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Channel pruning has been demonstrated as a highly effective approach to compress large convolutional neural networks. Existing
differentiable channel pruning methods usually use deterministic soft masks to scale the channelwise outputs and explore an
appropriate threshold on the masks to remove unimportant channels, which sometimes causes unexpected damage to the network
accuracy when there are no sweet spots that clearly separate important channels from redundant ones. In this article, we introduce
a new differentiable channel pruning method based on polarization of probabilistic channelwise soft masks (PPSMs). We use
variational inference to approximate the posterior distributions of the masks and simultaneously exploit a polarization regu-
larization to push the probabilistic masks towards either 0 or 1; thus, the channels with near-zero masks can be safely eliminated
with little hurt on network accuracy. Our method significantly relieves the difficulty faced by the existing methods to find an
appropriate threshold on the masks. *e joint inference and polarization of probabilistic soft masks enable PPSM to yield better
pruning results than the state of the arts. For instance, our method prunes 65.91% FLOPs of ResNet50 on the ImageNet dataset
with only 0.7% model accuracy degradation.

1. Introduction

Convolutional neural network (CNN) yields unprecedented
success in computer vision tasks [1, 2], due to its intrinsic
ability of automatically learning meaningful features. To
achieve better results on these tasks, the structure of CNN is
expanding wider and deeper. However, the performance
elevation is often accompanied with extensive consumption
of memory and computation footprint, which inhibits the
deployment of complex CNNs on resource-constrained
devices. Network compression techniques [3–5] have re-
lieved the issue through condensing a large CNN into a
compact subnetwork (subnet), and channel pruning is
deemed as one of the most effective methods for network
compression.

Channel pruning aims at removing semantically re-
dundant channels from a pretrained or a baseline network
with little damage to the model accuracy. Early works on

channel pruning mainly employ an iterative search-evalu-
ation scheme comprising of generation of subnets and
evaluation of the subnets on a validation set. For instance,
He et al. [6] propose to sequentially prune each layer of the
network based on LASSO regression, and AMC [7] gen-
erates the reserved channels in each layer via reinforcement
learning. *e layerwise pruning may result in suboptimal
solution due to deficient representation of global structural
information of the network. To improve subnet search ac-
curacy and efficiency, Cao et al. [8] leverage Bayesian op-
timization to generate the priority ordering of subnets for
evaluation. Some methods exploit channel importance
scores to guide the selection of subnets. For instance, Lie-
benwein et al. [9] use an important sampling distribution to
yield subnets by giving higher sampling probability to im-
portant filters. LeGR [10] generates subnets with different
trade-offs between model accuracy and efficiency by infer-
ring global ranking of the filters. Similarly, HRank [11] sorts
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filters by the rank of feature maps and removes low-ranked
filters to yield a subnet. *ese methods all explicitly or
implicitly depend on empirically defined metrics to assess
the importance of filters and usually need to explore a
threshold of the scores to remove unimportant filters or
channels.

To learn a well-performing subnet under an end-to-end
manner, differentiable pruning has become a popular ap-
proach for channel pruning. *e basic concept is attaching
learnable masks or gate functions behind channels to scale the
original outputs and utilizing certain regularizations on the
masks or gates to get an importance ordering of all channels.
Lin et al. [12] use binary masks to remove redundant filters by
setting corresponding masks as 0. Such hard pruning gives
rise to the difficulty of mask optimization. To relieve the
training complexity, many methods based on soft pruning
have been proposed in recent years [13–15]. For instance,
GAL [16] employs soft masks to remove structural redun-
dancy with adversarial learning, GBN [17] estimates filter
importance ranking through exploring the effects of setting
channelwise gate to zero on the loss function, and DMCP [18]
formulates channel pruning of each layer as a Markov process
that defines the retaining probability of each channel. Kim
et al. [19] also introduce the concept of gates for differentiable
channel pruning. While these soft pruning methods perform
acceptably well, they still need to explore an appropriate
threshold on the masks or gates to define unimportant
channels, which sometimes causes unexpected damage to the
network accuracy when there are no sweet spots that clearly
separate the channels into two parts. In addition, the learning
of deterministic masks or gates may suffer from low stability
and deficient convergence in large networks.

In this article, we introduce a new differentiable channel
pruning method based on polarization of probabilistic soft
masks (PPSMs). Figure 1 provides an intuitive illustration of
the idea of mask polarization. PPSM is built on the as-
sumption that the global channel ranking may vary with the
input (similar concept is adopted in dynamic pruning);
therefore, deterministic masks used by existing methods
cannot capture this input-aware property. We use proba-
bilistic channelwise soft masks to implicitly represent the
uncertainty on channel ranking. To enable stable learning of
the masks, variational inference is exploited to approximate
the posterior distributions of the masks given the output
features of a baseline network. Meanwhile, a new polari-
zation regularization is utilized to push masks of redundant
and important channels towards 0 and 1, respectively; thus,
the channels with near-zero masks can be safely eliminated
with little hurt on network accuracy. Our method signifi-
cantly relieves the difficulty faced by the existing methods to
find an appropriate threshold on the masks. To the best of
our knowledge, PPSM is the first method to make joint
inference and polarization of probabilistic soft masks.

Our main contributions are summarized as follows:

(1) We propose a differentiable channel pruningmethod
to remove redundant channels from a baseline
network through learning input-aware probabilistic
channelwise soft masks.

(2) Variational inference and polarization regularization
are introduced to learn and push the probabilistic
masks towards two ends and therefore clearly sep-
arate important channels from redundant ones.

(3) Extensive evaluations of PPSM on popular network
architectures and datasets show our method out-
performs the state of the arts, and it prunes more
FLOPs with less loss of model accuracy.

2. Related Works

2.1. Network Pruning. Network pruning eliminates the
unnecessary weights or structured units such as filters and
neurons of a pretrained neural network. Fine-grained
pruning directly removes redundant weights within a filter
or neuron and produces a highly sparse weight matrix. Many
works [20, 21] mainly apply sparsity-induced penalty on the
weights to remove insignificant weights. While nonstruc-
tured pruning greatly reduces the parameters of the network,
it is not hardware-friendly and requires a specially designed
sparsity matrix multiplication library for acceleration. By
comparison, coarse-grained or structured pruning [22–25]
aims at removing structured units such as filters, channels,
or layers.*e widely used strategy of structured pruning is to
attach a learnable scaling factor or mask after each structure
is pruned with sparsity regularization [26–28]. Jung et al.
[29] propose a new real-time target tracking meta-learning
framework with efficient model adaptation and channel
pruning. He et al. [22] propose meta-attribute-based filter
pruning (MFP), which adaptively selects the most appro-
priate pruning standard through an attribute (meta-attri-
bute) of the current state of the neural network. Li et al. [23]
propose a new fusion catalytic pruning method called
FuPruner to simultaneously optimize parametric and
nonparametric operators to accelerate neural networks.
Some recent efforts use two or more different techniques for
joint optimization. *is provides another flexible option for
network compression because the two technologies com-
plement each other. *e joint optimization of pruning and
other model compression algorithms (such as quantization,
knowledge distillation, and matrix decomposition) [30–32]
can deal with a larger search space and obtain a more
compact network. Recent works like joint-DetNAS [33] and
NPAS [34] perform joint optimization of neural architecture
search (NAS) and pruning.

2.2. Neural Architecture Search. NAS aims at automatically
finding a compact neural architecture from a large search
space. Early works use either reinforcement learning [35] or
genetic algorithm [36] to update model responses for
generating architectures with better performance. However,
the search space of these methods is very large and signif-
icant computational overhead is required to search and
select the best model from thousands of models. To address
this problem, Differentiable Architecture Search (DARTS)
[37] continuously processes the search space, which facili-
tates optimization algorithms such as gradient descent to
find the optimal network structure. Our method can also be
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seen as a NAS process. Compared with conventional NAS,
our method obtains the posterior distribution of the mask
given the baseline output features and uses variational in-
ference to learn the soft mask. *en, the polarization reg-
ularization of the soft mask is employed to remove the
channels with soft masks close to zero, resulting in a
compact network.

3. Method

3.1. Notations and Preliminaries. Given a batch of input
images xi 

N

i�1, the baseline network outputs corresponding
feature maps yi 

N
i�1 from the last layer.*e input and output

pairs (xi, yi) 
N
i�1 constitute a training dataset for supervised

channel pruning. We use Fi ∈ RCi×Wi×Hi to denote the
feature map derived from the i-th layer, where i is the layer
index, Ci is the number of channels, and Wi and Hi are the
height and width of the feature map, respectively. Suppose
the number of filters across the network is n, we use a
n-dimensional variable m � (m(1), . . . , m(n)) to represent
the soft masks, where each element m(i) ∈ [0, 1]. By mul-
tiplying the channelwise outputs of the baseline network by
the soft masks, we can get a pruned network through setting
certain masks to 0. For each input xi, the corresponding soft

masks are denoted as mi, and the output feature map of the
pruned network is optimized to approximate the baseline yi.

3.2. Probabilistic SoftMasks. *eusage of probabilistic masks
is motivated by the instance-aware channel ranking used in
dynamic pruning. A single deterministic mask cannot capture
such dynamics, while a distribution is more effective to
characterize the variance of channel importance in static
network pruning. In addition, learning a distribution tends to
have better stability than learning a single deterministic value.
*erefore, probabilistic soft mask is used to capture the
variance of channel importance. Given an input sample xi, we
assume the output yi can be well approximated by cancelling
out certain filters. Based on these conceptions, we formulate
the dependence of output feature map yi on input xi and soft
masks mi with a deep conditional generative model (CGM):
for given input xi, sampled mi from the prior distribution
pθ(mi|xi) and generated output yi from the distribution
pθ(yi|xi,mi). Direct training of the deep CGM to maximize
the conditional log-likelihood is intractable; therefore, we
employ stochastic gradient variational Bayes (SGVB) [38] to
optimize the variational lower bound on the conditional log-
likelihood:
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Figure 1: An illustration of PPSM. *e PPSM framework for channel pruning consists of a conditional variational auto-encoder (CVAE),
where the encoder learns the posterior distribution of channelwise soft masks given the output features of a baseline network, and the
decoder formed by the pruned network learns to recover the baseline features. PPSM combines variational inference with a polarization
regularization to effectively learn the posterior distributions of the masks and simultaneously divide the filters into two clearly separated
parts, and therefore facilitate the pruning of channels with masks close to zero.
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log pθ yi|xi( ≥ − KL qϕ mi|xi, yi( ‖θ mi|xi(  

+ Eqϕ mi|xi ,yi( ) log pθ yi|xi,mi(  ,
(1)

where ϕ and θ are variational and generative parameters,
respectively. *e KL divergence measures the similarity
between the approximate and true posteriors.

To simplify the computation, we further assume the
posterior distribution ofmi is only conditioned on yi, that is,
qϕ(mi|xi, yi) � qϕ(mi|yi). We adopt a simplified form of the
conditional probability based on two reasons: (1) although the
baseline network may give same outputs for different inputs,
this will rarely happen given the complex nonlinear property
of the network; (2) even if the output features of two images
are same, the images are most likely from the same class and
have little semantic difference. *erefore, we remove xi from
conditional probability qϕ(mi|xi, yi) to simplify the model
training. As the element value of mi is constrained to the
interval [0, 1], directly approximating the posterior distri-
bution of mi is computationally inconvenient; therefore, we
introduce an auxiliary n-dimensional real-valued variable zi,
to calculatemi by applying sigmoid function to each element
of zi, which we denote as mi � S(zi). Based on these defi-
nitions, the lower bound can now be formulated as

L xi, yi; ϕ, θ(  � − KL qϕ zi|yi( ‖pθ zi|xi(  

+ Eqϕ zi|yi( ) log pθ yi|xi, zi(  .
(2)

We then leverage conditional variational auto-encoder
(CVAE) to optimize the lower bound with respect to both ϕ
and θ. Figure 1 shows the proposed PPSM framework that is
built on the CVAE to reason the probabilistic soft masks.*e
encoder consists of 5 fully connected layers of which the last
two layers output the mean and variance of each zi, and the
decoder is the pruned network that has same structure to the
baseline network. Specifically, we use a centered isotropic
multivariate Gaussian for the conditional prior on zi with
pθ(zi|xi) � N(zi; 0, I) and also assume the variational
posterior is a multivariate normal distribution with diagonal
covariance matrix: qϕ(zi||yi) � N(zi; μi, σ2i I), where μi and
σi are the outputs of the encoder and represents the mean
and s.d. of the posterior, respectively. We sample zi from the
posterior qϕ(zi|yi) using zi � gϕ(yi, ϵ) � μi + σi ⊙ ϵ,
ϵ ∼ N(0, I), where ⊙ denotes element-wise product. *e
soft masks mi are then calculated using mi � S(zi).

We use the mean soft masks m � 1/Nimi to scale the
channelwise feature maps for each input xi. Here,m represents
an average contribution of the inputs to channel importance
and shows less variance than mi, 1≤ i≤N, and therefore is
easier to be optimized. Given the soft masksm and input xi, the
decoder yields the reconstructed feature map f(xi,m; θ) to
approximate the baseline yi. Specifically, we use MSE loss to
align the outputs of the pruned and baseline networks:

LMSE �
1
2N



N

i�1
f xi,m; θ(  − yi

����
����
2
2. (3)

*e optimization objective now becomes minimizing the
following loss function:

LCVAE � 
N

i�1
KL qϕ zi|yi( ‖pθ zi|xi(   + LMSE. (4)

*e CVAE loss function makes it convenient to dif-
ferentially approximate the posteriors of the soft masks and
effectively recovering the baseline features.

3.3. Polarization Regularization. Optimization of LCVAE
does not provide a guarantee of clear separation of im-
portant filters from redundant ones; therefore, appropriate
regularization on the soft masks is essential for harmless
channel pruning. *e conventional strategies that use either
L1 or L2 regularization [39] aim to minify the masks of
unimportant filters and need to carefully explore a threshold
on themasks to prune filters withmasks below the threshold.
Inspired by the work in [28], we introduce a polarization
regularizer on the probabilistic soft masks to push the
posteriors of the masks towards 0 or 1, such that sweet spots
that clearly separate the channels into two parts can be easily
found. *e adopted polarization regularizer is defined as
follows:

R(m) � t‖m‖1 − m − m1n

����
����1, (5)

where m denotes themean of m(1), . . . , m(n).*e effect of the
second RHS term − ‖m − m1n‖1 is to keep m(i), 1≤ i≤ n as
far away from the mean as possible. *e term − ‖m − m1n‖1
gets its extremums at vertices of the n-dimensional cube
[0, 1]n, and the minimum is reached if half elements ofm are
0. *e hyperparameter t is introduced to control the weight
of L1 regularization and also determine the sparsity of the
soft masks.

3.4. Optimization. By combining the loss functions asso-
ciated with the CVAE, polarization regularizer, and regu-
larizations on parameters ϕ and θ, we derive the following
objective function:

minϕ,θLCVAE + λR(m) + λϕR(ϕ) + λθR(θ), (6)

where R(ϕ) is L2 regularization on variational parameters ϕ,
R(θ) is L2 regularization on generative parameters θ, and the
weights λϕ and λθ are fixed to 5e − 4. We can optimize the
objective function with respect to ϕ and θ using a differ-
entiable algorithm such as stochastic gradient descent
(SGD).

3.5. Pruning Strategy. After the model converges, the dis-
tribution of soft masks is analyzed to identify unimportant
filters. Given a batch of input images, we measure the ex-
pected value of the mean soft masks m:

m � Eqϕ zi|yi( )[m] �
1
N



N

i�1
Eqϕ zi|yi( ) mi ,

�
1
N



N

i�1
 qϕ zi|yi( S zi( dzi.

(7)
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As qϕ(zi|yi)S(zi) forms a complex function with respect
to zi, the integral is intractable to calculate; therefore, we get
Monte Carlo estimate of the expectation of mi as follows:

Eqϕ zi|yi( ) mi ≃
1
L



L

l�1
S gϕ yi, εl(  , εl ∈N(0, I), (8)

where L is the number of samples. Each element of m
denotes the soft mask attached to one of the filters. By
utilizing the polarization effect, we do not need to explore a
threshold on soft masks and can directly set the threshold as
0.5 to prune filters. When investigating the distribution
histogram of m, a bimodal distribution is always observed
and two peaks are clearly separated: one locates close to 0,
and the other locates close to 1 (illustrated in Figure 2). In
addition, the filters are completely separated into two parts
with a large margin. We also observe that the batch of inputs
has little effect on the distribution of soft masks after the
model converges (demonstrated in Figure 3); therefore, only
one batch of inputs is required when pruning the filters.

4. Experiments

4.1. Experimental Settings. We evaluated the proposed
method on two datasets: CIFAR-10 [40] and ImageNet
ILSVRC 2012 [41]. CIFAR-10 is a 10-class image classifi-
cation dataset with an image size of 32× 32. It contains 50k
training images and 10k validation images. ImageNet is a
large-scale image classification dataset, which contains 1.28
million training images and 50k validation images. On
CIFAR-10, we evaluated the proposed method on VGG-16
[42] and ResNets [43] (including ResNet32, ResNet56, and
ResNet110). On ImageNet dataset, we assessed our method
on ResNet50 and MobileNet v2 [44].

4.1.1. Implementation Details. All networks were trained
from scratch. *e same data augmentation strategies were
used as done in PyTorch official examples [45]. *e training
was conducted to run 200 and 100 epochs on CIFAR-10 and
ImageNet datasets, respectively, with an initial learning rate
of 0.1 and a mini-batch size of 128. *e learning rate was
multiplied by 0.1 at 50% and 75% of the training epochs on
CIFAR-10, and multiplied by 0.1 at 30, 60, and 90 epochs on
ImageNet. We utilized an SGD optimizer with a weight
decay of 0.0005 and a momentum of 0.9. For MobileNet v2
on ImageNet, we used cosine annealing to automatically
reduce the learning rate. All experiments were implemented
on two NVIDIA RTX 3090 GPUs and Intel(R) Xeon(R)
Gold 5218 CPU by PyTorch.

4.1.2. Hyperparameter. During the pruning process, we
need to set two hyperparameters λ and t to achieve desired
FLOPs reduction. *e hyperparameter λ controls the weight
of polarization regularizer. With a larger λ, the soft mask will
move more obviously to 0 and 1. *e hyperparameter t

controls the ratio of FLOPs to be reduced. A larger t will
result in more FLOP reduction. In our experiments, we
empirically set λ � 0.0004 on CIFAR-10 and λ � 0.00005 on

ImageNet. To obtain the desired FLOPs reduction, different
t values need to be tested for different network architectures
(as shown in Table 1), and we set the range of t to [− 2, 2]. For
example, when pruning ResNet56 on CIFAR-10, we ob-
tained FLOPs reduction by 54.6% at t � 0.2. In addition, the
initial learning rate during fine-tuning was set to 0.01.

4.2. Results

4.2.1. Results on CIFAR-10. We first compared our method
to the state of the arts on a small-scale CIFAR-10 dataset.
Channel pruning was performed on four popular neural
networks including VGG16, ResNet32, ResNet56, and
ResNet110, and the results are shown in Table 2.

When pruning VGG16, PPSM elevates the accuracy by
0.06% with 66.20% FLOPs pruned and performs better than
HRank [11] and SCP [14] by yielding similar FLOP reduction.
For ResNet32, when compared to LFPC [46] and Wang et al.
[47], ourmethod achieves the best accuracy at similar pruning
rates of ∼53%, with an increase of 0.12% over baseline ac-
curacy. In addition, PPSM outperforms LRF [27] and
MainDP [15] by pruning 64.35% FLOPs and improves model
accuracy by 0.09%. For ResNet56, PPSM was compared to 9
state-of-the-art methods in terms of high pruning rate (∼75%
drop in FLOPs) and low pruning rate (∼50% drop in FLOPs),
and our method performs better than or comparably to the
competitors. For instance, with more FLOPs removed
(75.62% vs 73.90%), PPSM exhibits lower accuracy loss
(0.22% vs 0.26%) than LRF. Our method also increases the
accuracy by 0.13% with 54.6% FLOPs compression, which is
better than the results of DPFPS [49] and Wang et al. [47].
Figure 4(a) depicts the change in the test accuracy of different
methods with respect to the percent of reduced FLOPs, and
the results suggest PPSM achieves a higher accuracy than the
competitors across different FLOP reduction rates. For
ResNet110, with a similar FLOP reduction rate of ∼68.5%, our
method performs much better than HRank in preserving
network accuracy (− 0.23% vs 0.85% accuracy loss). In ad-
dition, LRF improves model accuracy by 0.58% at 62.6%
FLOP reduction, and PPSMprunesmore FLOPs (68.7%) with
0.23% increase in model accuracy.

We utilize one batch of inputs to reason the distribution
of the soft masks after the model converges and use the
inferred distribution to determine the filters to prune. To
investigate the effect of different batches of inputs on the
distribution of the soft masks, we compared the inferred m
of first 100 filters across 100 batches on VGG16, ResNet32,
ResNet56, and ResNet110. *e results in Figure 3 imply our
method is robust to the change in batches and outputs highly
consistent soft mask for each filter across different batches,
suggesting the CVAE framework and polarization regular-
izer adopted in PPSM are beneficial to stabilizing the
learning of probabilistic masks, therefore making PPSMwell
adaptive to different network architectures.

4.2.2. Results on ImageNet. We further evaluated the per-
formance of PPSM on large-scale ImageNet dataset, and also
made comparisons to the state-of-the-art methods.
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We evaluated the top-1 and top-5 accuracy and FLOP
reduction rate of PPSM on ResNet50 and MobileNet V2
networks, and the results are shown in Table 3. To better verify
the effectiveness of our method, the competitive methods we
choose are from recently published works, such as GAL [16],
HRank [11], Zhuang et al. [28], GBN [17], DMC [13], DMCP
[18], SCP [14], SCOP [50], LRF [27], DPFPS [49], CHIP [51],
and SRR-GR [48]. For ResNet50, we conducted experiments
at pruning rates of 50%, 60%, and 70%. *e results show
PPSM surpasses other methods in top-1 and top-5 accuracy
when FLOPs are reduced by 60% and 70%. Specifically,
compared with GAL, HRank, and CHIP, PPSM has the
maximum reduction rate of 65.91% in FLOPs, while its top-1
accuracy only decreases by 0.7% and top-5 accuracy only
decreases by 0.32, which is significantly better than the results
of other threemethods. Similarly, when FLOPs are reduced by
∼ 70%, our method delivers higher top-1 and top-5 accu-
racies than other methods. With ∼ 55% FLOP reduction,
LRF better recovers model accuracy than DMC, SCP, and
SRR-GR. *e pruning rate of LRF is slightly higher than that
of PPSM (56.40% vs 53.07%), but the top-1 accuracy of PPSM

decreases less than that of LRF (0.35% vs 0.50%). As shown in
Figure 4(b), PPSM’s accuracy is less sensitive to the FLOP
reduction rate, whereas the accuracy of the existing most
advanced methods decreases significantly as the pruning rate
increases. For the lightweight network MobileNet v2, PPSM
has the lowest decrease in accuracy after pruning. Our
method removes ∼ 28% FLOPs with only 0.45% accuracy
loss, while Metapruning [52] causes 0.80% drop in accuracy
when 27% FLOPs are pruned, and DPFPS prunes ∼ 25%
FLOPs with a cost of 0.9% accuracy loss.

Taken together, the superior performance of PPSM is
attributed to the effective polarization of probabilistic soft
masks in a CVAE framework, where the uncertainty on
channel importance is well characterized by approximating
posterior distribution of the soft masks.

4.3. Ablation Study

4.3.1. 9e Effectiveness of the Probabilistic Mask. To verify
the effectiveness of our adopted probabilistic masks, we

Table 1: Setting of hyperparameters λ and t for ResNet56 on CIFAR-10 and ResNet50 on ImageNet.

Datasets Network λ t FLOPs ↓ (%)

CIFAR-10 ResNet56 0.0004
0.2 54.60
0.8 66.84
1.2 75.62

ImageNet ResNet50 0.00005
− 0.2 53.07
0.2 65.91
0.5 72.43
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compared the performance under two scenarios where
probabilistic and deterministic masks are employed, re-
spectively. For generating deterministic masks, we directly
applied the sigmoid function on the μi outputted by the
encoder of the CVAE and trained the model without KL loss.
Table 4 shows the comparison results of pruning ResNet32
and ResNet56 on the CIFAR-10 dataset. *e results indicate
probabilistic masks have advantages over deterministic masks

in preserving the model capability across different pruning
rates of FLOPs. For instance, the model accuracy is improved
by 0.12% when reducing ∼ 53% FLOPs of ResNet32 with
probabilistic masks, while decreased by 0.07% if deterministic
masks are used.*e superiority of probabilistic masks is more
obvious when pruning ResNet56. *e pruned network using
probabilistic masks gains at least 0.28% accuracy improve-
ment over the pruned model generated by deterministic

Table 2: Comparison results on the CIFAR10 dataset with VGG16, ResNet32, ResNet56, and ResNet110. Acc ↓ is the accuracy drop of the
pruned model compared to the baseline model. FLOPs ↓ represent the pruning rate of FLOPs.

Network Method Baseline acc (%) Pruned Acc ↓ (%) FLOPs ↓ (%)

VGG-16
HRank [11] 93.96 92.34 1.62 65.30
SCP [14] 93.85 93.79 0.06 66.23

PPSM (ours) 93.72 93.78 −0.06 66.20

ResNet32

LFPC [46] 92.63 92.12 0.51 52.60
Wang et al. [47] 93.18 93.27 − 0.09 49.00
PPSM (ours) 93.19 93.31 −0.12 53.27
LRF [27] 92.49 92.54 − 0.05 62.00

MainDP [15] 92.66 92.15 0.51 63.20
PPSM (ours) 93.19 93.28 −0.09 64.35

ResNet56

Zhuang et al. [28] 93.80 93.83 − 0.03 47.00
HRank [11] 93.26 93.17 0.09 50.00
LFPC [46] 93.59 93.34 0.25 52.90
DMC [13] 93.62 93.69 − 0.07 50.00

SRR-GR [48] 93.38 93.75 −0.37 53.80
SCP [14] 93.69 93.23 0.46 51.50

DPFPS [49] 93.81 93.20 0.61 52.86
Wang et al. [47] 93.69 93.76 − 0.07 50.00
PPSM (ours) 93.44 93.57 − 0.13 54.60
HRank [11] 93.26 90.72 2.54 74.10
LRF-60 [27] 93.45 93.19 0.26 73.90
PPSM (ours) 93.44 93.22 0.22 75.62

ResNet110

HRank [11] 93.50 92.65 0.85 68.60
LFPC [46] 93.68 93.79 − 0.11 60.30
LRF [27] 93.76 94.34 −0.58 62.60

PPSM (ours) 93.60 93.83 -0.23 68.70
*e bold values are given to highlight the best-performing method in each performance metric.
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Figure 4: *e change in the test accuracy of different methods with respect to the percent of reduced FLOPs. (a) shows the comparison
results of pruning ResNet56 on CIFAR-10, and the pruning rate changes from 50% to 70%. (b) depicts the comparison results of pruning
ResNet50 on ImageNet, and the pruning rate changes from 40% to 75%. PPSM is compared to the most representative existing methods.
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masks. *ese results demonstrate probabilistic masks can
effectively capture the uncertainty on channel importance and
thus deliver more accurate identifications of important
channels than the deterministic masks.

4.3.2. 9e Effect of Batch Size on Learning the Probabilistic
Masks. Polarization regularization encourages the masks
to move towards both ends and results in a clear boundary
between the two parts of separated filters and thus makes
it easier to select a threshold to remove the less important
filters. As PPSM gathers statistics of the soft masks from

the images within a batch to prune the filters, we further
examined the effect of batch size on channel pruning.
Specifically, the results based on batch sizes of 64, 128, and
256 were compared. *e results in Figure 2 suggest batch
size has little effect on learning the distribution of the
masks, and filters are clearly divided into two parts with
soft masks close to either 0 or 1 across different batch
sizes. In addition, when the batch size increases, the
distance between two peaks of the distribution also in-
creases, suggesting the enhanced statistical strength of
PPSM gained by the combination of CVAE with the
polarization regularization.

Table 3: Comparison results of ResNet50 and MobileNet v2 on ImageNet. Pruned top-1 and pruned top-5 denote the top-1 and top-5
accuracy after the pruning. Top-1 ↓ and top-5 ↓ denote the accuracy drop of the pruned model when compared to the baseline model.

Network Method Pruned top-1(%) Top-1 ↓ (%) Pruned top-5(%) Top-5 ↓ (%) FLOPs ↓ (%)

ResNet50

GAL [16] 71.80 4.35 90.82 2.05 55.01
Zhuang et al. [28] 75.63 0.52 — — 54.00

DMCP [18] 76.20 0.40 — — 46.34
DMC [13] 75.35 0.80 92.49 0.38 55.00
HRank [11] 74.98 1.17 92.33 0.54 43.77
GBN [17] 75.18 0.67 92.41 0.25 55.06

SRR-GR [48] 75.11 1.02 92.35 0.51 55.10
SCP [14] 75.27 0.62 92.30 0.68 54.30
SCOP [50] 75.26 0.89 92.53 0.34 54.60
LRF [27] 75.71 0.50 92.80 0.02 56.40

DPFPS [49] 75.55 0.60 92.54 0.33 46.20
PPSM (ours) 75.78 0.35 92.83 0.03 53.07
GAL [16] 69.88 6.27 89.75 3.12 61.37
HRank [11] 71.98 4.17 91.01 1.86 62.10
CHIP [51] 75.26 0.89 92.53 0.34 62.80

PPSM (ours) 75.43 0.70 92.54 0.32 65.91
GAL [16] 69.31 6.84 89.12 3.75 72.86
HRank [11] 69.10 7.05 89.58 3.29 76.04
DMCP [18] 74.40 2.20 — — 73.17
CHIP [51] 73.30 2.85 91.48 1.39 76.70

PPSM (ours) 74.59 1.54 92.30 0.56 72.43

MobileNet v2

AMC [7] 70.80 1.00 — — 27.00
Metapruning [52] 71.20 0.80 — — 27.00

DPFPS [49] 71.10 0.90 — — 24.89
PPSM (ours) 71.43 0.45 89.92 0.37 28.69

*e bold values are given to highlight the best-performing method in each performance metric.

Table 4: Comparison between probabilistic and deterministic mask on the CIFAR-10 dataset. Acc ↓ is the accuracy drop of pruned model
compared to the baseline model. FLOPs ↓ represent the pruning rate of FLOPs.

Network Mask Baceline acc (%) Pruned acc (%) Acc ↓ (%) FLOPs ↓ (%)

ResNet32

Probabilistic 93.19
93.31 − 0.12 53.27
93.11 0.08 68.60
93.00 0.19 74.40

Deterministic 93.19
93.12 0.07 53.35
92.93 0.26 69.59
92.81 0.38 72.70

ResNet56

Probabilistic 93.44
93.57 − 0.13 54.60
93.35 0.09 66.84
93.22 0.22 75.62

Deterministic 93.44
93.24 0.20 54.30
93.07 0.37 69.59
92.91 0.53 75.16
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5. Conclusions

In this article, we propose a novel differentiable channel
pruning method called polarization of probabilistic soft mask
(PPSM). To capture the statistical behavior of the channel
importance that is modeled in dynamic pruning under an
input-aware manner, PPSM exploits variational inference to
learn the posterior distributions of the masks and simulta-
neously classifies the filters into two clearly separated parts by
leveraging a new polarization regularization, and thus, the
channels with masks close to zero can be safely removed with
little effect on network accuracy. We evaluated the perfor-
mance of PPSM on several popular network architectures
using CIFAR-10 and ImageNet datasets, and the results
demonstrate our method performs competitive to the state of
the arts. One of the limitations of PPSM lies in its low effi-
ciency in learning the soft masks via the CVAE framework,
and we plan to improve this in near future.

Data Availability

We evaluated the proposed method on two datasets: CIFAR-
10 [40] and ImageNet ILSVRC 2012 [41].
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