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Hyperhomocysteinemia (HHcy) is positively linked with several cardiovascular diseases; however, its role and underlying
mechanisms in pathological cardiac hypertrophy are still unclear. Here, we focused on the effects and underlying mechanisms
of HHcy in hypertensive cardiac hypertrophy, one of the most common and typical types of pathological cardiac hypertrophy.
By a retrospective analysis of the association between HHcy and cardiac hypertrophy in a hypertensive cohort, we found that
the prevalence of HHcy was higher in patients with hypertrophy and significantly associated with the presence of cardiac
hypertrophy after adjusting for other conventional risk factors. In mice, HHcy induced by a methionine (2% wt/wt) diet
feeding significantly promoted cardiac hypertrophy as well as cardiac inflammation and fibrosis induced by 3-week angiotensin
ІІ (AngІІ) infusion (1000 ng/kg/min), while folic acid (0.006% wt/wt) supplement corrected HHcy and attenuated AngII-
stimulated cardiac phenotypes. Mechanistic studies further showed that homocysteine (Hcy) exacerbated AngII-stimulated
expression of Calcineurin and nuclear factor of activated T cells (NFAT), which could be attenuated by folic acid both in mice
and in neonatal rat cardiomyocytes. Moreover, treatment with cyclosporin A, an inhibitor of Calcineurin, blocked Hcy-
stimulated Calcineurin-NFAT signaling and hypertrophy in neonatal rat cardiomyocytes. In conclusion, our study indicates
that HHcy promotes cardiac hypertrophy in hypertension, and Calcineurin-NFAT pathway might be involved in the pro-
hypertrophic effect of Hcy.

1. Introduction

The main function of the heart is to pump blood to support
the peripheral organs. In stress conditions, such as increased
preload or afterload, the heart undergoes enlargement to
increase its contractility and pumping capability, a process
termed cardiac hypertrophy [1]. As a stress-induced adap-
tive change to maintain cardiac efficiency, cardiac hypertro-
phy could be classified into physiological and pathological
hypertrophy, according to different types of stimuli. Unlike
physiological hypertrophy, which is typically caused by
pregnancy or exercise, pathological hypertrophy is however
known to be induced by disease conditions, including inher-
ited hypertrophic cardiomyopathy and other secondary
triggers, such as pressure overload caused by hypertension
or aortic stenosis, volume overload owing to chronic kidney

diseases and mitral and aortic regurgitation, long-term
myocardial hypoxia due to anemia, myocardial infarction,
and chronic obstructive pulmonary disease [1]. More impor-
tantly, prolonged and excessive pathological hypertrophy is
irreversible and eventually progresses to severe cardiovascu-
lar consequences, such as heart failure, arrhythmia, and
death [1]. Therefore, unveiling the risk factors and underly-
ing mechanisms of pathological cardiac hypertrophy is
important for improving cardiovascular health and control-
ling adverse cardiovascular events.

Homocysteine (Hcy) is a sulfur-containing amino acid
derived from methionine (Met) metabolism [2, 3]. As an
essential amino acid, Met is released from dietary protein,
absorbed by the digestive tract epithelium, and transported
in the circulation to various organs, where it is metabolized
into cysteine through remethylation and transsulfuration
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pathways via several key enzymes, such as cystathionine β-
synthase, methionine synthase, or methylenetetrahydrofo-
late reductase [2, 3]. Genetic defects impeding the activity
of these enzymes disrupt Met metabolism and cause eleva-
tion of circulating Hcy [2, 3]. Moreover, diets rich in Met
or lack of vitamin B6, B12, or folate, cofactors for the above-
mentioned enzymes, also impair Met homeostasis, leading to
systemic accumulation of Hcy [2, 3]. Mounting evidence has
suggested that hyperhomocysteinemia (HHcy, defined as
serum/plasma Hcy concentration ≥ 15μmol/L) due to either
genetic or nutritional causes is detrimental for cardiovascu-
lar health, facilitating the onset and development of various
vascular diseases, such as hypertension, atherosclerosis, and
aneurysm, and therefore is identified as an independent
metabolic risk factor for these diseases [4, 5]. However,
whether and how HHcy contributes to pathological cardiac
hypertrophy is still unclear.

Here in this study, we focus on the effects and underly-
ing mechanisms of HHcy in hypertensive cardiac hypertro-
phy, one of the most common and typical types of
pathological cardiac hypertrophy. We first analyzed the cor-
relation between HHcy and hypertensive cardiac hypertro-
phy in a cohort study enrolling 2101 hypertensive patients.
We then directly explored the causative role of HHcy as well
as the therapeutic potent of folate acid (FA) therapy on
experimental hypertensive cardiac hypertrophy induced by
angiotensin ІІ (AngІІ) both in vivo and in vitro. Our data
suggested that HHcy might be a potential risk factor for this
type of pathological cardiac hypertrophy.

2. Methods and Materials

2.1. Retrospective Cohort Study

2.1.1. Study Participants. We retrospectively enrolled hyper-
tensive patients hospitalized in the First Affiliated Hospital of
Dalian Medical University between August 1, 2015, and June
30, 2021. Patients with organic valvular heart disease, rheu-
matic heart disease, prosthetic valve placement, or malignant
tumor were excluded from analysis. Moreover, those withmiss-
ing or incomplete echocardiography as well as laboratory data
were also excluded. Finally, 2101 patients were eligible and
divided into cardiac hypertrophy and nonhypertrophy cohorts
for further analysis. The design and procedures of the retro-
spective study were approved by the institutional review board
of Dalian Medical University (ChiCTR-1900021163), and the
requirement for informed consent was waived. The research
was conducted in accordance with the Helsinki Declaration
guidelines, and all procedures listed here were performed in
compliance with the approved guidelines.

2.1.2. Data Source and Definition of the Explanatory
Variables. Demographics, medical history, and laboratory
data of the study participants were all collected from the
electronic medical record of the hospital. Cardiac hypertro-
phy, referred to as left ventricular hypertrophy (LVH) in
particular, was visualized by transthoracic echocardiography
with a Vivid 7 ultrasound system (GE Healthcare, Horten,
Norway) and defined as interventricular septal thickness

(IVST)/left ventricular posterior wall thickness ðLVPWTÞ
> 10:5mm in women or >11mm in men [6]. Left ventricu-
lar mass index, an increasingly accepted criterion to diag-
nose LVH, is however not used in the current retrospective
analysis, as the calculation of this index could not be done
without the height data of the participants, which are not
recorded routinely in the hospital. All echocardiographic
measurements were performed and interpreted by experi-
enced physicians in a blinded manner. Other explanatory
variables include diabetes mellitus, defined as fasting glucose
level≥126mg/dL, nonfasting glucose ≥ 200mg/dL, a physi-
cian diagnosis of diabetes, or use of diabetes medication [7];
congestive heart failure (CHF), defined by a physician diagno-
sis of heart failure, or use of antiheart failure medication [8];
coronary artery disease (CAD), defined by a history of
physician-diagnosed myocardial infarction, or coronary artery
bypass surgery, or coronary angioplasty; HHcy, defined as cir-
culating Hcy concentration ≥ 15μmol/L [9]; dyslipidemia,
defined as circulating total cholesterol ðTCÞ ≥ 6:22mmol/L,
low-density lipoprotein cholesterol ðLDL − CÞ ≥ 4:14mmol/
L, high-density lipoprotein cholesterol ðHDL − CÞ ≤ 1:04
mmol/L, triglycerides ðTGÞ ≥ 2:26mmol/L, or use of antidy-
slipidemia medication; moderate to severe left ventricular sys-
tolic dysfunction, defined as left ventricular ejection fraction
ðLVEFÞ ≤ 40%, according to the 2010 European Society of
Cardiology guidelines [10]; left atrial enlargement (LAE),
defined as left atrial diameter > 38mm in women or >40 in
men [11]; and renal insufficiency, defined as estimated glo-
merular filtration rate ðeGFRÞ < 90mL/(min•1.73m2) [12].

2.1.3. Statistical Analysis. Statistical analyses were performed
using SPSS software, and a p value < 0.05 was considered as
statistically significant. Categorical data were presented as
count (percentage) and analyzed by χ2 test or Fisher exact
test. Continuous variables were tested for normal distribu-
tion with Kolmogorov–Smirnov test. As all continuous vari-
ables presented in the study were nonnormally distributed,
these variables were presented as medians (interquartile
ranges) and analyzed by Mann–Whitney test. A logistic
regression analysis was used to investigate the risk factors
for cardiac hypertrophy in the enrolled hypertensive patients.
The odds ratios (ORs) with 95% confidence intervals (CIs)
were presented. Variables were first included in the univari-
ate analysis, and those variables associated with cardiac
hypertrophy at a significant level in the univariate analysis
were candidates for multivariate analysis. For quartile analy-
sis, patients were stratified into four quartiles based on serum
Hcy levels. The respective cut-offs of serumHcy levels for Q1,
Q2, Q3, and Q4 were ≤11.67, 11.67-14.56, 14.56-18.61, and
>18.61μmol/L, respectively. The likelihood of left ventricular
hypertrophy (LVH) associated with serum Hcy levels was
calculated using a logistic regression model. Hcy values were
entered in the model as quartiles (with the Q1 quartile as the
baseline reference) to assess the ORs and 95% CIs.

2.2. Experimental Study

2.2.1. Materials. Hcy (H4628) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Folic acid (FA) (S4605) and
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cyclosporin A (CsA) (S2286) were purchased from Selleck-
chem (Houston, TX, USA). AngII (A107852) was purchased
from Aladdin (Shanghai, China). Antibodies against trans-
forming growth factor-β (TGF-β) (3711S), Calcineurin
(2614S), nuclear factor of activated T cells (NFAT)
(2183S), and α-actinin (6487T) were all purchased from Cell
Signaling Technology (Boston, MA, USA). Antibodies
against phosphorylated and total nuclear transcription factor-
κB (NF-κB) p65 were purchased from WanleiBio (WL02169;
Shenyang, China) and Arigobio (ARG65677; Taiwan, China),
respectively. Antibody against β-tubulin (10094-1-AP) was
purchased from Proteintech (Wuhan, China).

2.2.2. Animals. C57BL/6 mice (male, 4-5 weeks) were pur-
chased from Beijing Vital River Laboratory (Beijing, China).
Mice were housed in individually ventilated cages and fed
with diet and water ad libitum. Methionine (Met) diet used
in this study contains 2% wt/wt Met [13, 14], while FA-
supplemented Met diet contains additional 0.006% wt/wt
FA [15, 16]. Cardiac hypertrophy in mice was induced by
subcutaneous AngII infusion at a dose of 1000 ng/kg/min
using osmotic mini-pumps (Alzet Model 1007D; Durect
Corp, Cupertino, CA, USA) for three weeks [17]. The hous-
ing, care, and experimental procedures were performed in
accordance with the Guide for the Care and Use of Labora-
tory Animals published by the U.S. National Institutes of
Health (NIH Publication No. 85-23, revised 1996) and
approved by the Animal Care and Use Committee of Dalian
Medical University (AEE20029).

2.2.3. Blood Pressure and Echocardiography Analysis. Systolic
blood pressure (SBP) was measured by a noninvasive tail-
cuff system (BP-2010; Softron, Tokyo, Japan) and averaged
from ten measurements per mouse [18]. Transthoracic
echocardiography was performed using a high-resolution
microultrasound system (Vevo 770; Visual Sonics, Toronto,
Ontario, Canada) under anesthetization with 1.5% isoflur-
ane inhalation [19]. Left ventricular (LV) ejection fraction
(EF) and fractional shortening (FS) were determined using
parasternal short axis M-mode imaging and averaged from
three cardiac cycles [19].

2.2.4. Histopathological Analysis. Mice were sacrificed by
CO2 inhalation and flushed by phosphate buffer saline
(PBS) through the left ventricle. The entire hearts were
removed and weighted. After fixation in 4% paraformaldehyde
solution (Life-iLab, Shanghai,China), heartswere embedded in
paraffin and sectioned at five μm thickness. Cardiac gross
morphology was visualized by hematoxylin and eosin (H&E)
staining (G1120; Solarbio, Beijing, China). Myocyte cross-
sectional areas were visualized by rhodamine-labeled wheat
germ agglutinin (WGA) (1.25mg/mL; ZD0510, Vector Labo-
ratory, Burlingame, CA, USA) staining and calculated bymea-
suring over 200 cells collected over 10 random fields. Cardiac
accumulation of inflammatory macrophages and fibroblasts
were visualized by immunohistochemical staining (SP0041;
Solarbio, Beijing, China) using antibodies against CD68
(diluted at 1 : 200; ab201340; Abcam, London, UK) and α-
SMA (diluted at 1 : 200; 19245S; CST, Boston, MA, USA),

respectively. Cardiac fibrosis was visualized by Masson’s
trichrome staining (G1340; Solarbio, Beijing, China). All quan-
tifications were performed with ImageJ software.

2.2.5. Cell Culture. Neonatal rat cardiomyocytes (NRCMs)
were obtained from newborn Sprague-Dawley rats, as previ-
ously described [20]. In brief, newly extracted heart tissues
were placed into a 100mm culture dish loaded with ade-
quate precooled PBS, cut into tiny pieces, and dissociated
by 0.04% trypsin to single cell suspensions at 37°C. After
plating in 5% CO2 and 37°C incubator for two hours, sus-
pended cardiomyocytes were collected and transferred into
100mm dishes and 24-well plates with coated laminin
(10μg/mL). After cultured in DMEM/F12 supplemented
with 10% fetal bovine serum for 48 hours and then serum-
starved for at least twelve hours, plated cardiomyocytes were
subjected to DMEM/F12 supplemented with Hcy (200μM)
or Hcy (200μM) + FA (100μmol/L) or Hcy (200μM) +
CsA (50μg/mL) or same amount PBS as control for the next
twelve hours and then AngII (1μM) for 48 hours before
harvested for α-actinin staining or protein extraction.

2.2.6. Quantitative Real-Time PCR Analysis. Total RNA was
extracted with Triquick Reagent (R1100; Solarbio, Beijing,
China) and reverse-transcribed to complementary DNA
using a RT kit (MedChemExpress, Monmouth Junction,
NJ, USA) [21]. Quantitative real-time PCR was performed
with SYBR Green qPCR reagents (MedChemExpress,
Monmouth Junction, NJ, USA), using primers listed in
Table S1. All samples were quantitated using the comparative
CT method and normalized to β-actin.

2.2.7. Western Blot Analysis. Proteins were extracted using
RIPA buffer (R0020; Solarbio, Beijing, China). Total protein
concentration of each extract was determined using a
bicinchoninic acid protein assay kit (PC0020; Solarbio,
Beijing, China). After normalization for total protein con-
centration, the protein lysates were separated by electropho-
resis in SDS-PAGE gels (Life-iLab, Shanghai, China) and
transferred to polyvinylidene difluoride membranes. The
membranes were incubated with primary antibodies (diluted
at 1 : 500) at 4°C overnight and then with horseradish
peroxidase-conjugated secondary antibodies (1 : 3 000) for
one hour at room temperature. All blots were developed by
ECL assay (AP34L024; Life-iLab, Shanghai, China), and
signal intensities were analyzed with ImageJ software.

2.2.8. Statistical Analysis. Data were presented as mean ±
standard deviation (SD). The Shapiro–Wilk test was used to
determine whether data were normally distributed. Statistical
comparisons were performed using two-way ANOVA,
followed by Tukey’s test for multiple comparisons. All statisti-
cal analyses were performed using GraphPad Prism software,
and a p value < 0.05 was considered as statistically significant.

3. Results

3.1. HHcy Is Positively Linked to Cardiac Hypertrophy in
Hypertensive Patients. To explore whether plasma Hcy level
contributes to hypertensive cardiac hypertrophy, we first
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performed a retrospective analysis of 2101 inpatients with
primary hypertension hospitalized in the First Affiliated
Hospital of Dalian Medical University. These patients were
divided into hypertrophy (783, 37.3%) and nonhypertrophy
(1 318, 62.7%) cohorts, based on their echocardiographic
evaluations. The demographic and clinical characteristics
of these patients are presented in Table 1. Compared with
patients in the nonhypertrophy group, those in the hypertro-
phy group were older and contained fewer males and
smokers but had a higher prevalence of HHcy, type 2 diabe-
tes mellitus (T2DM), coronary artery disease (CAD), chronic
heart failure (CHF), dyslipidemia, and left atrial enlargement
(LAE) (Table 1). Moreover, patients in the hypertrophy
group had higher systolic blood pressure (SBP), diastolic
blood pressure (DBP), and lower estimated glomerular fil-
tration rate (eGFR) (Table 1). However, no significant differ-
ence in terms of drinking and the prevalence of atrial
fibrillation (AF) as well as moderate and severe left ventric-
ular systolic dysfunction was observed between these two
cohorts (Table 1). Table 2 shows the results of the univariate
and multivariate logistic analysis of these two groups. HHcy
(OR = 1:293; 95% CI: 1.049-1.594, p = 0:016) was found to
be significantly associated with the presence of left ventricu-
lar hypertrophy (LVH) in these hypertensive patients, after
adjusting for other conventional risk factors such as age,
gender, smoke, CAD, CHF, T2DM, dyslipidemia, blood
pressure, renal insufficiency, and LAE (Table 2). To further
define the correlation of circulating Hcy levels with the risk
of hypertensive LVH, we performed a quartile analysis based
on serum Hcy levels. The respective cut-offs of serum Hcy
levels for Q1, Q2, Q3, and Q4 were ≤11.67, 11.67-14.56,
14.56-18.61, and >18.61μmol/L, respectively. As shown in
Table 3, the prevalence of LVH increased with quartiles of
Hcy, and patients categorized into the Q4 quartile had the
highest prevalence of LVH (Q1: 33.0%, Q2: 36.9%, Q3:
39.0%, and Q4: 40.2%) (Table 3). Compared with the risk
of LVH in patients of the Q1 quartile, the ORs (95% CI)
for LVH in the Q2, Q3, and Q4 quartiles were 1.289
(0.978-1.700, p = 0:072), 1.382 (1.034-1.848, p = 0:029), and
1.550 (1.141-2.106, p = 0:005), respectively (Table 3).
Together, results from the retrospective analysis indicated
that HHcy was positively linked with cardiac hypertrophy
in hypertension.

3.2. HHcy Exacerbates AngII-Induced Cardiac Hypertrophy
in Mice.We next explored the effect of HHcy on experimen-
tal cardiac hypertrophy in hypertensive mice. HHcy was
induced by a Met (2% wt/wt) diet feeding as previously
described [13, 14]. After being fed on this Met diet or control
rodent chow diet for three weeks, mice were then subjected
to AngII infusion at a dosage of 1000ng/kg/min for another
three weeks to induce hypertension and cardiac hypertro-
phy, and those receiving saline infusion were used as
controls (Figure 1(a)). Our data showed that the Met diet
feeding increased the plasma Hcy concentration to the level
of mild HHcy (Figure S1). The presence of HHcy did not
significantly exacerbate AngII-induced hypertension
(Figure 1(b)) but strengthened cardiac contractility, as
reflected by a prominent increase of left ventricular (LV)

ejection fraction (EF) and fractional shortening (FS) in
echocardiography (Figure 1(c)). HHcy also exacerbated
AngII-induced heart enlargement, as indicated by gross
morphological H&E staining, increased ratio of heart weight/
body weight and heart weight/tibial length (Figure 1(d)) as
well as increased cross-sectional area of myocytes shown by
WGA staining (Figure 1(e)). Moreover, HHcy increased
AngII-stimulated cardiac expression of atrial natriuretic factor
(ANF) and brain natriuretic peptide (BNP), two markers
widely used to evaluate cardiac injury and dysfunction,
although the increase of BNP did not reach statistical
significance due to the relatively small sample size and large
within-group variation (Figure 1(f)). Notably, it seemed that
HHcy exerted a mild pro-hypertrophic response on
cardiomyocytes even without AngII stimulation, as shown by
an increase of myocyte cross-sectional area (Figure 1(e)) and
a nonsignificant increase of cardiac ANF and BNP expression
(Figure 1(f)), which might be too weak to reach functional or
gross-morphological significance (Figures 1(c) and 1(d)).

3.3. HHcy Exacerbates AngII-Induced Cardiac Inflammation
and Fibrosis in Mice. Pathological cardiac hypertrophy is
often in companion with cardiac inflammation and fibrosis
[1]. Using H&E and CD68 immunohistochemical staining,
we showed that HHcy significantly exacerbated AngII-
induced inflammatory cell (mainly macrophage) infiltration
into the myocardium (Figure 2(a)). The proinflammatory
effect of HHcy was further conformed by detecting the car-
diac gene expression level of proinflammatory cytokines,
such as IL-6, IL-1β, and TNF-α, using quantitative real-
time PCR. As shown in Figure 2(b), HHcy exacerbated
AngII-induced increase of inflammatory cytokine expres-
sion, although the increase of IL-1β and TNF-α expression
did not reach statistical significance based on the limited
sample size (Figure 2(b)). In addition to cardiac inflammation,
AngII infusion also stimulated fibroblast cell proliferation and
expression of collagen I (Col1) and collagen III (Col3), finally
contributing to cardiac fibrosis. Using α-SMA immunochem-
ical staining and quantitative real-time PCR, we showed that
HHcy exacerbated AngII-stimulated proliferation of α-SMA-
positive fibroblasts (Figure 2(c)) as well as gene expression of
α-SMA, Col1 and Col3 (Figure 2(d)), finally leading to
increased interstitial and perivascular fibrosis shown by Mas-
son staining (Figure 2(e)). As NF-κB and TGF-β signaling
are key pathways regulating AngII-induced cardiac inflamma-
tion and fibrosis, we detected these pathways by Western blot.
Our data showed that HHcy further enhanced AngII-induced
NF-κB p65 and TGF-β activation (Figure 2(f)), suggesting
that HHcy exacerbated AngII-induced cardiac inflammation
and fibrosis at least partially through these two pathways.
Interestingly, HHcy itself was capable to induce mild cardiac
inflammation and fibrosis, as shown by histological staining
(Figures 2(a), 2(c), and 2(e)), and these two signaling pathways
might also be involved (Figure 2(f)).

3.4. FA Supplement Attenuates AngII-Induced Cardiac
Hypertrophy in Hyperhomocysteinemic Mice. FA is dem-
onstrated to be effective to reverse HHcy [22]. To explore
the therapeutic potent of FA supplement in HHcy-
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stimulated cardiac hypertrophy, we fed mice with FA-
supplemented Met diet during the experimental process
(Figure 3(a)). We found that FA (0.006% wt/wt) supple-
ment corrected diet-induced HHcy (Figure S2) and
significantly inhibited AngII-induced increase of blood
pressure (Figure 3(b)) and cardiac contractility (Figure 3(c))
in hyperhomocysteinemic mice. FA supplement also

attenuated AngII-induced heart enlargement, as reflected by
gross morphological staining as well as a decreased ratio of
heart weight/body weight and heart weight/tibia length
(Figure 3(d)). Moreover, FA supplement attenuated AngII-
induced increase of myocyte cross-sectional area
(Figure 3(e)) and cardiac ANF and BNP gene expression
(Figure 3(f)) in hyperhomocysteinemic mice.

Table 1: Baseline characteristics of the participants in the cohort study.

Variables
Cohort

p value
Nonhypertrophy (n = 1318) Hypertrophy (n = 783)

Age (years) 67 (61-74) 68 (62-77) 0.001

Male sex, n (%) 874 (66.3) 444 (56.7) <0.001
Smoke, n (%) 437 (33.2) 213 (27.2) 0.004

Drink, n (%) 275 (20.9) 144 (18.4) 0.170

SBP (mmHg) 140 (130-155) 146 (135-160) <0.001
DBP (mmHg) 80 (75-90) 82 (78-91) 0.010

Pulse (beats/min) 72 (68-80) 72 (68-80) 0.481

Medical history

T2DM, n (%) 408 (31.0) 324 (41.4) <0.001
AF, n (%) 243 (18.4) 161 (20.6) 0.232

CAD, n (%) 376 (28.5) 260 (33.2) 0.024

CHF, n (%) 103 (7.8) 85 (10.9) 0.018

Laboratory data

eGFR (mL/(min•1.73m2)) 90.0 (74.0-105.0) 86.0 (67.0-102.0) <0.001
eGFR < 90 (mL/(min•1.73m2)) 637 (48.3) 426 (54.4) 0.007

TC (mmol/L) 4.6 (3.8-5.4) 4.7 (3.9-5.5) 0.017

TG (mmol/L) 1.3 (1.0-1.7) 1.3 (1.0-1.8) 0.002

HDL-C (mmol/L) 1.1 (1.0-1.4) 1.1 (0.9-1.3) 0.199

LDL-C (mmol/L) 2.5 (2.0-3.1) 2.6 (2.1-3.1) 0.003

Dyslipidemia, n (%) 633 (48.0) 419 (53.5) 0.015

Hcy (μmol/L) 14.4 (11.5-18.3) 15.0 (12.2-18.9) 0.010

HHcy, n (%) 582 (44.2) 392 (50.1) 0.009

Echocardiographic parameters

LAD (mm) 36.0 (33.0-39.0) 39.0 (36.0-43.0) <0.001
LAE, n (%) 271 (20.6) 328 (41.9) <0.001
LVEDD (mm) 46.0 (42.0-49.0) 46.0 (43.0-49.0) 0.287

LVEF (%) 57.0 (55.0-59.0) 57.0 (55.0-58.0) 0.002

LVEF < 40%, n (%) 40 (3.0) 25 (3.2) 0.840

IVST (mm) 10.0 (9.0-10.5) 12.0 (12.0-13.0) <0.001
LVPWT (mm) 10.0 (9.0-10.0) 11.0 (11.0-12.0) <0.001
LVM (g) 153.3 (132.8-180.4) 200.5 (175.0-232.2) <0.001
Medication

Antihypertensive use, n (%) 1179 (89.5) 728 (93.0) 0.007

ACEI/ARB, n (%) 588 (44.6) 421 (53.8) <0.001
β-Blocker, n (%) 471 (35.7) 335 (42.8) 0.001

CCB, n (%) 854 (64.8) 571 (72.9) <0.001
Diuretic, n (%) 485 (36.8) 353 (45.1) <0.001
Abbreviation: ACEI: angiotensin-converting enzyme inhibitors; AF: atrial fibrillation; ARB: angiotensin-converting enzyme receptor blockers; CAD: coronary
artery disease; CCB: calcium channel blockers; CHF: chronic heart failure; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; SBP:
systolic blood pressure; Hcy: homocysteine; HDL-C: high-density lipoprotein cholesterol; HHcy: hyperhomocysteinemia; IVST: interventricular septal
thickness; LAD: left atrium diameter; LAE: left atrial enlargement; LDL-C: low-density lipoprotein cholesterol; LVEDD: left ventricular end diastolic
diameter; LVEF: left ventricular ejection fraction; LVM: left ventricular mass; LVPWT: left ventricular posterior wall thickness; T2DM: type 2 diabetes
mellitus; TC: total cholesterol; TG: triglycerides.
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3.5. FA Supplement Attenuates AngII-Induced Cardiac
Inflammation and Fibrosis in Hyperhomocysteinemic Mice.
We then explored the effects of FA supplement on cardiac
inflammation and fibrosis. Our data suggested that FA supple-
ment significantly inhibited AngII-induced inflammatory cell
infiltration (Figure 4(a)) as well as the expression of proin-
flammatory cytokines (Figure 4(b)). Likewise, FA supplement
significantly inhibited AngII-stimulated fibroblast activation,
demonstrated by reduced α-SMA-positive fibroblast prolifera-
tion (Figure 4(c)) and decreased expression of α-SMA, Col1
and Col3 (Figure 4(d)), as well as reduced interstitial and peri-
vascular fibrosis (Figure 4(e)). Moreover, FA also reduced car-
diac inflammation and fibrosis in hyperhomocysteinemic
mice without AngII stimulation (Figures 4(a), 4(c), and
4(e)). These protective effects of FA supplement on cardiac
inflammation and fibrosis were accompanied by reduced
NF-κB and TGF-β signaling (Figure 4(f)).

3.6. Calcineurin-NFAT Signaling Might Be Involved in the
Pro-hypertrophic Effect of Hcy. Calcineurin-NFAT signaling
is a classic pathway regulating cardiac hypertrophy [23,
24]. To explore whether this signaling pathway is involved in
the pathogenesis of HHcy in cardiac hypertrophy, we first
detected the expression of Calcineurin and NFAT byWestern
blot in AngII-stimulated mice. Our data showed that both
Calcineurin and NFAT expressions were increased by Met-
induced HHcy (Figure 5(a)) and could be eased by FA
supplement (Figure 5(b)). In cultured NRCMs, Hcy treatment
significantly exacerbated AngII-induced cardiomyocyte
hypertrophy, as visualized by immunofluorescence staining
using myocardial-specific a-actinin (Figure S3), which was
associated with enhanced Calcineurin and NFAT expression
(Figure 5(c)) and could be significantly attenuated by FA
supplement (Figure S4 and 5D). Interestingly, inhibition of
Calcineurin-NFAT signaling with Calcineurin inhibitor CsA

Table 2: Risk factors associated with cardiac hypertrophy in the cohort study.

Variable
Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

Age (years) 1.013 (1.005-1.022) 0.002 1.002 (0.992-1.012) 0.678

Male sex 0.665 (0.555-0.798) <0.001 0.649 (0.518-0.813) <0.001
Smoke 0.753 (0.620-0.915) 0.004 0.944 (0.746-1.195) 0.634

Drink 0.855 (0.683-1.070) 0.170

SBP (mmHg) 1.013 (1.009-1.018) <0.001 1.011 (1.006-1.016) <0.001
DBP (mmHg) 1.011 (1.004-1.018) 0.001 1.004 (0.996-1.012) 0.294

Pulse (beats/min) 0.999 (0.993-1.005) 0.757

Medical history

T2DM 1.574 (1.310-1.892) <0.001 1.458 (1.194-1.780) <0.001
AF 1.145 (0.917-1.430) 0.232

CAD 1.245 (1.029-1.507) 0.024 1.128 (0.918-1.387) 0.251

CHF 1.436 (1.062-1.943) 0.019 0.837 (0.600-1.169) 0.297

Laboratory data

eGFR < 90 (mL/(min•1.73m2)) 1.276 (1.068-1.523) 0.007 1.049 (0.855-1.286) 0.649

Dyslipidemia 1.246 (1.043-1.487) 0.015 1.250 (1.032-1.514) 0.022

HHcy 1.268 (1.062-1.514) 0.009 1.293 (1.049-1.594) 0.016

Echocardiographic parameters

LAE 2.785 (2.292-3.385) <0.001 2.663 (2.158-3.286) <0.001
LVEDD, mm 1.010 (0.993-1.026) 0.251

LVEF < 40% 1.054 (0.634-1.751) 0.840

Medication

Antihypertensive use 1.561 (1.127-2.161) 0.007 1.197 (0.851-1.685) 0.302

Abbreviations as in Table 1.

Table 3: Risk of cardiac hypertrophy according to serum Hcy quartiles.

Patients Patients with hypertrophy (%) OR (95% CI)

Q1 525 173 (33.0%) 1 (ref.)

Q2 526 194 (36.9%) 1.289 (0.978-1.700)

Q3 528 206 (39.0%) 1.382 (1.034-1.848)∗

Q4 522 210 (40.2%) 1.55 (1.141-2.106)∗∗

∗p < 0:05 and ∗∗p < 0:01.
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Figure 1: HHcy exacerbated AngII-induced cardiac hypertrophy in mice. (a) Schematic illustration of the experimental design. (b) Systolic
blood pressure (SBP) collected before and at days 3, 10, 17, and 21 after AngII infusion, n = 12 − 13 per group. (c) Representative M-mode
echocardiography at the end of the experiment and calculation of EF and FS, n = 12 − 13 per group. (d) Representative H&E staining of the
heart sections and ratios of heart weight/body weight and heart weight/tibial length, n = 12 − 13 per group. (e) Representative WGA staining
of the heart sections and quantitation of myocyte cross-sectional area, n = 5 − 6 per group. (f) Relative mRNA levels of ANF and BNP in the
hearts, n = 5 − 6 per group. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001; ns: not significant.
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Figure 2: Continued.
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attenuated Hcy-exacerbated cardiomyocyte hypertrophy
(Figure 5(e) and S5).

4. Discussion

In this study, by retrospectively analyzing a cohort of hyper-
tensive patients and exploring AngII-induced cardiac hyper-
trophy models, we show that (1) the prevalence of HHcy is
higher in patients with hypertrophy and significantly associ-
ated with the presence of cardiac hypertrophy after adjusting
for other conventional risk factors in hypertensive patients;
(2) Met-induced HHcy increases AngII-stimulated cardiac
hypertrophy as well as inflammation and fibrosis; (3) the path-
ogenic effects of HHcy on AngII-induced cardiac phenotypes
could be partially reversed by FA supplement; and (4)
Calcineurin-NFAT signaling might be involved in the patho-
genesis of Hcy. The working model of Hcy in AngII-induced
hypertensive cardiac hypertrophy is illustrated in Figure 5(f).

Hypertension attacks 1.39 billion adults, that is, more
than 30% of the world’s total adults in 2010 [25]. Unfortu-
nately, about half (53.5%) of them are unaware of their
condition, and less than 14% of them effectively control their
blood pressure after antihypertension medication [25].
Recently, a cross-sectional study involving 11,007 partici-
pants showed that more than one-third (36.1%) of hyperten-

sive patients comorbid with HHcy [26]; therefore,
elucidation of the pathogenesis of HHcy in hypertension
and hypertension-associated diseases, such as hypertensive
cardiac hypertrophy and atrial fibrillation, is of pivotal sig-
nificance for the clinical prevention and treatment of the dis-
eases. As an established risk factor for hypertension, HHcy is
positively correlated with blood pressure. An increase of
5μmol/L of circulating HHcy concentration is estimated to
increase systolic and diastolic blood pressure by 0.5-0.7mmHg
and 0.7-1.2mmHg, respectively [27]. Hcy promotes hyperten-
sion through multiply mechanisms, involving endothelial
dysfunction, intima-media thickening, and adventitial inflam-
mation, caused by oxidative stress, protein modification,
inflammation activation, proliferation of vascular smooth
muscle cells, and inhibition of fibrinolysis [28]. In the current
study, we observed a mild increase of blood pressure after
AngII stimulation in the Met-fed hyperhomocysteinemic
mice, compared with the chow-fed control mice. Although
such increases of blood pressure did not reach statistical signif-
icance, it might partially mediate HHcy’s pro-hypertrophic
effect in AngII-induced hypertensive cardiac hypertrophy,
due to a direct increase of cardiac workload.

The correlation between HHcy and the prevalence of
pathological cardiac hypertrophy has been explored as early
as 20 years ago, when a cross-sectional study for the first
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Figure 2: HHcy exacerbated AngII-induced cardiac inflammation and fibrosis in mice. (a) Representative H&E and CD68
immunohistochemical staining of the heart sections and quantitation of CD68-positive fraction, n = 5 per group. (b) Relative mRNA
levels of IL-6, IL-1β, and TNF-α, n = 5 per group. (c) Representative α-SMA immunohistochemical staining of the heart sections and
quantitation of α-SMA-positive fraction, n = 5 − 7 per group. (d) Relative mRNA levels of Col 1, Col 3, and α-SMA, n = 5 per group. (e)
Representative Masson staining of the heart sections and quantitation of fibrotic fraction, n = 5 − 6 per group. (f) Representative Western
blots and quantitation of NF-κB p-p65/p65 and TGF-β, n = 4 per group. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001; ns: not significant.
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Figure 3: FA supplement attenuated HHcy-aggravated cardiac hypertrophy in mice. (a) Schematic illustration of the experimental design.
(b) Systolic blood pressure (SBP) collected before and at days 3, 10, 17, and 21 after AngII infusion, n = 13 per group. (c) Representative M-
mode echocardiography at the end of the experiment and calculation of EF and FS, n = 13 per group. (d) Representative H&E staining of the
heart sections and ratios of heart weight/body weight and heart weight/tibial length, n = 13 per group. (e) Representative WGA staining of
the heart sections and quantitation of myocyte cross-sectional area, n = 5 − 7 per group. (f) Relative mRNA levels of ANF and BNP in the
hearts, n = 5 per group. ∗∗∗p < 0:001; ns: not significant.
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time showed a positive association between plasma Hcy
concentration and the risk of developing cardiac hypertro-
phy in a limited 75 end-stage renal disease patients under-
going chronic hemodialysis [29]. Later, in a large
community-based Framingham Heart Study involving 2
697 Caucasian-dominant participants, circulating Hcy con-
centrations were found significantly related to pathological
cardiac hypertrophy in females but not in males [30].
Recently, a Chinese cohort study also indicated that HHcy
independently promotes cardiac hypertrophy and the pro-
hypertrophic effect of HHcy is prominent in both genders
and could be enhanced in combination with metabolic
syndrome [31]. Here, we show that among 2101 Chinese
hypertensive patients, those who develop hypertensive car-
diac hypertrophy have a higher prevalence of HHcy, and a
statistical link between HHcy and the presence of cardiac
hypertrophy is identified, after adjusting for other conven-
tional risk factors such as age, gender, smoke, and CAD.
Therefore, data from different ethnic groups and different dis-
ease conditions all suggest that HHcy might be a potential risk
factor for human pathological cardiac hypertrophy.

In addition to clinical observational studies, experimen-
tal evidence also indicates a potential causative role of HHcy
in pathological cardiac hypertrophy. In a normotensive rat
model, cardiac hypertrophy can be observed after 8-week
Met diet feeding, although the underlying mechanisms are
still unclear [32, 33]. Interestingly, valsartan, an antagonist
of angiotensin type 1 receptor (AT1R), significantly attenu-

ates HHcy-induced cardiac hypertrophy in normotension,
indicating an involvement of AT1R activation in HHcy’s
pathogenic effects [34]. Unlike normotension, the renin-
angiotensin-aldosterone system is overactivated in hyperten-
sion, which leads to an increase of systemic production of
AngII [35]. The binding of AngII to AT1R then initiates
several key intracellular signaling pathways, finally leading
to cardiovascular consequences such as cardiac hypertrophy
and aortic aneurysm [36]. In addition to AngII, AT1R can be
also activated by other stimuli, including mechanical stretch
and AT1R autoantibodies [36]. Recently, Hcy is demon-
strated to be another agonist of AT1R and capable of directly
binding to AT1R by forming a salt bridge and a disulfide
bond with the Arg167 and Cys289 residues of AT1R, indicat-
ing that Hcy and AngII could synergistically activate the
AT1R [36]. Although the binding affinity of Hcy to AT1R
is significantly lower (105 times) than that of AngII, the cir-
culating Hcy concentration, especially in HHcy condition, is
however much higher (~5 log magnitude) than that of AngII
[36]; therefore, Hcy-induced AT1R activation might add up
the effects of AngII-AT1R activation in HHcy, finally pro-
moting AngII-induced cardiac hypertrophy.

As a G-protein-coupled receptor, AT1R activation by
binding with ligands leads to subsequent activation of G
proteins such as Gq/11 [1]. Activation of Gq/11 signaling then
activates phospholipase C and inositol 1,4,5-triphosphate
(IP3) synthesis, inducing intracellular Ca2+ release from
endoplasmic and sarcoplasmic reticulum [1]. Increase of
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Figure 4: FA supplement attenuated HHcy-aggravated cardiac inflammation and fibrosis in mice. (a) Representative H&E and CD68
immunohistochemical staining of the heart sections and quantitation of CD68-positive fraction, n = 5 − 7 per group. (b) Relative mRNA
levels of IL-6, IL-1β, and TNF-α, n = 5 per group. (c) Representative α-SMA immunohistochemical staining of the heart sections and
quantitation of α-SMA-positive fraction, n = 5 − 8 per group. (d) Relative mRNA levels of Col 1, Col 3, and α-SMA, n = 5 per group. (e)
Representative Masson staining of the heart sections and quantitation of fibrotic fraction, n = 5 − 8 per group. (f) Representative Western
blots and quantitation of NF-κB p-p65/p65 and TGF-β, n = 4 per group. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001; ns: not significant.

12 Oxidative Medicine and Cellular Longevity



Calcineurin

𝛽-Tubulin
NFAT

BlotCtrl CtrlHHcy HHcy

Saline AngII Saline AngII

Calcineurin NFAT

0

2

4

6

Pr
ot

ei
n 

le
ve

ls 
(fo

ld
)

Pr
ot

ei
n 

le
ve

ls 
(fo

ld
)

⁎⁎⁎ ⁎
⁎⁎⁎

⁎

Saline AngII

0

3

6

9

⁎⁎

⁎

59 kDa

120 kDa
52 kDa

Ctrl
HHcy

(a)

NFAT

𝛽-Tubulin

Calcineurin
BlotHHcy HHcy+FA HHcy HHcy+FA

Saline AngII

Calcineurin

Saline AngII

NFAT

Pr
ot

ei
n 

le
ve

ls 
(fo

ld
)

Pr
ot

ei
n 

le
ve

ls 
(fo

ld
)

⁎⁎⁎
⁎⁎⁎

⁎
⁎⁎

Saline AngII

0

2

4

6

0
1
2
3
4

ns ns

59 kDa

120 kDa

52 kDa

HHcy
HHcy + FA

(b)

Calcineurin
NFAT
𝛽-Tubulin

Saline AngII

Saline AngII
0

3

6

9

Saline AngII
0

3

6

9

Pr
ot

ei
n 

le
ve

ls 
(fo

ld
) Calcineurin NFAT

Ctrl Hcy Ctrl Hcy Blot

⁎
⁎⁎⁎

⁎⁎ ⁎⁎⁎

⁎⁎⁎ ⁎

Pr
ot

ei
n 

le
ve

ls 
(fo

ld
)

59 kDa
120 kDa

52 kDa

Ctrl
Hcy

(c)

Calcineurin
NFAT
𝛽-Tubulin

Saline AngII
0
1
2
3
4

Saline AngII

Saline AngII
Hcy Hcy+FA Hcy Hcy+FA Blot

Calcineurin NFAT

Pr
ot

ei
n 

le
ve

ls 
(fo

ld
)

Pr
ot

ei
n 

le
ve

ls 
(fo

ld
)

⁎ ⁎⁎
⁎⁎⁎ ⁎⁎⁎

0

2

4

6

ns
ns

59 kDa
120 kDa

52 kDa

Hcy
Hcy + FA

(d)

Calcineurin
NFAT
𝛽-Tubulin

Saline AngII
0

2

4

6

Saline AngII
0

1

2

3

Saline AngII
Hcy Hcy+CsA Hcy Hcy+CsA Blot

Calcineurin NFAT

Pr
ot

ei
n 

le
ve

ls 
(fo

ld
)

Pr
ot

ei
n 

le
ve

ls 
(fo

ld
)

⁎⁎ ⁎⁎ ⁎⁎⁎
⁎⁎

ns
ns

59 kDa
120 kDa

52 kDa

Hcy
Hcy + CsA

(e)

HcyAngII

AT1R Gq/11

Inflammation Hypertrophy Fibrosis

NF-𝜅B
Calcineurin

NFAT
TGF-𝛽

Ca2+

AT1R

Hypertensive cardiac hypertrophy

(f)

Figure 5: Calcineurin-NFAT signaling might be involved in the pro-hypertrophic effect of Hcy. (a) Representative Western blot and
quantitation of cardiac Calcineurin and NFAT in hyperhomocysteinemic mice. n = 4 per group. (b) Representative Western blot and
quantitation of cardiac Calcineurin and NFAT in hyperhomocysteinemic mice treated with FA. n = 4 per group. (c) Representative
Western blots and quantitation of Calcineurin and NFAT in Hcy-treated NRCMs. n = 4 per group. (d) Representative Western blots and
quantitation of Calcineurin and NFAT in FA-treated NRCMs. n = 4 per group. (e) Representative Western blot and quantitation of
Calcineurin and NFAT in CsA-treated NRCMs. n = 4 per group. (f) A working model of Hcy in AngII-induced hypertensive cardiac
hypertrophy. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001; ns: not significant.

13Oxidative Medicine and Cellular Longevity



intracellular Ca2+ further activates Calcineurin, a Ca2+-acti-
vated serine/threonine protein phosphatase, which dephos-
phorylates and promotes nuclear localization of NFAT,
finally activating downstreamed transcription factors such
as GATA binding protein 4 and myocyte enhancer factor 2
to regulate hypertrophic response [23, 24]. In the current
study, we observed an additional increase of AngII-
stimulated Calcineurin and NFAT expression in hyperho-
mocysteinemic mice and Hcy-treated NRCMs, which could
be attenuated by FA both in vivo and in vitro. Interestingly,
inhibition of Calcineurin-NFAT pathway by CsA, an
inhibitor of Calcineurin, abolishes Hcy-aggravated NRCM
hypertrophy in vitro. These data together suggest that
Calcineurin-NFAT signaling might be involved in the path-
ogenesis of Hcy in hypertensive cardiac hypertrophy.

FA, also known as vitamin B9, mediates the remethyla-
tion of Hcy into Met by acting as a cofactor of methylenetet-
rahydrofolate reductase, therefore playing an important role
in maintaining Hcy homeostasis [5]. FA has been demon-
strated to be effective in reducing circulating Hcy levels in
both clinical and experimental studies. In addition to its
Hcy-lowering effect, FA, as a member of the vitamin B fam-
ily, has been suggested to have other cardiovascular benefits.
For example, FA improves cardiac remodeling and function
in aging [37] and doxorubicin-induced cardiotoxicity [38,
39], by reducing cardiac senescence, apoptosis, oxidative
stress, and fibrosis. A combined use of cobalamin (vitamin
B12) and FA preserves cardiac mitochondrial function and
biogenesis in pressure-overloaded mice [40]; moreover, FA
supplement is capable to reduce endocardial endothelial dys-
function in homocysteinemic hypertensive rats [41]. Here,
we show that FA supplement corrects HHcy and remarkably
attenuates AngII-induced cardiac hypertrophy as well as
cardiac inflammation and fibrosis in hyperhomocysteinemic
mice, alongside with a significant inhibition of AngII-
induced increase of blood pressure. Interestingly, the antihy-
pertrophic effect of FA is also observed in NRCMs subjected
to AngII and Hcy stimulation, indicating a direct and
pressure-independent protection against hypertensive car-
diac hypertrophy, which might be closely associated with
Calcineurin-NFAT signaling as demonstrated in the current
study. Unfortunately, participants enrolled in the retrospec-
tive study did not take FA as a routine medication against
HHcy; we herein are unable to provide further clinical data
to support the therapeutic potent of FA in HHcy-
stimulated hypertensive cardiac hypertrophy.

In conclusion, our study indicates that HHcy might be a
potential risk factor for cardiac hypertrophy in hyperten-
sion, and Calcineurin-NFAT pathway might be involved in
the pro-hypertrophic effect of Hcy.
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