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Abstract
Gene	flow	in	animals	 is	 limited	or	facilitated	by	different	features	within	the	 land‐
scape	matrix	they	inhabit.	The	landscape	representation	in	landscape	genetics	(LG)	is	
traditionally	 modeled	 as	 resistance	 surfaces	 (RS),	 where	 novel	 optimization	 ap‐
proaches	are	needed	for	assigning	resistance	values	that	adequately	avoid	subjectiv‐
ity.	Also,	desert	ecosystems	and	mammals	are	scarcely	represented	in	LG	studies.	We	
addressed	these	issues	by	evaluating,	at	a	microgeographic	scale,	the	effect	of	land‐
scape	features	on	functional	connectivity	of	the	desert‐dwelling	Dipodomys merriami. 
We	characterized	genetic	diversity	and	structure	with	microsatellites	loci,	estimated	
home	ranges	and	movement	of	individuals	using	telemetry—one	of	the	first	with	ro‐
dents,	generated	a	set	of	individual	and	composite	environmental	surfaces	based	on	
hypotheses	 of	 variables	 influencing	movement,	 and	 assessed	how	 these	 variables	
relate	 to	 individual‐based	 gene	 flow.	 Genetic	 diversity	 and	 structure	 results	 evi‐
denced	 a	 family‐induced	 pattern	 driven	 by	 first‐order‐related	 individuals,	 notably	
determining	landscape	genetic	inferences.	The	vegetation	cover	and	soil	resistance	
optimized	surface	(NDVI)	were	the	best‐supported	model	and	a	significant	predictor	
of	individual	genetic	distance,	followed	by	humidity	and	NDVI+humidity.	Based	on	an	
accurate	definition	of	thematic	resolution,	we	also	showed	that	vegetation	is	better	
represented	as	continuously	(vs.	categorically)	distributed.	Hence,	with	a	nonsubjec‐
tive	optimization	 framework	 for	RS	 and	 telemetry,	we	were	 able	 to	 describe	 that	
vegetation	 cover,	 soil	 texture,	 and	 climatic	 variables	 influence	D. merriami’s	 func‐
tional	 connectivity	 at	 a	microgeographic	 scale,	 patterns	we	 could	 further	 explain	
based	on	 the	home	 range,	 habitat	 use,	 and	 activity	 observed	between	 sexes.	We	
describe	 the	 relationship	 between	 environmental	 features	 and	 some	 aspects	 of	
D. merriami‘s	behavior	and	physiology.
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1  | INTRODUC TION

Since	 the	 term	 was	 coined	 in	 2003,	 landscape	 genetics	 (LG)	 has	
been	 a	 constantly	 growing	 field	 that	 combines	 population	 genet‐
ics,	landscape	ecology,	and	spatial	analytical	techniques	to	quantify	
the	effects	that	the	landscape	has	on	microevolutionary	processes	
(Balkenhol,	 Cushman,	 Storfer,	 &	 Waits,	 2015;	 Manel,	 Schwartz,	
Luikart,	 &	 Taberlet,	 2003;	 Storfer,	Murphy,	 Spear,	Holderegger,	 &	
Waits,	2010).	One	such	process	 is	 the	movement	of	genes	among	
populations	(i.e.,	gene	flow)	that,	 in	animal	species,	 is	primarily	de‐
termined	by	the	dispersal	of	 individuals,	at	different	scales,	across	
the	landscape	(Reding,	Cushman,	Gosselink,	&	Clark,	2013).	A	vari‐
ety	of	features	within	the	landscape	matrix	may	limit	or	facilitate	the	
movement	 and	 gene	 flow	 of	 individuals	 (structural	 and	 functional	
connectivity).	 Landscape	 representation	 in	 LG	 has	 been	 tradition‐
ally	modeled	as	resistance	surfaces	(RS),	which	can	be	defined	as	a	
spatial	 layer	that	assigns	a	value	to	each	of	a	set	of	 landscape	fea‐
tures,	and	where	values	denote	the	degree	to	which	a	feature	limits	
or	facilitates	connectivity	across	the	landscape.	Resistance	surfaces	
can	 be	 viewed	 as	 hypotheses	 of	 the	 relationship	 between	 land‐
scape	variables	and	gene	flow	 (Spear,	Balkenhol,	Fortin,	McRae,	&	
Scribner,	2010;	Spear,	Cushman,	&	McRae,	2015;	Zeller,	McGarigal,	
&	Whiteley,	2012).

A	 common	method	 for	 developing	 RS	 is	 the	 parameterization	
of	 resistance	values	based	on	expert	opinion	 (Murray	et	al.,	2009)	
to	test	alternative	costs	ratios	 (e.g.,	2:1,	10:1,	100:1),	 in	which	one	
variable	 is	hypothesized	to	always	facilitate	(e.g.,	habitat	value	=	1)	
and	the	other	to	restrict	movement	at	different	orders	of	magnitude	
(nonhabitat	value	=	2,	10,	100).	This	approach	has	been	amply	ap‐
plied	in	natural	systems	(Howell,	Delgado,	&	Scribner,	2017;	Spear	&	
Storfer,	2008,	2010).	Simulation	studies	have	demonstrated	that	the	
value	of	nonhabitat	relative	to	habitat	is	key	for	detecting	an	effect	
on	gene	flow,	in	which	a	higher	contrast	in	the	costs	ratios	will	make	
this	 relationship	 more	 detectable	 (Cushman,	 Shirk,	 &	 Landguth,	
2013;	Jaquiéry,	Broquet,	Hirzel,	Yearsley,	&	Perrin,	2011).	More	re‐
cently,	 LG	 studies	 using	 this	 parameterization	 approach	 have	 also	
implemented	mirror‐like	 cost	 ratios,	 by	 assigning	 high	 cost	 values	
not	only	to	nonhabitat	but	also	to	habitat	patches	(i.e.,	10:1,	2:1,	1:2,	
1:10),	which	eliminates	the	potential	bias	of	only	assigning	increas‐
ing	 cost	 values	 to	 variables	 considered	 to	 restrict	 gene	 flow	 (see	
Hohnen	et	al.,	2016).	Notwithstanding,	expert	opinion	RS	develop‐
ment	is	based	on	arbitrary	costs	with	no	consensus	about	the	values	
assigned	for	the	cost	ratios,	frequently	assuming	a	linear	relationship	
between	continuous	variables	and	genetic	distances,	which	may	not	
always	be	the	case	(Spear	et	al.,	2010,	2015).	Because	accurate	infer‐
ences	about	these	relationships	are	dependent	on	both,	the	correct	
representation	of	the	landscape	and	of	the	values	of	landscape	vari‐
ables,	we	require	methods	for	assigning	resistance	values	that	ade‐
quately	avoid	subjectivity	(Richardson,	Brady,	Wang,	&	Spear,	2016;	
Spear	et	al.,	2010).	A	recent	proposal	is	to	simultaneously	evaluate	
multiple	surfaces	and	a	wide	range	of	cost	values,	without	making	
any	 assumptions	 about	 their	 relationship	 with	 genetic	 distances.	
Specifically,	 Peterman,	 Connette,	 Semlitsch,	 and	 Eggert	 (2014)	

and	Peterman	(2018)	used	Ricker	and	monomolecular	equations	to	
transform	data,	in	combination	with	linear	mixed‐effects	models	and	
genetic	algorithms.	This	RS	optimization	framework	does	not	make	
a	priori	assumptions	regarding	the	scale	and	direction	of	the	resis‐
tance	relationship,	allowing	to	perform	both	the	optimization	of	cat‐
egorical	surfaces	and	the	simultaneous	optimization	of	multiple	RS.

Landscape	 genetic	 studies	 have	 focused	 mostly	 on	 terrestrial	
animals	 and	 temperate	 forest	 ecosystems	 (Dyer,	 2015;	 Storfer	 et	
al.,	 2010),	 whereas	 tropical	 and	 specially	 desert	 ecosystems	 are	
significantly	 lacking.	Deserts	 represent	 one	of	 the	most	 extended	
ecosystems	on	Earth—nearly	a	 third	of	 the	globe—exhibiting	envi‐
ronmental	 characteristics	 like	 extreme	 temperatures	 and	 low	pre‐
cipitation	regimes,	which	result	in	low	net	primary	productivity	and	
scarce	 vegetation	 cover	 (Whitford,	 2002).	 For	 such	 reasons,	 des‐
ert	 ecosystems	may	 seem	 to	harbor	 little	heterogeneity	 and,	 con‐
sequently,	no	significant	 role	of	 landscape	 features	 in	determining	
evolutionary	processes	like	gene	flow;	the	latter	is	likely	associated	
with	their	underrepresentation	in	LG	literature	(Storfer	et	al.,	2010).	
However,	 desert	 landscapes	 are	 truly	 heterogeneous	 ecosystems	
where,	among	others,	vegetation	patches	retain	rainfall,	resulting	in	
a	 banded	 vegetation	 pattern	 tightly	 linked	 to	 topography	 and	 soil	
type	 (Grünberger,	 2004;	 Ludwig,	 Wilcox,	 Breshears,	 Tongway,	 &	
Imeson,	2005).	Notably,	of	the	few	LG	studies	done	on	desert	eco‐
systems,	fewer	have	been	performed	for	mammal	species,	including	
big‐sized	and	 long	dispersing	mammals	 such	as	 the	bighorn	 sheep	
(Ovis canadensis nelsoni;	Creech,	Epps,	Monello,	&	Wehausen,	2014a,	
2014b),	a	small	carnivore	(Bassariscus astutus;	Lonsinger,	Schweizer,	
Pollinger,	Wayne,	&	Roemer,	2015),	and	a	desert	rodent	(Dipodomys 
spectabilis;	Cosentino,	Schooley,	Bestelmeyer,	McCarthy,	&	Sierzega,	
2015),	in	which	some	landscape	features	like	vegetation	and	eleva‐
tion	influenced	gene	flow.

Rodents	are	considered	a	key	ecological	component	of	deserts	
due	to	the	fundamental	role	they	play	for	the	structure	and	dynam‐
ics	 of	 these	 ecosystems,	 especially	 by	 the	 dispersal	 of	 seeds	 and	
soil	 removal	 (Brown	&	Heske,	 1990a,	 1990b).	 In	 addition,	 rodents	
have	 been	 proposed	 as	 ideal	 for	 conducting	 LG	 research	 (Waits,	
Cushman,	&	Spear,	2015)	because	of	their	small	body	size,	short	gen‐
eration	times,	and	limited	dispersal	abilities.	Accordingly,	LG	studies	
have	 focused	on	different	 rodent	species	 living	 in	a	wide	range	of	
environments,	 including	 tropical	 dry	 forests	 (spiny	 pocket	mouse,	
Liomys pictus;	 Garrido‐Garduño,	 Téllez‐Valdés,	 Manel,	 &	 Vázquez‐
Domínguez,	2015),	savannas	of	South	Africa	(Natal	multimammate	
mouse,	Mastomys natalensis;	Russo,	Sole,	Barbato,	von	Bramann,	&	
Bruford,	2016),	subantarctic	forests	and	Patagonian	steppes	(Long‐
tailed	pygmy	rice	rat,	Oligoryzomys longicaudatus;	Ortiz	et	al.,	2017),	
and	even	in	urbanized	areas	(White‐footed	mouse,	Peromyscus leu‐
copus,	 Munshi‐South,	 2012;	 and	 Norway	 rats,	 Rattus norvegicus,	
Gardner‐Santana	 et	 al.,	 2009).	 Interestingly,	 vegetation	 has	 been	
underlined	as	a	variable	facilitating	gene	flow	in	some	of	those	sys‐
tems,	including	the	canopy	cover	across	New	York	City	for	P. leuco‐
pus	 (Munshi‐South,	 2012),	 tropical	 dry	 forest	 corridors	 in	 L. pictus 
(Garrido‐Garduño	 et	 al.,	 2015),	 and	 forest	 patches	 in	 chipmunks	
(Tamias striatus)	 inhabiting	 agroecosystems	 (Kierepka,	 Anderson,	
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Swihart,	 &	 Rhodes,	 2016),	 whereas	 in	 O. longicaudatus, none	 of	
multiple	landscape	features	(lakes,	rivers,	urban	settlements,	roads)	
facilitated	dispersal.	Notably,	studies	regarding	the	importance	of	el‐
ements	promoting	gene	flow	on	rodents	from	desert	environments	
are	significantly	lacking.

One	 of	 the	most	 conspicuous	 desert	 rodents	 is	 kangaroo	 rats	
(genus	Dipodomys,	family	Heteromyidae).	In	particular,	the	Merriam’s	
kangaroo	 rat	Dipodomys merriami	 is	one	of	 the	 smallest	 species	 in	
the	genus,	with	a	distribution	 that	encompasses	 the	desert	 region	
of	southwestern	United	States	and	northern	Mexico.	It	is	a	burrow‐
dwelling,	 nocturnal	 rodent	 characterized	by	 a	 long	 tail	with	 a	 tuft	
of	 hair	 at	 the	 tip,	 large	 rear	 legs	 for	 bipedal	 locomotion,	 and	with	
sexual	dimorphism	where	males	are	larger	than	females.	It	is	consid‐
ered	solitary	and	territorial,	characterized	by	dispersing	adult	males	
(mean	of	60	m)	and	phylopatric	females	that	make	parental	 invest‐
ment	(Behrends,	Daly,	&	Wilson,	1986;	Randall,	1993;	Zeng	&	Brown,	
1987).	Their	mating	system	is	polygynandrous,	where	matings	occur	
mainly	between	close	neighbors	(Randall,	1993)	during	February	and	
July.	They	 show	a	mean	 survival	of	3.5	years,	with	 two	 litters	per	
year	and	an	average	of	three	young	per	litter	(Zeng	&	Brown,	1987),	
feeding	commonly	on	mesquite	seeds	(Prosopis sp.)	and	always	build‐
ing	their	burrows	under	bushes	 like	mesquite	and	creosote	 (Larrea 
tridentata)	 (Murrieta‐Galindo	 &	 Cuatle‐García,	 2016;	 Reynolds,	
1958).

As	a	desert	organism,	D. merriami	 is	challenged	by	the	low	pro‐
ductivity,	extreme	temperatures,	and	low	precipitation	regimes	of	its	
habitat.	Indeed,	D. merriami	has	shown	to	be	highly	sensitive	to	food	
shortage	 under	 controlled	 conditions	 (Banta,	 2003),	 in	 agreement	
with	a	desertic	environment	where	food	is	scarce,	and	thus	render‐
ing	mesquite	(and	other	desert	plants)	key	for	its	survival	(Reynolds,	
1958).	Moreover,	D. merriami’s	daily	 activity	 (e.g.,	 foraging,	disper‐
sal,	breeding)	is	affected	by	ambient	temperature	(29–34ºC;	French,	
1993;	 Banta,	 2003)	 and	 relative	 humidity	 (40%;	 Reynolds,	 1958;	
Frank,	 1988;	Walsberg,	 2000).	 Although	 some	 information	 about	
the	natural	history	and	ecology	of	D. merriami	exists	(e.g.,	Behrends	
et	al.,	1986;	Zeng	&	Brown,	1987;	Randall,	1993),	the	effect	of	land‐
scape	and	environmental	features	on	genetic	structure	and	connec‐
tivity	has	not	been	evaluated.

The	space	where	an	animal	species	performs	all	its	activities	(e.g.,	
feeding,	reproduction,	dispersal,	avoiding	predators)	defines	what	is	
known	as	home	range	(Burt,	1943);	a	home	range	represents	an	in‐
terplay	between	the	environment	and	an	animal’s	understanding	of	
that	environment	(i.e.,	 its	cognitive	map)	(Powell	&	Mitchell,	2012).	
The	selection	of	a	place	to	live	among	different	alternatives	available	
(habitat	selection),	tightly	linked	to	the	home	range,	is	a	hierarchical	
process	that	involves	both	innate	and	learned	behaviors	(Partridge,	
1978).	Recent	advances	in	telemetry,	geographical	positioning	sys‐
tems,	 and	 home	 range	 estimators	 have	 facilitated	 the	 description	
of	 habitat	 selection	 patterns	 and	 home	 ranges	 in	wild	 species,	 at	
diverse	 micro‐	 and	 macroenvironmental	 scales;	 allowing,	 in	 turn,	
the	understanding	of	organismal	movement,	how	and	why	animals	
use	 specific	 resources,	 and	 other	 elements	 that	 determine	 fitness	
and	survival	(Kernohan,	Gitzen,	&	Millspaugh,	2001;	Demšar	et	al.,	

2015).	Importantly,	combining	knowledge	on	habitat	use,	behavior,	
and	population	genetics	can	significantly	contribute	to	the	interpre‐
tation	of	functional	connectivity	in	landscape	genetics	(Portanier	et	
al.,	2018).

We	 here	 apply	 the	 optimization	 framework	 developed	 by	
Peterman	et	al.	(2014)	and	Peterman	(2018)	to	evaluate,	at	a	micro‐
geographic	scale,	the	effect	of	 landscape	features	on	gene	flow	of	
Dipodomys merriami	 in	northern	Mexico.	For	that	purpose,	we	first	
characterized	genetic	diversity	levels	and	population	genetic	struc‐
ture;	next,	we	generated	a	set	of	environmental	surfaces	based	on	
hypotheses	of	variables	influencing	the	species	movement,	to	finally	
assess	 how	 these	 variables	 relate	 to	 individual‐based	 genetic	 dif‐
ferentiation.	In	order	to	obtain	estimates	of	the	species	habitat	use	
and	home	range	that	will	 inform	our	genetic	 results,	we	evaluated	
movement	 of	 individuals	with	 telemetry.	Given	 that	D. merriami	 is	
tightly	 linked	to	shrub	cover	and	occurrence	of	 fine‐sized	soils	 for	
protection	against	predators,	feeding,	and	burrow	construction,	we	
expected	that	(a)	females	and	males	will	mostly	overlap	home	ranges;	
(b)	the	presence	of	vegetation	associated	with	sandy	and	gravel	soils	
would	be	a	key	predictor	of	gene	flow,	while	uncovered	habitat	(i.e.,	
bare	soil	and/or	rocky	landscapes)	would	restrict	movement;	(c)	en‐
vironmental	variables	(e.g.,	temperature,	humidity)	will	significantly	
influence	patterns	of	functional	connectivity	in	this	desert‐dwelling	
rodent.

2  | MATERIAL S AND METHODS

2.1 | Study site and sampling

The	 Chihuahuan	 Desert	 is	 one	 of	 the	 largest	 deserts	 in	 North	
America,	 known	 as	 the	 Bolsón	 de	 Mapimí	 in	 Mexico,	 where	 our	
study	was	conducted	at	the	Mapimí	Biosphere	Reserve	(MBR),	a	pro‐
tected	natural	area	and	a	Man	and	Biosphere	(MAB‐UNESCO)	site	
(Montaña,	 1988)	 (Figure	 1).	 The	MBR	 extends	 342,387	ha,	 repre‐
sentative	of	the	arid	ecosystems	from	northern	Mexico	that	harbors	
a	high	endemism	and	species	richness	(Conanp,	2006).	The	climate	
is	dry	 (mean	annual	precipitation:	271	mm,	mean	annual	 tempera‐
ture:	20.8°C,	rainy	season	from	July	to	October	and	elevation	range:	
1,100–1,650	m;	 Montaña	 &	 Breimer,	 1988;	 Conanp,	 2006).	 The	
vegetation	is	dominated	by	shrubby	species	like	mesquite	(Prosopis 
glandulosa)	and	creosote	bush	(Larrea tridentata).	Despite	the	zone	is	
relatively	flat,	the	landscape	has	been	described	as	a	toposequence,	
on	the	base	of	landforms,	soils	and	vegetation	units	organized	along	
an	elevation	gradient	(Grünberger,	2004;	Montaña	&	Breimer,	1988)	
and	 vegetation	 units:	 “magueyal”	 (predominating	 Agave sp.	 and	
L. tridentata),	 “nopalera”	 (Opuntia sp.),	 and	 “pastizal”	 (Prosopis sp.)	
(Martínez	&	Morello,	1977)	(Figure	1).	Sampling	was	performed	from	
31	May	to	11	June	2015,	using	a	modification	of	the	trapping	web	
sampling	method	(Anderson,	Burnham,	White,	&	Otis,	1983)	in	order	
to	 include	 the	most	 environmental	 heterogeneity	 across	 the	 scale	
of	the	study;	importantly,	this	trapping	web	has	proven	to	be	effec‐
tive	for	capturing	D. merriami	in	the	MBR	(Aragón,	Castillo,	&	Garza,	
2002;	Hernández	et	al.,	2005).	Briefly,	 the	web	design	consists	of	
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lines	(L)	of	equal	 length	radiating	from	a	chosen	center	point,	each	
line	with	live	traps	(T)	separated	between	them	at	certain	intervals	
(Figure	1,	Supporting	Information	Figure	S1	in	the	Appendix	S1).	Our	
sampling	method	was	as	follows:	(a)	We	established	vegetation	units	
based	on	visual	inspection	at	the	base	of	the	San	Ignacio	Hill	slope,	
along	which	we	set	three	vegetation	transects	(hereafter	transects),	
separated	by	approximately	200	m;	(b)	we	placed	five	trapping	webs	
in	each	transect,	separated	50	m	from	each	other,	where	each	web	
consisted	of	four	25‐m	lines	radiating	from	a	central	point	(often	a	
D. merriami’s	 burrow).	 Sherman	 live	 traps	 (7.6	x	7.6	x	33	cm)	 were	
placed	 along	 each	 line,	 separated	 by	 5	m,	 and	 baited	 with	 a	 mix‐
ture	of	rolled	oats,	peanut	butter,	and	vanilla	extract.	Additionally,	
two	more	traps	were	placed	at	1	m	distance	from	each	burrow	en‐
trance;	thus,	each	web	consisted	of	22	traps	(Figure	1;	Supporting	
Information	Figure	S1	in	the	Appendix	S1).	Trapped	individuals	were	

sexed	and	measured;	a	tissue	sample	(earpunches)	was	taken	for	ge‐
netic	analysis	and	stored	in	labeled	Eppendorf	tubes	with	96%	etha‐
nol.	All	 individuals	were	 released	 at	 the	 sampling	 site.	Procedures	
were	conducted	according	to	the	American	Society	of	Mammalogists	
guidelines	for	use	of	wild	mammal	species	(Sikes,	2016)	and	with	the	
corresponding	collecting	permits.

2.2 | Population genetic analyses

We	extracted	DNA	from	tissue	samples	to	test	14	fluorescently	la‐
beled	microsatellite	primers	developed	for	D. spectabilis,	from	which	
we	successfully	amplified	nine	with	D. merriami	(see	the	Supporting	
Information	Appendix	S1	and	Table	S1	for	more	information).

We	 tested	 for	 deviation	 from	 Hardy–Weinberg	 equilibrium	
(HWE)	and	linkage	disequilibrium	(LD)	across	the	entire	population	

F I G U R E  1  Study	site	and	sampling	
locations	for	Dipodomys merriami 
individuals	on	the	Mapimí	Biosphere	
Reserve,	Mexico.	Black	triangles	
correspond	to	the	trapping	webs	(most	
external	points),	which	are	projected	on	
a	grayscale	aerial	picture	of	the	study	
site,	where	gray	shades	are	vegetation	
patches.	The	three	vegetation	transects	
are	depicted,	separated	by	approximately	
200	m,	where	we	placed	five	trapping	
webs	per	transect,	separated	50	m	from	
each	other.	Each	web	consisted	of	four	
25‐m	lines	radiating	from	a	central	point	
(often	a	Dipodomys merriami	burrow).	
The	dominant	vegetation	per	transect	
is	depicted	with	different	colors	and	
a	corresponding	photograph	(at	the	
bottom).	For	more	detail,	see	Supporting	
Information	Figure	S1	in	Supplementary	
Information
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using	Fisher’s	exact	test	(1,000	batches	and	100	000	iterations)	with	
Genepop	 v.6	 (Rousset,	 2008).	 The	 value	 was	 adjusted	 for	 multiple	
comparisons	using	a	Bonferroni	correction	(Rice,	1989).	We	checked	
for	the	presence	of	null	alleles	and	stuttering	with	Microchecker	(Van	
Oosterhout,	Hutchinson,	Wills,	&	Shipley,	2004).	Genetic	diversity	
levels	were	assessed	by	estimating	number	of	alleles,	number	of	ef‐
fective	alleles,	unbiased	expected	and	observed	heterozygosity,	and	
FIS	with	gstudio	 in	R	 (Dyer,	2014),	while	relatedness	between	 indi‐
viduals	was	assessed	with	ML‐Relate	(Kalinowski,	Wagner,	&	Taper,	
2006).

We	 inferred	 population	 structure	 with	 two	 approaches,	 the	
Bayesian	 clustering	 method	 implemented	 in	 Structure v.2.3.4 
(Pritchard,	Stephens,	&	Donnelly,	2000)	and	the	discriminant	anal‐
ysis	of	principal	components	(DAPC;	Jombart,	Devillard,	&	Balloux,	
2010).	 For	 Structure,	 we	 tested	 from	 K	=	1	 to	 K	=	13	 genetically	
distinct	 clusters	with	 20	 replicates	 for	 each	K,	 based	 on	 an	 initial	
burn‐in	of	2	x	105	 followed	by	5	x	105	Monte	Carlo	Markov	chain	
iterations	 and	 an	 admixture	model	with	 correlated	 allele	 frequen‐
cies.	In	addition,	we	incorporated	the	sampling	information	(locprior 
option)	to	the	model	by	considering	each	trapping	web	as	a	different	
location.	The	posterior	probability	lnP(K)	(Pritchard	et	al.,	2000)	and	
∆K	 (Evanno,	Regnaut,	&	Goudet,	2005),	 implemented	 in	Structure	
Harvester	(Earl	&	vonHold,	2012),	were	used	for	identifying	the	most	
likely	number	of	clusters.	Although	both	methods	are	suitable	for	an‐
alyzing	spatially	continuous	data,	the	Structure	algorithm	considers	
population	genetics	models	 (Pritchard	et	al.,	2000).	Because	some	
natural	systems	can	violate	some	model‐assumptions	which	in	turn	
may	 lead	to	errors	 in	the	assignment	of	 individuals	to	populations,	
we	performed	an	additional	multivariate,	nonmodel‐based	approach	
(DAPC),	using	adegenet	2.1.0	 in	R	 (Jombart	et	al.,	2010),	 following	
a	two‐stage	procedure:	First,	a	principal	component	analysis	(PCA)	
is	performed	with	the	genetic	data;	then,	the	principal	components	
(PCs)	of	 the	PCA	are	processed	with	a	 linear	discriminant	analysis	
(LDA).	Since	DAPC	relies	on	the	determination	of	predefined	groups	
that	are	often	unknown,	they	must	be	identified	a	priori.	Thus,	we	
first	inferred	genetic	clusters	by	running	the	K‐means	clustering	al‐
gorithm,	from	K	=	1	to	K	=	13,	with	find.clusters.	For	this	step,	we	re‐
tained	all	76	PCs	based	on	the	recommendation	of	keeping	all	(or	at	
least	80%)	of	the	information	(Jombart	&	Collins,	2015).	Next,	based	
on	the	lowest	Bayesian	information	criterion	(BIC)	value,	we	deter‐
mined	the	optimal	number	of	clusters,	with	which	we	ran	the	dapc 
function.	Unlike	 the	K‐means	 clustering	 algorithm,	DAPC	benefits	
from	not	using	too	many	PCs.	Finally,	 to	determine	the	number	of	
PCs	 and	 also	 avoid	 overfitting	 during	 discrimination,	we	 used	 the	
optim.a.score	and	xvalDapc	functions;	the	scatter	function	was	used	
to	 build	 an	 ordination	 plot	 with	 the	 results.	 Finally,	 we	 also	 esti‐
mated	pairwise	FST	values	between	genetic	clusters	inferred	by	each	
method	with	hierfstat	0.04–22	in	R	(Goudet,	2015).

Considering	that	evidence	of	population	structure	can	be	found	
when	 family	 members	 are	 included	 in	 a	 sample,	 as	 would	 be	 the	
case	for	D. merriami,	even	when	such	structure	is	absent	(Anderson	
&	Dunham,	 2008),	 we	 identified	 first‐order	 relatives	 (full	 siblings,	
FS;	 and	 parent–offspring,	 PO)	 based	 on	 the	 previous	 relatedness	

analysis	(Kalinowski	et	al.,	2006).	Next,	we	removed	one	individual	of	
each	dyad	and	ran	both	analyses	again	with	the	same	parameters	for	
this	unrelated	dataset.	For	DAPC	analysis,	we	retained	59	PCs	in	the	
find.clusters	function	with	this	dataset	(see	Results).	This	procedure	
has	 shown	 to	 improve	 accuracy	on	 estimates	of	 genetic	 structure	
(Rodríguez‐Ramilo	 &	 Wang,	 2012),	 particularly	 when	 conducting	
landscape	genetics	studies	(Peterman	et	al.,	2014;	Ruiz‐Lopez	et	al.,	
2016).

Finally,	genetic	dissimilarity	at	the	individual	level	(i.e.,	between	
all	 pairs	of	 individuals)	was	estimated	as	 the	proportion	of	 shared	
alleles	(DPS)	with	adegenet	in	R	(Jombart	et	al.,	2016).	We	chose	DPS 
because	it	makes	no	biological	assumptions	and	can	be	used	for	pop‐
ulations	at	any	level	of	ploidy	or	inbreeding;	it	has	also	proved	to	be	
an	adequate	metric	for	performing	individual‐based	genetic	distance	
estimates	(Shirk,	Landguth,	&	Cushman,	2017).	To	test	for	isolation	
by	 distance,	we	 performed	 a	 simple	Mantel	 test	 between	 genetic	
(DPS)	 and	 Euclidean	 distances.	 Additionally,	 a	 Mantel	 correlogram	
was	estimated	based	on	50	m	classes	considering	the	mean	disper‐
sal	distance	reported	for	D. merriami (Zeng	&	Brown,	1987)	and	our	
own	home	range	results.	Spearman	correlation	significance	for	both	
analyses	 was	 based	 on	 10,000	 permutations.	 Euclidean	 distances	
were	estimated	with	gstudio	(Dyer,	2014),	while	the	Mantel	test	and	
correlogram	were	calculated	with	ecodist	 (Goslee	&	Urban,	2007),	
both	in	R.

2.3 | Landscape data

Since	most	of	 the	 freely	 available	 environmental	 data	 is	 at	 coarse	
scales	 (e.g.,	 WorldClim	 ca.	 1	 km2	 resolution;	 Hijmans,	 Cameron,	
Parra,	Jones,	&	Jarvis,	2005),	we	generated	a	set	of	environmental	
surfaces	at	our	study	spatial	scale	which	were	hypothesized	to	affect	
survival	or	movement	of	D. merriami:	humidity	 (as	a	proxy	for	pre‐
cipitation	at	a	very	local	scale),	temperature,	elevation,	plant	cover	
(hereafter	 vegetation),	 and	 soil.	 Humidity	 and	 temperature	 data	
were	collected	using	HOBO	Data	Loggers	(Pro	v2	and	UX100–003,	
ONSET	Computer	Corporation),	and	elevation	was	obtained	with	a	
GPS	(Garmin).	These	three	variables	were	measured	at	each	trap	lo‐
cation	and	at	the	center	of	the	trapping	web	(i.e.,	21	points	per	trap‐
ping	web	and	105	by	transect),	for	a	total	of	315	points;	the	values	
for	the	entire	study	area	were	obtained	by	the	krigging	interpolation	
method	(Holdaway,	1996)	with	ArcGIS	v10.2.1.

We	 used	 two	 approaches	 to	 create	 the	 vegetation	 and	 soil	
surfaces.	 First,	 we	 calculated	 the	 normalized	 difference	 veg‐
etation	 index	 (NDVI,	 Rouse,	 Haas,	 Deering,	 Schell	 &	 Harlan,	
1974)	 using	 ERDAS	 IMAGINE	 v13.0	 from	 a	 Landsat	 8	 image	 (ID:	
LC80300412015222LGN00,	 30	m	 resolution,	 available	 free	 at	
http://glovis.usgs.gov).	 According	 to	 the	 U.	 S.	 Geological	 Survey	
(https://phenology.cr.usgs.gov/index.php),	 values	 for	 this	 index	
range	from	−1	to	1,	based	on	the	different	behavior	of	vegetation	and	
soils	 in	 the	 red	and	near‐infrared	spectral	 regions:	areas	of	barren	
rock	or	sand	usually	show	very	low	NDVI	values	(0.1	or	less),	while	
sparse	vegetation	such	as	grasslands	or	shrubs	may	result	in	moder‐
ate	NDVI	values	(approximately	0.2	to	0.5).	Second,	we	performed	

http://glovis.usgs.gov
https://phenology.cr.usgs.gov/index.php
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a	 supervised	classification	based	on	our	 field	data	using	 the	high‐
resolution	 (approximately	 1.3	m)	 imagery	 from	Google	 Earth.	 This	
surface	corresponded	to	a	binary	classification	(presence/absence)	
of	vegetation	(hereafter	Feature	surface).

Using	 lower‐resolution	 imagery	 to	 characterize	 land	 cover	 can	
lead	to	incorrect	or	misleading	evaluations	of	connectivity	if	not	ver‐
ified	on	the	field	(Zeller,	Nijhawan,	Salom‐Pérez,	Potosme,	&	Hines,	
2011),	and	on	the	other	hand,	some	satellite	bands	are	not	available	
in	 Google	 Earth	 imagery,	 thus	 lacking	 information	 about	 certain	
landscape	features	(Boyle	et	al.,	2014).	Accordingly,	due	to	the	fine	
scale	of	this	study,	we	chose	to	use	both	Landsat	8	(lower‐resolution)	
and	Google	Earth	 (higher‐resolution)	data	 to	more	adequately	dis‐
cern	vegetation	and	soil	variables.	All	surfaces	were	processed	with	
R	v.3.3.2	(R	Core	Team,	2016)	and	resampled	to	a	resolution	of	5	m	
for	landscape	genetics	analysis.

2.4 | Landscape genetics analyses

We	 followed	 the	 optimization	 framework	 developed	 by	 Peterman	
et	 al.	 (2014)	 to	 determine	 the	 resistance	 values	 of	 our	 surfaces.	
Briefly,	 this	 approach	 uses	 monomolecular	 and	 Ricker	 functions	
(Bolker,	2008)	to	transform	continuous	resistance	surfaces;	it	relies	
on	a	genetic	algorithm	(GA;	Scrucca,	2013)	that	adaptively	explores	
the	parameter	space,	seeking	to	maximize	the	relationship	between	
pairwise	landscape	distances	(least‐cost	or	resistance)	and	pairwise	
genetic	distances,	while	making	no	a	priori	assumptions	about	their	
relationships.	The	monomolecular	 [y	=	r (1‐exp‐bx)]	and	Ricker	[y	=	r 
exp‐bx]	 are	 two	 exponential‐based	 functions	 used	 for	 ecological	
modeling,	differing	 in	the	curve	shape	of	 the	relationship	they	are	
modeling.	This	curve	shape	 is	mainly	determined	by	shape	 (x)	 and	
magnitude	 (b)	 parameters,	 which	 produce	 a	 saturating	 exponen‐
tial	 (growth	 or	 decay)	 curve	 for	 the	monomolecular	 function,	 and	
a	hump‐shaped	curve	(skewed	to	right	or	 left)	for	the	Ricker	func‐
tion	 (Bolker,	 2008).	 During	 the	 optimization	 process,	 the	 genetic	
algorithm	 searches	 all	 possible	 combinations	 of	 these	 parameters	
for	 transforming	 resistance	 surfaces,	 denoted	by	 “r”	 in	 the	mono‐
molecular	 and	Ricker	 equations	 (Peterman,	 2018;	 Peterman	 et	 al.,	
2014).

The	 optimization	 framework	 was	 performed	 with	
ResistanceGA	 in	 R	 (Peterman,	 2018;	 https://github.com/wpeter	
man/ResistanceGA)	 following	 two	 steps:	 First,	 all	 surfaces	were	
independently	 optimized	 from	 pairwise	 resistance	 distances	 es‐
timated	with	 gdistance	 in	R	 (Van	Etten,	 2017),	with	 the	 commu‐
teDistance	 function,	 by	 exploring	 resistance	 values	 up	 to	 2,500.	
Previous	studies	using	this	optimization	approach	(e.g.,	Peterman	
et	 al.,	 2014,	Ruiz‐Lopez	 et	 al.,	 2016,	Khimoun	et	 al.,	 2017)	 have	
measured	 resistance	 distance	 using	 circuitScape	 (McRae,	 2006);	
however,	it	is	known	that	commuteDistance	is	functionally	equiva‐
lent	to	circuitScape,	with	the	advantage	that	it	can	be	run	in	paral‐
lel	(Kivimäki,	Shimbo,	&	Saerens,	2014;	Peterman,	2018).	All	these	
processes	 were	 performed	 using	 an	 eight‐neighbor	 connection	
scheme	for	assessing	connectivity.	We	conducted	three	indepen‐
dent	optimization	 runs	 for	 each	 surface	 to	 confirm	 convergence	

and	parameter	estimates	 (see	 the	Appendix	S1	 for	 the	R	optimi‐
zation	scripts).

We	used	AIC	as	our	objective	function	during	optimization,	which	
was	determined	from	linear	mixed‐effects	models	(lmem).	The	lmem	
were	 fitted	by	 the	maximum‐likelihood	population	effects	 (MLPE)	
parameterization,	 to	 account	 for	 the	 nonindependence	 of	 values	
within	 pairwise	 distance	 matrices	 (Clarke,	 Rothery,	 &	 Raybould,	
2002;	Van‐Strien,	Keller,	&	Holderegger,	2012).	The	dependent	and	
predictor	 variables	were	 pairwise	 genetic	 distance	 (DPS)	 and	 pair‐
wise	 scaled	 and	 centered	 resistance	 distance,	 respectively.	MLPE	
parameterization	was	done	with	 lme4	 (Bates,	Maechler,	Bolker,	&	
Walker,	 2014)	 in	 R,	 and	 support	 of	 the	 optimized	 resistance	 sur‐
faces	was	 assessed	 using	 the	AICc	 (Akaike’s	 information	 criterion	
corrected	for	small/finite	sample	size;	Akaike,	1974).	To	evaluate	the	
robustness	of	our	model	selection	and	optimization	given	different	
combinations	of	samples,	we	performed	a	bootstrap	resampling	of	
the	data	 (Peterman	et	al.,	2014;	Ruiz‐Lopez	et	al.,	2016).	Next,	 to	
control	 for	potential	bias	 in	our	 results,	75%	of	 the	 samples	were	
randomly	selected	without	replacement	and	each	surface	was	then	
fit	 to	 the	 subset	 of	 individuals;	 the	 average	 rank,	 average	 model	
weight,	and	the	percentage	that	a	surface	was	selected	as	the	best	
(top	 ranked)	 model	 following	 10	 000	 iterations	 were	 estimated.	
Before	the	second	optimization	step,	we	did	a	Spearman	coefficient	
correlation	test	(rho	=ρ)	with	R	between	the	surfaces	that	showed	
a	 greater	 selection	 percentage	 than	 distance	 alone,	 and	 selected,	
based	 on	Cohen	 (1992),	 the	 surfaces	 that	 showed	 a	 small	 to	me‐
dium	correlation	(ρ	<	0.29),	in	order	to	avoid	correlated	variables	in	
the	multisurface	model.	 Finally,	we	 performed	 a	multisurface	 op‐
timization	 for	 selected	 surfaces	 to	 generate	 composite	 surfaces.	
Bootstrap	model	 selection	was	 performed	 again	 (75%	of	 samples	
and	10,000	 iterations)	 to	obtain	 the	 average	 rank,	 average	model	
weight,	and	the	top	ranked	model	of	individual	(i.e.,	univariate)	and	
composite	surfaces.

2.5 | Radiotracking

We	selected	17	individuals	from	three	different	webs	along	one	tran‐
sect	(Figure	1),	where	trapping	success	was	highest;	each	individual	
was	equipped	with	a	TXB‐003G	radiotransmitter	(Telenax,	Mexico)	
attached	to	the	suprascapular	area	with	a	drop	of	instant‐dry	glue.	
The	 radiotransmitters	weighed	ca.	0.6	g,	 representing	1.3%–2%	of	
the	animals’	body	weight,	which	is	below	the	5%	maximum	proposed	
by	White	and	Garrot	(1990).	Radiolocations	were	taken	one	day	after	
the	individuals	had	been	released	(Springer,	2003),	using	a	handheld	
three‐element	 Yagi	 directional	 antenna	 and	 an	 RX‐TLNX	 receiver	
(Telenax),	between	21:00	and	01:30	hr,	with	intervals	of	30	min	and	
never	 recording	 the	 same	 individual	 consecutively,	 assuring	 data	
independence	 (Kernohan	 et	 al.,	 2001).	 Radiolocations	were	 taken	
every	 night	 until	 reaching	 10	 per	 individual;	 georeferenced	 data,	
time,	 associated	 vegetation,	 and	 if	 the	 individual	was	 actually	 ob‐
served	were	recorded	for	each	one.

We	used	a	probability‐based	statistical	estimator,	the	Kernel	es‐
timator,	 to	 calculate	home	 range	 size	 (kernel	 estimating	 functions)	

https://github.com/wpeter
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with	adehabitatHR	(Calenge,	2015)	in	R	v.3.3.0,	using	the	smoothing	
parameters	 h1CSV	 and	 href;	 area	 estimation	 did	 not	 differ	 between	
them	thus	we	report	the	latter	because	it	exhibited	a	better	resolu‐
tion	for	the	isopleths	that	delimit	regions	with	different	probability	
within	home	ranges.	This	method	estimates	the	intensity	of	area	use	
as	a	two‐dimensional	relative	frequency	distribution	of	an	animal’s	
location	 over	 time	 (Worton,	 1989),	 avoiding	 biases	 due	 to	 its	 low	
sensitivity	for	extreme	data	(Rodgers	&	Carr,	1998)	that	other	meth‐
ods	have	(e.g.,	the	minimum	convex	polygon).	We	tested	for	poten‐
tial	 differences	 between	 female	 and	male	 home	 range	 sizes	 using	
nonparametric	Mann–Whitney	U	tests	and	estimated	their	overlap	
percentage,	with	 R.	We	 also	 estimated	 the	 Euclidian	 distance	 be‐
tween	radiolocations	tracked	consecutively	for	each	individual,	and	
based	on	the	time	of	each	radiolocation,	we	evaluated	activity	peaks	
considering	 the	maximum	 distances	 the	 individuals	 moved	 during	
each	radiotracking	night.	Finally,	we	recorded	an	indirect	estimate	of	
habitat	use	as	the	presence	(percentage)	of	a	vegetation	type	per	ra‐
diolocation;	differences	between	sexes	were	analyzed	with	Mann–
Whitney	U	tests.

3  | RESULTS

3.1 | Population genetics

A	total	of	76	individuals	were	captured	over	the	study	area,	18	indi‐
viduals	in	transect	1	(T1),	37	in	T2,	and	21	in	T3.	Eight	microsatellite	
loci	 were	 polymorphic	 across	 all	 samples	 (Supporting	 Information	
Table	S1	in	the	Appendix	S1),	whereas	locus	DS109	was	monomor‐
phic	and	was	excluded	from	the	analyses.	Five	loci	(Ds1,	Ds3,	Ds19,	
Ds46,	and	DS98)	deviated	significantly	from	HWE	after	Bonferroni	
correction,	while	there	was	no	evidence	of	LD	(Bonferroni	corrected	
p	<	0.05);	 these	 same	 loci	 showed	 evidence	of	 null	 alleles	 but	 not	
stuttering	errors	were	detected.	Because	D. merriami‘s	social	struc‐
ture	 encompasses	 groups	 of	 individuals	with	 different	 degrees	 of	
relatedness	 (see	 relatedness	 results	 below),	 some	 evidence	 of	 de‐
viation	from	HWE	or	null	alleles	is	expected	(i.e.,	not	resulting	from	
a	 systematic	 nonamplification	 of	 alleles;	 Bergl	 &	 Vigilant,	 2007;	
Mapelli,	Mora,	Mirol,	 &	 Kittlein,	 2012).	 Hence,	 all	 eight	 loci	 were	
included	 in	 the	 following	 analyses.	 Notably,	 we	 amplified	 a	 locus	
(Ds46)	previously	 reported	as	unsuccessful	 in	D. merriami,	 and	we	
found	that	Ds19	is	not	a	X‐linked	locus	in	this	species	(Davis	et	al.,	
2000).

Genetic	diversity	results	showed	that	the	number	of	alleles	per	
locus	 ranged	 from	8	 to	30	 (mean=15.1)	 and	 the	number	of	 effec‐
tive	alleles	from	3.2	to	17.7	(mean=8.16).	The	mean	observed	het‐
erozygosity	and	 the	unbiased	expected	heterozygosity	across	 loci	
were	0.65	and	0.84,	respectively;	overall	FIS	was	0.22	(Supporting	
Information	 Table	 S2	 in	 the	 Appendix	 S1).	 Regarding	 relatedness,	
we	 detected	 27	 first‐order	 relationships	 (full	 siblings	 and	 parent–
offspring),	 11	 occurred	 in	 different	 web/transect,	 six	 occurred	 in	
different	 webs	 along	 the	 same	 transect,	 and	 10	 occurred	 in	 the	
same	web/transect.	After	removing	one	individual	from	each	dyad,	
we	 obtained	 a	 dataset	 with	 59	 individuals	 (hereafter,	 unrelated	

dataset),	used	to	test	the	effect	of	close	relatives	in	population	ge‐
netic	structure.

Results	 about	 population	 genetic	 structure	 using	 Structure 
and	DAPC	with	both	datasets	were	equivocal.	Five	clusters	were	
detected	by	Structure	for	the	full	dataset	(n	=	76),	with	both	sta‐
tistics	 (mean	 lnP(K)	 =	 −2,628.435	 and	 ∆K	=	12.331)	 (Supporting	
Information	Figure	S2a	in	the	Appendix	S1).	However,	the	genetic	
clusters	 showed	 pairwise	 FST	 values	 of	 0.027	 to	 0.239	 and	 had	
no	congruent	geographic	spatial	pattern	(Supporting	Information	
Figure	S2b	 in	the	Appendix	S1).	On	the	other	hand,	the	curve	of	
Bayesian	 information	criterion	 (BIC)	values	 for	 the	DAPC	results	
suggested	 the	presence	of	K	=	1	 to	K	=	3	 genetic	 clusters;	 nota‐
bly,	BIC	 values	decreased	 rapidly,	 reaching	 their	 lowest	 value	 at	
K	=	2	before	rising	again	(Supporting	Information	Figure	S3	in	the	
Appendix	S1).	Because	multiple	possible	K	 values	have	been	de‐
scribed	 as	 a	 characteristic	 scenario	 for	 continuously	 distributed	
species	using	this	method	(Jombart,	2008),	we	performed	DAPC	
with	 each	 the	K	=	2	 and	K	=	3	 assigned	 clusters	 by	 retaining	 20	
PCs,	 which	 comprised	 71.7%	 of	 the	 total	 variance	 (Supporting	
Information	Figure	S3a	in	the	Appendix	S1).	In	both	cases,	groups	
were	 discriminated	 but	 in	which	 clusters	 are	 not	 spatially	 struc‐
tured;	also,	FST	values	between	clusters	were	low	(0.04	for	K	=	2;	
0.042–	0.059	for	K	=	3).

Regarding	the	unrelated	dataset	(n	=	59),	one	genetic	cluster	was	
obtained	with	 Structure	 (K	=	1)	 by	 the	mean	 lnP(K)	 =	 −2,195.545,	
whereas	 11	 clusters	 were	 detected	 with	 ∆K	 (20.781)	 (Supporting	
Information	Figure	S2c).	For	the	DAPC,	we	retained	all	59	PCs	for	
the	 first	 step	 in	 the	 function	 find.clusters	 (Supporting	 Information	
Figure	S4a	in	the	Appendix	S1).	Results	with	DAPC	were	the	same	as	
those	obtained	with	the	full	dataset;	hence,	we	also	applied	DAPC	
to K	=	2	 and	K	=	3	 (retaining	12	PCs	 and	 comprising	56.5%	of	 the	
total	 variance),	 obtaining	 differentiation	 between	 groups	 but	with	
clusters	overlapping	spatially	 (Supporting	Information	Figure	S4b,c	
in	the	Appendix	S1);	FST	values	were	again	markedly	low	(0.043	for	
K	=	2,	0.05–0.073	for	K	=	3).

Differences	between	Structure	and	DAPC	for	detecting	genetic	
structure	in	our	study	system	can	be	explained	by	their	assumptions.	
DAPC	requires	predefined	groups,	making	 this	decision	crucial	 for	
downstream	interpretation	of	genetic	data.	In	this	context,	clusters	
can	be	 visualized	 as	 tools	 to	 summarize	 and	understand	 the	 data,	
but	recognizing	that	complex	systems	are	not	always	subject	to	this	
clear‐cut	 representation	 (Jombart	 &	 Collins,	 2015).	 As	 mentioned	
above,	obtaining	multiple	values	of	K	using	the	K‐means	algorithm	
has	been	related	to	continuously	distributed	species,	but	only	on	a	
wide	 geographic	 extent	 (Guerrero	 et	 al.,	 2018),	 hence	 performing	
better	for	island‐based	models	than	for	continuous	models	(Jombart	
&	Collins,	2015).	Moreover,	this	algorithm	uses	a	simple	measure	of	
group	differentiation	and	is	likely	to	fail	to	identify	the	correct	num‐
ber	of	clusters	in	complex	population	models	(Jombart	et	al.,	2010).

On	 the	other	hand,	discrepancies	between	 the	Structure re‐
sults	for	the	full	and	the	unrelated	datasets,	based	on	∆K,	agree	
with	a	family‐induced	population	structure	(Anderson	&	Dunham,	
2008);	 in	addition,	∆K	does	not	perform	adequately	when	K	=	1	
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(Evanno	et	al.,	2005).	Consequently,	we	consider	results	support	
one	 genetic	 cluster	 (no	 structuring)	 based	on	 the	 above	 analyt‐
ical	 issues,	 the	 low	 FST	 values	 between	 suggested	 clusters,	 the	
fine‐spatial	 scale	 of	 the	 study	 area,	 and	 importantly,	 the	 social	
structure	of	D. merriami.

3.2 | Landscape genetics and connectivity

Genetic	 distance	 (DPS)	 between	 individuals	 for	 LG	 analyses	was	
estimated	based	on	the	unrelated	dataset	(Supporting	Information	
Figure	S5	in	the	Appendix	S1).	The	Mantel	test	showed	a	nonsig‐
nificant	 negative	 correlation	between	 the	 genetic	 and	Euclidean	
distances	 (r	=	−0.022;	p	>	0.3),	while	the	Mantel	correlogram	ex‐
hibited	 only	 one	 small	 positive	 and	 significant	 value	 at	 1,700	m	
(r	=	0.073;	 p	<	0.05)	 (Supporting	 Information	 Figure	 S6	 in	 the	
Appendix	 S1).	Optimization	 and	model	 selection	 results	 showed	
that	 the	 vegetation	 cover	 and	 soil	 resistance	 surface	 obtained	
with	the	NDVI	were	the	best‐supported	model	(54.8%	of	the	times	
based	 on	 10,000	 bootstrap	 replicates;	 Table	 1),	 with	 an	 inverse	
monomolecular	 function	 (Figure	 2a).	 Furthermore,	 NDVI	 was	 a	
significant	 predictor	 of	 genetic	 distance	 on	 the	 generalized	 lin‐
ear	mixed‐effects	model	(Supporting	Information	Table	S3	in	the	
Appendix	 S1).	 The	NDVI	 optimized	 surface	 assigned	 high	 resist‐
ance	to	areas	of	the	landscape	with	predominantly	bare	soil	(<0.1),	
with	 a	 fast	 decrease	 in	 resistance	 where	 vegetation	 is	 present	 
(>	0.1)	(Figure	2a).

The	 following	 best‐supported	 functional	 form	 was	 humid‐
ity	 (inverse–reverse	 Ricker),	 with	 different	 functional	 forms	 for	
temperature	 (inverse	 Ricker)	 and	 elevation	 (inverse–reverse	
monomolecular),	 in	 which	 resistance	 values	 were	 lowest	 around	
44%	 humidity,	 30ºC	 temperature,	 and	 1,152	m	 (Figure	 2b,c,d).	
Additionally,	humidity,	elevation,	and	 temperature	 resistance	sur‐
faces	explained	30%,	4.2%,	and	4.9%,	respectively,	of	the	variation	
in	 the	 pairwise	 genetic	 data	 than	 distance	 alone	 (Table	 1),	 while	
vegetation	and	soil	surface	based	on	a	binary	classification	(Feature	
surface)	had	a	poor	performance.	Thus,	we	tested	for	correlations	
between	NDVI,	humidity,	elevation,	and	temperature	layers,	where	

three	 pairwise	 comparisons	 showed	 evidence	 of	 an	 intermedi‐
ate	correlation	 (Supporting	 Information	Table	S4	 in	 the	Appendix	
S1).	 Accordingly,	 we	 constructed	 composite	 surfaces	 with	 these	
three	comparisons,	 and	also	one	 including	all	 four	 layers.	Results	
of	 the	 bootstrap	 model	 selection	 showed	 that	 NDVI	 was	 the	
best‐supported	model	 (54.9%),	 followed	 by	 humidity	 (19.7%)	 and	
NDVI+humidity	(10.7%)	(Table	2;	the	contribution	of	each	variable	
to	each	multisurface	model	is	shown	in	Table	3).	The	surface	includ‐
ing	all	four	layers	(Combination	4)	had	no	support	and	performed	
poorly	 in	 the	 generalized	 linear	mixed‐effects	model	 (Supporting	
Information	Table	S5	in	the	Appendix	S1).

3.3 | Home range

Of	the	17	individuals	with	radiotransmitter,	we	lost	radio	signal	for	
eight	before	obtaining	enough	data	for	analyses;	hence,	we	report	
the	results	for	nine	individuals	(two	females,	six	males,	one	juvenile,	
sex	undetermined)	(Table	4).	We	obtained	91	independent	radiolo‐
cations,	 and	 six	 individuals	 were	 directly	 observed	 while	 moving.	
The	majority	of	the	radiolocations	used	to	calculate	home	range	size	
per	individual	are	within	the	estimated	area,	which	shows	these	are	
regular	activity	zones.	The	home	range	size	estimated	was	on	aver‐
age	 0.6294±0.264	ha,	 0.6957±0.3770	ha	 for	 males	 and	 0.2453	ha	
for	females	(Figure	3,	Table	4),	with	significant	differences	between	
sexes	(U	=	45,	p	=	0.003).	The	largest	home	range	was	a	male’s	(R8),	
completely	overlapping	with	that	of	another	male	(R11)	and	a	female	
(R13).	A	77.4%	home	range	overlap	was	observed	between	a	male	
and	a	female	(radios	R7	and	R15),	while	among	R8,	R10,	R11,	and	R13	
varied	from	10.3%	to	100%	(Figure	3,	Table	4).	Only	two	of	the	nine	
individuals	showed	a	second‐order	relationship	(half‐siblings),	the	R7	
male	and	the	R15	female.

Two	 activity	 cycles	 were	 recorded	 for	 the	 nine	D. merriami 
individuals	 with	 radiolocations,	 during	 8	days,	 one	 from	 21:30	
to	 00:55,	 and	 the	 other	 from	 23:00	 to	 01:10	 (Figure	 4).	 Three	
peaks	 were	 observed,	 that	 is	 the	 maximum	 distance	 travelled	
between	 two	 locations	 by	 an	 individual	 during	 each	 activity	
cycle,	 two	 by	males	 R8	 and	 R10	 at	 22:17	 and	 22:46	hr	 (56.8	m	

TA B L E  1  Model	selection	results	for	the	generalized	linear	mixed‐effects	models	optimized	on	genetic	distance	(DPS)	for	Dipodomys 
merriami

Surface k Equation AIC Average weight Average rank Top model (%)

NDVI 4 Inverse	monomolecular −3,320.1473 0.317 2.041 54.79

Humidity 4 Inverse–reverse	Ricker −3,319.2125 0.218 2.307 30.09

Elevation 4 Inverse–reverse	
monomolecular

−3,317.8299 0.145 3.413 4.19

Temperature 4 Inverse	Ricker −3,317.4376 0.126 3.922 4.91

Distance 2 NA −3,316.2947 0.098 4.585 3.41

Featurea 3 NA −3,316.3356 0.095 4.732 2.61

Null 1 NA −3,318.267 NA NA NA

Note. k	indicates	the	number	of	parameters	in	the	transformation	of	continuous	surfaces	plus	the	intercept,	or	number	of	categories	in	binary	surface	
plus	the	intercept
aFeature	corresponds	to	the	binary	(presence/absence)	classification	of	vegetation.	
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and	58.6	m,	respectively)	and	the	other	of	61.2	m,	by	male	R8	at	
00:48.	Interestingly,	the	first	two	peaks	coincide	with	a	full	moon	
(first	five	sampling	days),	while	the	third	was	with	decreasing	 il‐
lumination	during	 the	waning	gibbous	phase.	Trapping	sites	had	
predominantly	 sandy	and	gravel	 soils,	where	 the	 representative	
vegetation	 included	 six	 plant	 species:	 Euphorbia antisyphilitica, 
Fouquieria splendens, Jatropha dioica, Larrea tridentata, Opuntia 
sp.,	and	Prosopis glandulosa.	The	highest	percentage	of	individual	
radiolocations	was	on	L. tridentata (57%),	Opuntia sp. (40%),	J. di‐
oica (18%),	and	P. glandulosa (6%),	with	no	significant	differences	
between	sexes.

4  | DISCUSSION

4.1 | Genetic diversity and microgeographic family‐
induced structure

The	 genetic	 diversity	 patterns	 shown	 by	 Dipodomys merriami	 at	
the	 microgeographic	 area	 of	 the	 study	 are	 likely	 associated	 with	
the	 ecological	 complexity	 and	 social	 structure	 characterizing	 this	
desert‐dwelling	 species.	Our	 results	 show	moderate	 to	high	 levels	
of	genetic	diversity	when	compared	with	other	Dipodomys	species	
(Busch,	Waser,	&	DeWoody,	2007;	Cosentino	et	al.,	2015;	Davis	et	

F I G U R E  2  Single	surface	optimization	response	curves	for	(a)	NDVI,	(b)	humidity,	(c)	temperature,	and	d)	elevation,	on	genetic	distance	
(DPS)	for	Dipodomys merriami	individuals	from	the	Mapimí	Biosphere	Reserve,	Mexico.	(a)	NDVI	was	the	best‐supported	model	(54.8%	of	
the	times	based	on	10	000	bootstrap	replicates;	Table	1),	with	an	inverse	monomolecular	function,	assigning	high	resistance	to	areas	of	the	
landscape	with	predominantly	bare	soil	(<0.1),	with	a	fast	decrease	in	resistance	where	vegetation	is	present	(>0.1),	followed	by	(b)	humidity	
(inverse–reverse	Ricker),	(c)	temperature	(inverse	Ricker),	and	(d)	elevation	(inverse–reverse	monomolecular).



446  |     FLORES‐MANZANERO Et AL.

al.,	2000;	Waser,	Busch,	McCormick,	&	DeWoody,	2006),	with	sig‐
nificant	heterozygosity	deficit	estimates	and	a	null	genetic	structure.	
Considering	that	trapping	was	conducted	during	the	breeding	sea‐
son,	our	 results	may	 reflect	movements	of	 individuals	across	 their	
home	range	area	(interpopulation	dispersal),	generating	a	nonequi‐
librium	 pattern	 evidenced	 by	 heterozygote	 deficiency,	 a	 phenom‐
enon	observed	 for	 other	Dipodomys	 species	 like	 the	banner‐tailed	
kangaroo	 rat	D. spectabilis	 (Busch	 et	 al.,	 2007).	 In	 this	 context,	D. 
merriami	exhibits	a	mean	distance	dispersal	of	around	60	m,	while	it	
has	been	suggested	it	can	move	longer	distances	during	the	breed‐
ing	season	with	no	distinction	between	sexes	(Behrends	et	al.,	1986;	
Zeng	 &	 Brown,	 1987).	 Our	 results	 are	 in	 agreement,	 considering	
that	 the	 longest	 dispersal	 between	 radiolocations	 we	 observed	
was	57–61	m,	performed	by	males.	On	 the	other	hand,	 significant	
home	 range	 size	differences	between	 sexes	were	 found	 (0.695	ha	
for	males	and	0.245	ha	for	females),	despite	being	the	breeding	sea‐
son;	 the	 latter	 can	be	 related	 to	 less	 female	movement	 compared	
with	males	due	to	gestation	and	offspring	care	(Murrieta‐Galindo	&	

Cuatle‐García,	2016;	Nader,	1978).	Also,	our	findings	show	that	fe‐
males	overlap	home	ranges	with	males	but	not	between	them;	only	
two	radiotracked	individuals	were	related	(half‐siblings),	a	male	and	
a	 female	 that	greatly	overlapped	their	home	ranges	 (70%).	We	ac‐
knowledge	our	low	sample	size	and	that	results	need	be	taken	with	
caution;	nonetheless,	results	are	congruent	with	the	behavior	of	D. 
merriami	and	support	our	prediction.	Particularly,	this	species	is	con‐
sidered	a	solitary	and	territorial	rodent,	characterized	by	adult	male	
dispersal	and	phylopatric	females	that	perform	parental	investment	
(Behrends	et	al.,	1986;	Randall,	1993).

Our	results	showed	both	no	effect	of	geographic	distance	on	ge‐
netic	differentiation	of	D. merriami	and	no	genetic	structuring	within	
the	scale	studied.	Additionally,	D. merriami	exhibits	frequent	burrow	
shifts	to	avoid	predators	(Behrends	et	al.,	1986),	which	has	been	re‐
lated	to	a	long‐life	span	(up	to	four	years;	Zeng	&	Brown,	1987),	and	
consequently,	a	long‐term	stability	of	populations	that	can	result	in	
a	social	phenomenon	of	tolerance	by	individual	familiarity	and	mate	

TA B L E  2  Model	selection	results	for	both	individual	and	composite	surfaces	for	Dipodomys merriami

Surface k AIC Average weight Average rank Top model (%) Variables

NDVI 4 −3,320.147 0.255 2.588 54.9 NDVI

Humidity 4 −3,319.213 0.155 2.818 19.72 Humidity

Combination	1 5 −3,319.235 0.154 3.151 10.69 NDVI,	humidity

Combination	3 5 −3,317.837 0.074 5.771 5.3 Temperature,	elevation

Elevation 4 −3,317.83 0.107 4.420 4.4 Elevation

Combination	2 5 −3,317.432 0.092 5.386 2.56 NDVI,	temperature

Temperature 4 −3,317.438 0.093 4.824 2.43 Temperature

Combination	4 9 −3,316.294 0.070 7.043 0 NDVI,	humidity,	
temperature,	elevation

Null 1 −3,318.267 NA NA NA NA

Note. k	indicates	the	number	of	parameters	in	the	transformation	of	continuous	surfaces	plus	the	intercept,	or	number	of	categories	in	binary	surface	
plus	the	intercept.

TA B L E  3  Mean	contribution	of	each	variable	to	the	
corresponding	multisurface	model	evaluated

Model Variables
Mean contribution 
to model (%)

Combination	1 NDVI 1.4

Humidity 98.6

Combination	3 Temperature 50.0

Elevation 50.0

Combination	2 NDVI 1.0

Temperature 99.0

Combination	4 NDVI 25.0

Humidity 25.0

Temperature 25.0

Elevation 25.0

Note.	Models	are	ranked	in	accordance	with	the	model	selection	results	
in	Table	2.

TA B L E  4  Home	range	size	(HR)	for	nine	Dipodomys merriami 
individuals	from	the	Mapimí	Biosphere	Reserve,	Mexico

Radio Sex Locations HR (ha)

R1 M 12 0.441

R3 M 10 0.328

R6 ‐ 10 0.270

R7 M 10 0.277

R8 M 10 2.652

R10 M 10 0.271

R11 M 10 0.204

R13 F 10 0.150

R15 F 10 0.341

Total	(mean	±SE) 0.6294 ± 0.264

M	(mean	±SE) 0.6957	±	0.377

H	(mean	±SE) 0.2453	±	0.0

Note.	Radio	number,	sex	(male:	M;	female:	F),	number	of	radiolocations,	
and	estimated	area	(ha	±standard	error)	are	indicated
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selection	(Behrends	et	al.,	1986),	leading	to	mating	events	between	
close	neighbors	 (Randall,	 1993).	Hence,	 our	 overall	FIS	 results	 and	
lack	 of	 population	 genetic	 structure	 agree	 with	 a	 family‐induced	
pattern	driven	by	first‐order‐related	individuals,	a	biologically	mean‐
ingful	aspect	of	D. merriami	described	by	ecological	and	behavioral	
data	 (Randall,	1993;	Zeng	&	Brown,	1987),	 and	now	supported	by	
the	genetic	component.	Our	study	evidences	the	 implications	that	
a	family‐induced	structure	at	a	microgeographic	scale	can	have	on	
landscape	genetic	inferences,	specifically	for	selecting	the	unit	level	
(i.e.,	populations	or	 individuals)	and	genetic	differentiation	metrics	
for	 analyses	 (Shirk	 et	 al.,	 2017).	 Indeed,	 a	 correct	 assessment	 of	
population	structure	should	always	be	conducted	keeping	 in	mind	
the	more	biologically	relevant	patterns	(Anderson	&	Dunham,	2008;	
Bergl	&	Vigilant,	2007;	Rodríguez‐Ramilo	&	Wang,	2012;	Ruiz‐Lopez	
et	al.,	2016).

4.2 | Environmental features and genetic 
connectivity

Our	findings	that	gene	flow	in	D. merriami	 is	best	explained	by	the	
normalized	difference	 vegetation	 index	 (NDVI)	 enabled	us	 to	 sug‐
gest	a	link	between	the	observed	genetic	pattern	and	the	ecological	
processes	underlying	it	(e.g.,	the	species’	dispersal,	foraging,	physiol‐
ogy).	Finding	these	mechanistic	links	in	landscape	genetics	research	
is	one	of	the	goals	of	the	optimization	framework	we	implemented	
(Peterman,	2018).	The	simultaneous	optimization	of	multiple	resist‐
ance	surfaces	(RS)	and	our	creating	a	vegetation	cover	and	soil	tex‐
ture	surface	based	on	the	NDVI	allowed	us	to	explain	the	variation	in	
genetic	data	better	than	any	other	individual	or	composite	surface,	
suggesting	 these	 features	 are	 biologically	 relevant	 for	D. merriami 
(Peterman	et	al.,	2014;	Ruiz‐Lopez	et	al.,	2016;	Spear	et	al.,	2010).	
Although	it	has	been	suggested	that	multiple	RS	should	be	used	for	

F I G U R E  3   	Home	ranges	of	nine	Dipodomys merriami	individuals	
on	the	Mapimí	Biosphere	Reserve,	Mexico,	obtained	from	91	
individual	radiolocations	(telemetry).	Radio	numbers	R13	and	
R15	are	females,	R6	a	juvenile,	and	the	rest	are	males.	Six	direct	
movement	observations	were	obtained:	once	the	female	R13	and	
male	R11,	and	twice	the	juvenile	R6	and	male	R3

F I G U R E  4   	Activity	cycles	of	nine	Dipodomys merriami	individuals	on	the	Mapimí	Biosphere	Reserve,	Mexico,	obtained	with	
radiolocations	(telemetry),	were	recorded	during	8	days,	one	from	21:30	to	00:55	(continuous	line)	during	the	full	moon,	and	the	other	from	
23:00	to	01:10	(dashed	line)	during	the	waning	gibbous	phase.	The	maximum	distance	travelled	by	an	individual	during	each	activity	cycle	
was	56.8–58.6	m	(at	22:17	and	22:46	hr)	and	61.2	m	(00:48),	first	and	second	cycles,	respectively
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better	capturing	the	 landscape’s	realism	(Spear	et	al.,	2010,	2015),	
results	do	vary;	 for	 instance,	Ruiz‐Lopez	et	al.	 (2016)	 found	that	a	
composite	surface	comprised	of	fire	density	and	the	distance	to	the	
nearest	village	describes	the	variation	in	genetic	data	of	the	red	colo‐
bus	monkey	(Procolobus gordonorum),	suggesting	a	strong	influence	
of	anthropogenic	activities	on	the	species	movement.	On	the	other	
hand,	Khimoun	et	al.	(2017)	showed	that	individual	optimization	of	
land	cover	RS	has	a	higher	support	compared	to	composite	surfaces	
in	the	insular	tropical	bird	Plumbeous	warbler	(Setophaga plumbea).

According	 to	 our	 expectations,	 we	 identified	 that	 vegetation	
cover	is	a	key	landscape	feature	for	D. merriami,	exhibiting	that	gene	
flow	 is	 strongly	 limited	on	open	areas	and	 facilitated	where	shrub	
cover	with	sandy	and	gravel	soils	is	present.	The	role	of	vegetation	
as	 a	 facilitator	 of	 gene	 flow	has	 been	 demonstrated	 for	 other	 ro‐
dent	species	occupying	a	variety	of	habitats	with	different	levels	of	
heterogeneity.	For	instance,	Munshi‐South	(2012)	showed	that	gene	
flow	in	Peromyscus leucopus	is	determined	by	canopy	cover	in	New	
York	 City,	 a	 generalist	 species	 inhabiting	 a	 highly	 urbanized	 land‐
scape,	while	vegetation	was	 strongly	 correlated	with	gene	 flow	 in	
Mastomys natalensis,	a	small	and	generalist	rodent	inhabiting	the	sa‐
vanna	of	South	Africa	(Russo	et	al.,	2016).	Another	example	showed	
that	forested	areas	in	a	tropical	dry	forest	function	as	corridors	for	
dispersal	 for	 the	 spiny	 pocket	mice	 Liomys pictus,	 overcoming	 the	
potential	 limiting	 effect	 of	 roads	 across	 the	 landscape	 (Garrido‐
Garduño	et	al.,	2015);	forests	also	facilitate	gene	flow	in	chipmunks	
(Tamias striatus)	 inhabiting	fragmented	 landscapes	 like	agroecosys‐
tems	 (Kierepka	 et	 al.,	 2016).	Moreover,	D. merriami	 activity	 peaks	
exhibit	a	behavior	tightly	associated	with	predator	avoidance	(Daly,	
Behrends,	Wilson,	&	Jacobs,	1992;	Soltz‐Herman	&	Valone,	2000),	
where	movement	is	limited	not	only	on	open	areas	but	also	by	lunar	
light	(Daly	et	al.,	1992;	Fuentes‐Montemayor	et	al.,	2009).	Indeed,	as	
our	activity	cycle	results	show,	D. merriami	is	more	active	at	crepus‐
cular	hours	during	full	moon,	while	as	 the	moonlight	decreases	 its	
activity	increases	at	midnight.

Interestingly,	 despite	 studies	 indicate	 that	 D. merriami	 feeds	
preferentially	 on	 seeds	 of	 Prosopis glandulosa	 and	 builds	 its	 bur‐
rows	under	 this	mesquite	 (Cox,	De	Alba‐Avila,	 Rice,	&	Cox,	 1993;	
Reynolds,	1958),	the	dominant	vegetation	type	on	our	study	region	
is	 creosote	 (Larrea tridentata).	 Indeed,	D. merriami	 exhibits	 a	wider	
habitat	use	that	includes	preferentially	L. tridentata,	but	also	Opuntia 
sp.,	J. dioica,	and	P. glandulosa,	highlighting	the	key	role	of	this	gener‐
alist	species	on	desert	ecosystem	dynamics	(Brown	&	Heske,	1990b;	
Murrieta‐Galindo	 &	 Cuatle‐García,	 2016).	 Soil	 type,	 in	 this	 case	
sandy	and	gravel	soils,	is	also	a	key	factor	associated	with	the	plant	
species	 present,	 burrow	 construction,	 and	 individual	 movement	
within	D. merriami’s	home	range.

Most	 landscape	 genetics	 inference	 studies	 have	 assumed	 ei‐
ther	 a	 positive	 or	 negative	 linear	 relationship	 between	 landscape	
features	 and	 cost	 surfaces	 (Garroway,	 Bowman,	 &	Wilson,	 2011;	
Koen,	Bowman,	&	Walpole,	2012),	 including	examples	with	rodent	
populations	(Chiappero	et	al.,	2016;	Howell	et	al.,	2017;	Mora	et	al.,	
2017;	Ortiz	 et	 al.,	 2017),	 despite	 that	 nonlinear	 responses	 are	 ex‐
pected	 to	be	more	common	 (Marrotte	&	Bowman,	2017;	Spear	et	

al.,	2015).	Here,	we	 found	nonlinear	 relationships	 relative	 to	 land‐
scape	resistance	for	both	humidity	and	temperature,	variables	that	
influence	genetic	connectivity	in	different	species	like	the	northern	
quoll	 (Dasyurus hallucatus;	 Hohnen	 et	 al.,	 2016)	 and	 Liomys pictus 
(Garrido‐Garduño	et	al.,	2015).	Temperature	has	been	explicitly	pro‐
posed	as	determinant	 for	genetic	 connectivity	 in	 climate	 sensitive	
species,	for	example,	the	American	pika	(Ochotona princeps),	a	heat	
intolerant,	and	cool	microclimate	restricted	species	for	which	an	in‐
crease	 in	 temperature	 adversely	 affects	 gene	 flow	 (Castillo,	 Epps,	
Davis,	&	Cushman,	2014).	Given	 the	microgeographic	 scale	of	our	
study	compared	to	the	above	mentioned,	the	nonlinear	relationships	
we	find	may	be	associated	with	some	aspects	of	D. merriami’s	phys‐
iology,	 directly	 related	 to	 connectivity	 across	 the	 landscape.	 The	
thermoneutral	zone	(TNZ)	refers	to	the	temperature	gradient	where	
an	organism’s	metabolism	is	minimized	but	also	leads	to	higher	rates	
of	 water	 loss,	 which	 ranges	 between	 29º	 and	 34ºC	 for	 this	 spe‐
cies	 (French,	1993).	As	a	desert‐dwelling	mammal,	D. merriami	has	
evolved	certain	physiological	traits,	for	instance	during	its	nocturnal	
active	phase,	it	selects	cooler	TNZ	temperatures	(30.3–31.5ºC)	for	
water	conservation	(Banta,	2003).	Also,	it	is	known	that	40%	humid‐
ity	favors	its	movement	on	the	surface	(i.e.,	not	across	their	burrows	
underground),	whereas	values	outside	this	range	may	be	detrimental	
(Frank,	1988;	Reynolds,	1958;	Walsberg,	2000).	Indeed,	our	results	
show	 that	 resistance	 is	 lowest	around	44%	humidity	and	30ºC,	 in	
agreement	with	D. merriami‘s	TNZ	and	humidity	ranges.	Moreover,	
these	variables	follow	an	inverse–reverse	Ricker	and	inverse	Ricker	
functional	forms,	respectively,	reflecting	“optimal	peaks”	(i.e.,	phys‐
iological	meaningful	 variables)	 that	 promote	 gene	 flow	 across	 the	
desert	 environment.	At	 the	 same	 time,	 these	 nonlinear	 responses	
exhibit	the	limits	imposed	to	kangaroo	rats	by	the	desert	conditions,	
directly	impacting	its	genetic	connectivity.	Such	a	fine‐dependence	
on	 local	microclimate	has	been	observed	 for	 the	 terrestrial	wood‐
land	salamander	(Plethodon albagula;	Peterman	et	al.,	2014).

4.3 | Thematic resolution for detecting landscape 
genetic patterns

Scale	has	been	recognized	as	a	central	question	 in	ecology	 (Levin,	
1992).	 In	 landscape	 genetics	 studies,	 particular	 attributes	 deter‐
mine	the	strength	and	nature	of	observed	pattern‐process	relation‐
ships.	Specifically,	landscape	scales	(landscape	extent	and	thematic	
resolution)	 are	 crucial	 and	 need	 be	 defined	 objectively	 (Cushman	
&	 Landguth,	 2010;	 Khimoun	 et	 al.,	 2017;	 Spear	 et	 al.,	 2015;	
Wasserman,	Cushman,	Schwartz,	&	Wallin,	2010).	Indeed,	the	pixel	
size	and	the	thematic	resolution	of	the	native	data	should	be	consid‐
ered	when	obtaining	(from	available	sources)	or	creating	(from	field	
or	empirical	data)	landscape	resistance	surfaces	(RS),	always	keeping	
in	mind	the	system	being	analyzed.	From	the	two	approaches	used	
to	represent	vegetation	in	our	study,	the	Landsat‐NDVI	continuous	
RS	was	selected	as	the	best	model	despite	its	low	native	resolution	
(30	m)	when	compared	to	Google	Earth	binary	RS	with	high	native	
resolution	(approximately	1.3	m).	Given	the	microgeographic	study	
area	and	D. merriami’s	small	body	size	and	short	dispersal	distances,	
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we	expected	 that	 a	 native	 finer	 resolution,	 namely	 pixel	 size	 cou‐
pled	with	a	classification	based	on	vegetation	field	data,	would	be	
better	 than	a	native	coarser	 resolution,	being	biologically	 relevant	
and	providing	a	more	detailed	structure	of	 the	 landscape	 for	ade‐
quately	evaluating	connectivity	(Boyle	et	al.,	2014;	Sawyer,	Epps,	&	
Brashares,	2011;	Zeller	et	al.,	2011).	However,	thematic	resolution,	
that	is,	how	finely	are	the	landscape	variables	represented,	either	as	
categorical	or	continuous	surfaces,	is	the	scale‐related	attribute	that	
determines	 the	most	 the	 detection	 of	 landscape	 genetic	 patterns	
(Cushman	&	Landguth,	2010;	Khimoun	et	al.,	2017;	Wasserman	et	
al.,	2010).	Hence,	caution	has	been	suggested	regarding	the	level	of	
detail	 in	 surface	 classification,	 specifically	when	 transforming	 sur‐
faces	from	continuous	to	categorical.	In	fact,	Cushman	and	Landguth	
(2010)	showed,	with	a	simulation	study,	that	categorical	maps	do	not	
represent	adequately	continuous	processes	in	LG.	Additionally,	em‐
pirical	examples	with	two	species	having	markedly	different	ecologi‐
cal	traits,	the	American	marten	(Martes americana;	Wasserman	et	al.,	
2010)	 and	 the	plumbeous	warbler	 (Khimoun	et	 al.,	 2017),	 showed	
that	landscape	definition	based	on	alternative	classification	schemes	
may	lead	to	erroneous	detection	of	landscape	effects	on	gene	flow.	
Also,	in	a	study	with	the	arboreal	and	forest	adapted	Udzungwa	red	
colobus	monkey,	authors	 represented	current	and	historical	 forest	
cover	 as	 categorical	 surfaces,	 but	 argued	 that	 surprisingly	 neither	
were	 good	 predictors	 of	 genetic	 differentiation	 (Ruiz‐Lopez	 et	 al.,	
2016).

Our	 study	 and	 the	 above	 examples	 reflect	 the	 importance	 of	
scale	 in	LG	research,	showing	that	categorical	surfaces,	 in	general,	
may	fail	to	adequately	represent	the	relationship	between	landscape	
and	genetic	data,	as	highlighted	by	Cushman	and	Landguth	(2010).	
In	addition,	the	two	approaches	we	used	to	represent	the	same	fea‐
ture	at	different	scale	attributes	partially	allowed	us	to	exhibit	their	
effects	at	a	microgeographic	scale,	where	vegetation	was	better	rep‐
resented	 as	 continuously	distributed,	 thus	 evidencing	 the	need	 to	
characterize	that	feature	according	to	its	“more‐real”	nature.	Finally,	
there	are	recent	advances	aimed	to	make	categorical	data	more	eco‐
logically	relevant	in	LG	research	(Peterman,	2018),	although	they	still	
need	to	be	evaluated	empirically.	Our	study	is	an	empirical	example	
of	how	the	pixel	size	and	thematic	 resolution	need	be	considered,	
particularly	for	small	body	size	species	and	at	microgeographic	areas,	
when	developing	RS	that	are	relevant	to	the	study	system.

5  | CONCLUSIONS

Evaluating	 the	effects	of	 landscape	features	 (landscape	matrix)	on	
individual	movement	and	gene	flow	in	natural	populations	has	been	
challenged	by	the	need	to	avoid	subjectivity	when	assigning	resist‐
ance	values	and	landscape	scales	(Khimoun	et	al.,	2017;	Richardson	
et	al.,	2016;	Spear	et	al.,	2010).	Our	study	is	novel	in	diverse	aspects,	
where	we	present	a	 landscape	genetics	study	with	a	desert‐dwell‐
ing	 rodent	 species—an	 ecosystem	 rarely	 investigated	 under	 this	
genetics	 approach—using	 a	 nonsubjective	 optimization	 framework	
for	 resistance	 surfaces	 and	 an	 accurate	 definition	 of	 thematic	

resolution	(Khimoun	et	al.,	2017;	Peterman,	2018;	Peterman	et	al.,	
2014).	Furthermore,	we	describe	new	information	about	the	genetic	
variability,	 ecology,	 and	 behavior	 of	 the	 Merriam’s	 kangaroo	 rat	
Dipodomys merriami	at	its	southern	distribution	that	adds	to	the	lim‐
ited	studies	mostly	performed	on	the	northern	Chihuahuan	Desert	
region,	 including	 the	different	approaches	used	 to	 represent	 land‐
scape	and	environmental	features	and	their	effects	at	a	microgeo‐
graphic	scale;	also,	by	the	thematic	resolution	comparisons	and	how	
to	 best	 represent	 (categorical	 or	 continuous)	 surfaces.	 Moreover,	
our	estimation	of	 the	 species’	home	 range,	habitat	use,	 and	activ‐
ity	based	on	telemetry	and	a	probability‐based	statistical	kernel	es‐
timator,	 not	 only	 significantly	 contributed	 to	 the	 interpretation	 of	
D. merriami’s	 functional	 connectivity,	but	 it	 is	 also	one	of	 the	 first	
studies	 using	 telemetry	 performed	with	 rodents	 (Marines‐Macías,	
Colunga‐Salas,	Verde‐Arregoitia,	Naranjo,	&	León‐Paniagua,	2018).	
Finally,	our	study	evidences	both	the	importance	of	having	a	correct	
assessment	 of	 population	 structure	 based	 on	 biologically	 relevant	
patterns	 and,	 importantly,	 the	 implications	 that	 a	 family‐induced	
structure	 can	 have	 on	 landscape	 genetic	 inferences.	 Accordingly,	
we	were	able	 to	derive	 individual	and	composite	surfaces	and	ad‐
equately	 test	 their	 relationship	 with	 D. merriami’s	 interindividual	
genetic	distances,	 showing	 that	vegetation	cover,	 soil	 texture,	and	
climatic	variables	like	humidity	influence	its	functional	connectivity.	
Based	on	our	overall	results,	we	describe	patterns	of	the	relationship	
between	environmental	features	and	some	aspects	of	the	behavior	
and	physiology	of	D. merriami.
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