTOJ task.

Comparisons of crossmodal temporal order judgment performance

across distractor modalities

Because both visual and auditory distractors disrupted CTOJ performance, difference scores

(HL-NL or LL-NL) in percent accuracy were calculated for both the visual and auditory dis-

tractor versions of the CTOJ task to compare across distractor modality. We conducted a

RMANOVA on the difference scores with perceptual load, SOA, and sign (positive versus neg-

ative SOAs) as within-subjects factors and distractor modality as a between-subjects factor.

The main effect of load was significant [F(1,100) = 5.337, p = .023] indicating that difference

scores were larger overall for HL (difference of 6.2) than LL (difference of 4.2). The main effect

of distractor modality was not significant [F(1,100) = .040, p = .841] indicating that visual and

auditory distractors lead to similar effects on CTOJ performance. The interaction between

SOA and sign [F(6,600) = 2.839, p = .010] was significant, indicating that difference scores

were larger for auditory-leading trials (mean difference of 6.6 for auditory-leading and 3.8 for

visual-leading) but only at particular SOAs. However, post-hoc comparisons between positive

Fig 2. Percent flash first reports across SOA for the CTOJ task separated by visual versus auditory distractor tasks. SOA

significantly influenced the percent of flash-first reports with positive SOAs (visual leading) resulting in more visual first reports. SOA and

perceptual load significantly interacted for both distractor modalities indicating that perceptual load modulates performance on the CTOJ

task. Error bars represent the SEM. * indicate significant differences between NL and HL and/or NL and LL at the Bonferroni-corrected alpha

level of p < .0018.

https://doi.org/10.1371/journal.pone.0179564.g002
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and negative SOAs were not significant for visual or auditory distractors at the Bonferroni-

corrected alpha level of p = .0021. The interaction between SOA and load [F(6,600) = 2.181,

p = .043] was also significant, indicating that the effect of load on difference scores depended

on the SOA. However, post-hoc comparisons between HL and LL difference scores were only

significant for the -200ms SOA for visual distractors once correcting for multiple comparisons

[t(72) = 6.59, p<10−5]. Taken together, these results indicate that the strongest modulators of

difference scores were the perceptual load of the distractors and the SOA of the CTOJ stimuli

and that the modality of the distractors did not have a significant influence.

Average visual-first reports for each SOA were fit to a sigmoid curve for each participant

separately for each load. The PSS (representing the inflection point of the sigmoid) and posi-

tive and negative JNDs (representing temporal acuity) were calculated for each load and par-

ticipant. (Fig 3) A RMANOVA of the PSS with load and modality as factors revealed no

significant main effects, indicating that the PSS did not change across load [F(2,186) = 0.83,

p = .439] or distractor modality [F(1,93) = 1.07,p = .304], nor did they interact [F(2,186) =

0.46,p = .631]. (Fig 3A) Perceptual load did significantly influence both the negative (Fig 3B)

[F(2,170) = 17.37, p< .001] and positive (Fig 3C) [F(2,166) = 12.65, p< .001] JNDs. Neither

the distractor modality nor the interaction between modality and load were significant for

positive [main effect of modality: F(1,83) = 0.08,p = .780; interaction: F(2,166) = 1.09,p = .340]

or negative [main effect of modality: F(1,85) = 0.04,p = .834; interaction: F(2,170) = 1.751,

p = .177] JNDs. Taken together, this indicates that while increasing perceptual load led to

decreased crossmodal temporal acuity, the modality of the distractor did not influence this

effect. Paired samples t-tests demonstrate that the negative JND for the visual distractor ver-

sion of the task [NL: -72.1, LL: -77.8, HL: -105.4] was significantly larger between NL/HL

[t(59) = 4.82,p< .001; Cohen’s d = .62] when correcting for multiple comparisons but not

between NL/LL [t(59) = 1.05, p = .296]. On the auditory distractor version of the task [NL:

-69.7, LL: -94.4, HL: -103.4], HL was significantly larger as compared to NL [t(26) = 3.12,p =

.004; Cohen’s d = .41] when correcting for multiple comparisons but not between NL/LL

[t(26) = 2.44, .021]. Positive JNDs significantly increased between the NL and HL conditions

but not between the NL and LL conditions for the visual and auditory distractor versions of

the task [Visual Means: NL: 86.6, LL: 93.1, HL: 134.9] [Visual: NL/LL: t(59) = 1.11,p = .296;

Fig 3. Features of the psychometric function. Individual participant data was fit with a psychometric function for each perceptual load.

The resulting mean PSS (A), nJND (B), and pJND (C) are shown grouped by the modality of the distractor task. Both the nJND and pJND,

but not the PSS, increased with increasing load. No significant effects of distractor modality were found. Error bars represent SEM.

* Indicate significant differences (p < .0125) as compared to NL.

https://doi.org/10.1371/journal.pone.0179564.g003
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NL/HL: t(59) = 3.94,p < .001; Cohen’s d = .48] and [Auditory Means: NL: 86.9, LL: 105.0, HL:

116.7] [Auditory: NL/LL: t(26) = 2.14,p = .042; NL/HL: t(26) = 2.92,p = .007; Cohen’s d = .33].

Distractor task performance (Fig 4)

Concurrent with the CTOJ task, participants viewed a rapid serial visual presentation (RSVP)

or a rapid serial auditory presentation (RSAP). Targets were present in 50% of the trials. We

conducted a RMANOVA with response accuracy on the distractor tasks as the dependent vari-

able and perceptual load (LL or HL) as a within-subjects factor and modality of the distractor

task as a between-subjects factor. Response accuracy was significantly influenced by perceptual

load [F(1,98) = 66.74, p< .001] and was higher for LL than HL for both distractor modalities

[overall mean accuracy of 95.83 for LL and 88.43 for HL], indicating that the high load versions

of the distractor task were more difficult. (Fig 4) This suggests that the HL versions of the dis-

tractor tasks draw more attention from the CTOJ task. The modality of the distractors also sig-

nificantly influenced response accuracy [F(1,98) = 29.21, p< .001] with the visual distractors

Fig 4. Performance on the visual and auditory distractor tasks. Accuracy was lower for HL compared to LL for both

visual and auditory distractors. Additionally, accuracy was higher for the visual distractor task then the auditory distractor

task. Error bars represent SEM. * Indicate significance differences between LL and HL.

https://doi.org/10.1371/journal.pone.0179564.g004
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leading to greater accuracy as compared to auditory distractors [overall mean accuracy of

94.33 for visual distractors and 89.93 for auditory distractors], indicating that the auditory dis-

tractor task was more difficult than the visual distractor task. The interaction between distrac-

tor modality and load was not significant [F(1,98) = 0.12, p = .734].

Discussion

Conclusions

The present study investigated the interactions between attention and multisensory temporal

processing by utilizing a dual-task paradigm to reduce the attentional capacity available to

process multisensory temporal information. Participants completed a CTOJ task for which

they were asked to judge the temporal order of a flash and beep presented at various SOAs

while also directing their attention to a secondary distractor task for which they detected a

target stimulus within a stream of visual or auditory distractors. We also tested whether the

modality of the distractor task would differentially affect performance on the primary CTOJ

task. We found decreases in performance on the CTOJ task with increasing visual and audi-

tory perceptual load. Specifically, we found a significant SOA by load interaction in the

RMANOVA for visual-first reports and a significant main effect of load in the RMANOVA

for accuracy difference scores. Additionally, both the negative and positive JND increased

with increasing visual and auditory load. Taken together, these results strongly suggest that

attention promotes greater crossmodal temporal acuity and that reducing the attentional

capacity available to process multisensory stimuli is detrimental to multisensory temporal

processing.

Interestingly, the effect of the distractor task was not uniform across SOAs as evidenced by

significant interactions between SOA, sign, and load on difference scores. Participants main-

tained a relatively high accuracy at the longest SOAs, suggesting that the distractor task did not

simply affect the overall performance level. We also found that participants’ performance was

more strongly affected for negative (auditory-leading) SOAs. Because of the relative differences

in the speed of light versus sound, light from an audiovisual event will often reach our eyes

before the corresponding sound reaches our ears. Thus, the most commonly encountered

SOAs in natural environments are visual leading. Given the greater detriments to crossmodal

temporal performance for auditory-leading SOAs, our results indicate that this less encoun-

tered temporal relationship may rely more heavily on attentional resources to be discernable.

Although our study provides strong evidence that attention promotes more accurate

crossmodal temporal processing, the observed interaction between multisensory temporal

processing and attention may differ depending on the experimental manipulation of atten-

tion. For example, temporal but not spatial crowding appears to disrupt crossmodal temporal

acuity [53,54]. Additionally, attention may interact differently with multisensory temporal

processing when unisensory stimuli are to be integrated (temporal window of integration)

[55] versus when the temporal relationship between unisensory stimuli is being actively com-

pared (crossmodal temporal acuity). Thus, a reduced attentional capacity may have a differ-

ent impact on the temporal window of integration than what is predicted by the current

study findings. Unfortunately, investigating the effects of perceptual load on the temporal

window of integration is problematic given that increased perceptual load has been linked

to decreases in multisensory integration [38]. Future studies will also need to investigate

whether increased perceptual load equally disrupts crossmodal temporal acuity for higher

order multisensory stimuli since attention may interact differently with multisensory tempo-

ral processing depending on task-specific features [55] and because complex stimuli have

larger temporal windows of integration [70].
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Contrary to our hypothesis, we found no differences between the auditory and visual dis-

tractor tasks in their effects on crossmodal temporal acuity. Both distractor tasks resulted in

poorer CTOJ performance and increases in the JND that were statistically indistinguishable

across modalities. We also did not observe changes in the PSS with increasing load when the

CTOJ task was accompanied by either the visual or auditory distractor task. Notably, our

results stand in contrast to the theory of prior entry, which predicts that modality-specific

attention should alter the speed of neural processing of stimuli in the corresponding modality.

For example, if the visual distractor task reduced the capacity to process visual stimuli, partici-

pants should show greater accuracy for auditory-leading and poorer accuracy for visual-lead-

ing pairs of stimuli. Prior entry has been established in selective attention paradigms and may

function differently in dual task paradigms. Alternatively, it is possible that in our dual task

paradigm, the visual and auditory distractor tasks reduce capacity in a supramodal rather than

modality-specific manner. Previous studies have investigated whether attentional capacity is

supramodal or modality-specific (for a general discussion see [67]). However, these studies

have generated conflicting results with some studies finding that attentional capacity is inde-

pendent across sensory modalities [64] and others finding that perceptual load in one modality

interferes with performance and neural processing in a different modality [71,72].

We did find differences in performance on the distractor task as a function of perceptual

load and distractor modality. For both the auditory and visual distractors, we found decreases

in accuracy with increasing perceptual load. This indicates that for both modalities, the high

load feature that participants were instructed to detect (numbers for the RSVP and longer

duration for the RSAP) was more difficult and thus likely demanded more attentional

resources. We also found that the auditory distractor task resulted in lower accuracy than the

visual distractor task and far more participant exclusions due to poor performance. This sug-

gests that the visual and auditory distractor tasks may have demanded unequal attentional

resources. Additionally, this study had approximately twice the number of participants in the

RSVP versus RSAP experiments. These differences between the two versions of the task may

have acted as a confound and masked some relevant differences between the effects of distrac-

tor modality. However, these differences across the visual and auditory distractor tasks are

unlikely to be major confounds because of the almost indistinguishable effects of increasing

load on CTOJ performance across the two distractor modalities. Additionally, measures of

effect size for load and SOA were similar across distractor modalities, suggesting that increas-

ing visual versus auditory load had similar effects on CTOJ performance. However, future

studies utilizing visual and auditory distractor tasks that are more equivalent in their difficulty

and sample sizes are needed to confirm whether auditory and visual distractors equally effect

crossmodal temporal acuity. We also noted a slightly unequal gender ratio in our included par-

ticipants and a very unequal gender ratio in our excluded participants. Very little is known

about the potential influence of gender on multisensory integration; thus, future research may

be needed to evaluate potential gender differences in the effects of attention on multisensory

processing.

Potential neural mechanisms

Much is known about how the brain represents the temporal relationships between unisensory

events. This knowledge can be useful to help frame our understanding of how attention alters

multisensory temporal processing. One such framework is the temporal window of integration

(TWIN) model that was proposed by Colonius and Deiderich [10,73]. In this model, unisen-

sory information is initially processed independently and is thought to be engaged in a “race.”

The next stage of the model, the integration stage, includes all processes after the initial
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unisensory “race.” If multiple unisensory signals enter the integration stage within the same

window of time, they will be integrated into a multisensory percept [73]. In this framework, a

reduced attentional capacity could alter the initial processing of unisensory signals such that

the initial signal is delayed and initiates the integration stage abnormally late, thus increasing

the interval for which the second signal could reach the integration stage. Additionally, atten-

tion could alter the length of the integration stage such that reducing the attentional capacity

for either modality elongates the length of the integration stage for signals from either modal-

ity. Our data more strongly support attention acting at the integration stage because the audi-

tory and visual distractor tasks had equivalent effects on CTOJ performance.

Although the TWIN model is helpful in our understanding of the neural mechanisms of the

effects of attention on multisensory temporal processing, it may not apply in the case of cross-

modal temporal acuity when participants are actively contrasting (as opposed to integrating)

multisensory temporal information. Thus, instead of unisensory signals needing to arrive

within a set time-period of each other, the temporal pattern of these signals may be compared

in multimodal brain areas or across unimodal areas. For example, the superior temporal sulcus

(STS) has been demonstrated to differ in its activity depending on the temporal structure of

multisensory events [74–77]. Areas such as the STS may compare the relative onsets or tempo-

ral profiles of each unisensory signal arriving from their respective sensory cortices to deter-

mine their temporal relationship. A reduced attentional capacity could delay the onset of

unisensory information reaching STS or enlarge the time over which unisensory information

feeds into STS. Any of these potential mechanisms would lead to a decreased ability to discern

temporal order. Additionally, alterations in synchronous oscillatory activity between unisen-

sory and multisensory areas may be the underlying mechanism for the effects of attention on

crossmodal temporal acuity. Synchronous coupling of ongoing oscillations across unisensory

and multisensory areas has been shown to be important for multisensory integration [78], and

audiovisual synchrony has been demonstrated to influence oscillations at gamma frequencies

[79]. The relative contributions of all the aforementioned potential neural mechanisms could

be assessed using electroencephalography (EEG) and comparing changes in neural activity

with increasing load to the corresponding changes in performance on the CTOJ task. Specifi-

cally, changes in oscillatory amplitude, phase locking, and coherence either from trial to trial

or between groups of electrodes could be used to assess the role of synchrony and power in

ongoing oscillatory activity. Additionally, changes in behavior with increasing load could be

linked to changes in peak amplitude, width, and latency to assess the role of changes in the

onset or temporal signature of unisensory signals.

Implications for developmental disorders

In characterizing the relationship between attention and temporal multisensory processing,

the present study may shed light on the multisensory deficits present in many neurodevelop-

mental disorders. Enlargements in the temporal window of integration have been found for

autism spectrum disorders (ASD), dyslexia, and schizophrenia [6,16,17,19]. These disorders

also show alterations in the control of top-down attentional functions [80–82]. Although the

present study investigates the effect of attention on crossmodal temporal acuity in typically

developed adults, our findings raise important questions as to the cause of the enlarged tempo-

ral window in developmental disorders. The enlarged temporal window could result from an

alteration in sensory functioning and/or differences in top-down attention. Future studies

comparing differences in performance between neurotypicals and those with developmental

disorders on this CTOJ task with increasing load may cast light upon this question. Addition-

ally, future studies could compare individual differences in attentional capacity with measures
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of the temporal window of integration or crossmodal temporal acuity to determine whether

participants with relatively limited attention resources are likely to have greater difficulty dis-

tinguishing temporal information across modalities.

Knowing whether changes in sensory versus attentional processes have a stronger impact

on multisensory temporal processing could help in the advancement of potential remediation

strategies for developmental disorders. For example, differences in the temporal window of

integration have been linked to speech deficits in ASD [83] and the relative timing between

auditory and visual signals influences the effects of visual speech on auditory speech perception

[84]. Additionally, the temporal window can be narrowed through perceptual training

[13,14,77]; however, it has currently not been demonstrated whether narrowing the temporal

window leads to improved speech perception in ASD. Training individuals with developmen-

tal disorders in the realm of attentional control to help improve attentional capacity either

alone or in conjunction with temporal perceptual training may lead to greater improvements

in speech perception. Overall, the results of this study add to our understanding of how atten-

tion interacts with multisensory integration. Importantly, we have provided a clear link

between attentional capacity of both the visual and auditory modalities and a person’s ability

to discriminate small temporal differences. The findings of this study have important implica-

tions not only for our understanding of developmental disorders but also for the design of

multisensory warning signals and other multisensory stimuli for entertainment purposes that

are increasingly being incorporated into our technology [85].
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