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Abstract
Osteoarthritis (OA) in humans is associated with low circulating 25-hydroxyvitamin D3 [25

(OH)D3]. In vitamin D replete rats, radiolabeled 24R,25-dihydroxyvitamin D3 [24R,25

(OH)2D3] accumulates in articular cartilage following injection of [3H]-25(OH)D3. Previously,

we showed that 24R,25(OH)2D3 blocks chondrocyte apoptosis via phospholipase D and

p53, suggesting a role for 24R,25(OH)2D3 in maintaining cartilage health. We examined the

ability of 24R,25(OH)2D3 to prevent degenerative changes in articular cartilage in an OA-

like environment and the potential mechanisms involved. In vitro, rat articular chondrocytes

were treated with IL-1β with and without 24R,25(OH)2D3 or 1α,25(OH)2D3. 24R,25(OH)2D3

but not 1α,25(OH)2D3 blocked the effects of IL-1β in a dose-dependent manner, and its

effect was partially mediated through the TGF-β1 signaling pathway. In vivo, unilateral ante-

rior cruciate ligament transections were performed in immunocompetent rats followed by

intra-articular injections of 24R,25(OH)2D3 or vehicle (t = 0, 7, 14, 21 days). Tissues were

harvested on day 28. Joints treated with vehicle had changes typical of OA whereas joints

treated with 24R,25(OH)2D3 had less articular cartilage damage and levels of inflammatory

mediators. These results indicate that 24R,25(OH)2D3 protects against OA, and suggest

that it may be a therapeutic approach for preventing trauma-induced osteoarthritis.

Introduction
Osteoarthritis (OA) is a degenerative condition that affects 12.1% of the US population over
the age of 25 [1] and is the leading cause of disability in the elderly [2]. It is characterized by
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fibrillation and eventual erosion of the articular cartilage, ultimately exposing the subchondral
bone. More recently, it has become evident that OA involves all of the tissues of the affected
joint [3,4], but there is not yet agreement what role each tissue plays in the overall condition
and on the mechanisms involved. During the development of OA, the bone underlying the
articular cartilage becomes hypermineralized and stiffer [5], altering the mechanical properties
of the joint and the transport of nutrients into the cartilage tissue from the bone vasculature
and marrow [6]. The synovial fluid within the joint space exhibits altered chemistry, including
increased content of inflammatory cytokines and products of cartilage matrix breakdown [7].
The synovium, which is an innervated tissue, also shows changes [8], suggesting that it is
responsible for the pain associated with OA in addition to being a source of inflammatory
cytokines.

The complex cellular and extracellular matrix (ECM) architecture of the articular cartilage
is markedly affected as OA develops. The ability of the cells that line the articulating surface to
produce lubricin is lost [9], resulting in altered lubrication during mechanical loading [10]. As
the integrity of the ECM is reduced via the action of matrix metalloproteases and other matrix
processing enzymes, the diffusivity properties are altered. Clonal populations of chondrocytes
in the mid layer of the cartilage begin to differentiate and to produce mineralized ECM vesicles
[11], further modifying the mechanical properties of the tissue. To better understand the events
at a cell level, investigators have characterized the regulatory mechanisms involved in matrix
degradation, particularly the roles of inflammatory cytokines like interleukin-1 beta (IL-1β)
in modulating expression, synthesis, and activity of acid matrix metalloproteinases (MMPs)
[12–14].

Treatment of OA is primarily palliative until it becomes sufficiently painful to warrant total
joint replacement. The factors that influence the rate and extent of OA progression include
mechanical stability of the joint and hormonal regulation [15,16]. Trauma to the joint, particu-
larly trauma to the anterior cruciate ligament (ACL), is a major risk factor for OA [17,18]. For
this reason, in vivo studies examining OA development or that test potential pharmaceutical
interventions frequently use rats in which the ACL is transected, leading to joint instability
[19–21]. Many of the drugs tested using the anterior cruciate ligament transection (ACLT)
model address the problem of inflammation using a protocol designed to reverse the damage
due to the mechanical insult. We approached the problem from the hypothesis that the damage
can be prevented by blocking chondrocyte apoptosis and matrix degradation due to inflamma-
tory stimuli.

A number of studies in our lab and others led us to consider the vitamin D metabolite
24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] as a candidate to achieve this goal. 24R,25
(OH)2D3 stimulates proliferation and ECM synthesis of chondrocytes from the costochondral
cartilage reserve zone, a hyaline-like cartilage tissue [22,23]. The mechanism is phospholipase
D (PLD) dependent and involves up-regulation of p53. 24R,25(OH)2D3 also blocks apoptosis
in chondrocytes caused by several stimuli [24–26]. Its importance to cartilage health was sug-
gested by the observations that vitamin D replete rats concentrate radiolabeled 24R,25(OH)2D3

in the articular cartilage when injected with tritiated 25-hydroxyvitamin D3 [25(OH)D3] [27]
and that chondrocytes can synthesize 24,25(OH)2D3 under regulation by transforming growth
factor beta-1 (TGF-β1) [28], a known chondrogenic growth factor [29]. Also, 24R,25(OH)2D3

stimulates the production of latent transforming growth factor binding protein [30], thereby
regulating the storage of latent TGF-β1 in the ECM and suggesting that the two factors may
function in a cooperative manner to preserve cartilage health. In contrast, the other well-
known active vitamin D3 metabolite 1α,25(OH)2D3 has been shown to increase inflammatory
processes [31] and cartilage erosion [32] in articular cartilage, making it a poor candidate for a
possible therapeutic.

24R,25(OH)2D3 Prevents Osteoarthritis following ACL Transection

PLOS ONE | DOI:10.1371/journal.pone.0161782 August 30, 2016 2 / 23



Clinical evidence has associated OA with reduced serum 25(OH)D3 [33], raising the possi-
bility that 25(OH)D3 would also be reduced in OA synovial fluid, which was confirmed in
synovial fluid harvested from humans with advanced OA [34]. Reduced 25(OH)D3 limits fur-
ther metabolism to 24R,25(OH)2D3 [35]. This suggested to us that by increasing the synovial
fluid concentration of 24R,25(OH)2D3, we would mitigate negative effects due to ACL trauma
in vivo. Therefore, the aim of our study was to assess the chondroprotective effects of 24R,25
(OH)2D3 in a chondrocyte cell culture model and whether it mitigates cartilage changes and
inflammation in an in vivo ACL transection model of osteoarthritis.

Materials and Methods

Reagents
Rat IL-1β was purchased from PeproTech (Rocky Hill, NJ). 24R,25(OH)2D3 and 1α,25
(OH)2D3 were obtained from Enzo Lifesciences (Farmingdale, NY). TGF-β1 was purchased
from R&D Systems (Minneapolis, MN). All other reagents were purchased from Sigma-
Aldrich (St. Louis, MO) unless specified.

Cell culture and articular chondrocyte phenotype characterization
Articular cartilage was obtained from the femurs of 100–125 gram male Sprague Dawley rats
under Virginia Commonwealth University Institutional Animal Care and Use Committee
(IACUC) approved protocol AD10000642. Animals were euthanized by CO2 asphyxiation
using a pre-calibrated 3.5 L/min flow rate designed to minimize distress. Cartilage specimens
were thinly sliced and incubated in 0.25% trypsin for 30 min at 37°C. Rat articular chondro-
cytes were extracted by incubating the cartilage fragments for 16 hours in Dulbecco’s modified
Eagle’s medium (DMEM, Thermo Fisher, Waltham, MA), 1% penicillin-streptomycin (Life
Technologies, Carlsbad, CA), and 0.03% collagenase type II (Worthington Biosciences, Lake-
wood, NJ). This solution was passed through 40μm cell strainers to remove tissue debris. Cells
were cultured in 75 cm2 flasks in DMEM supplemented with 10% fetal bovine serum (Life
Technologies) and 1% penicillin–streptomycin at 37°C in a humidified atmosphere containing
5% CO2. Cells were expanded in culture until passage 4. At the end of each passage, RNA was
extracted, and expression of chondrocyte genes determined using real-time PCR. First-passage
cells were chosen for experiments based on their high levels of expression of chondrocyte
markers. First-passage cells were plated for experiments at a density of 15,000 cells/cm2, and
media were changed 24 hours after plating and every 48 hours thereafter until cells reached
confluence.

In vitro experimental design
Rat IL-1β was reconstituted in sterile PBS containing 0.1% bovine serum albumin to a stock
concentration of 100μg/ml. The stock was diluted to final concentrations in culture medium.
Confluent cell cultures were treated with 1, 5, or 10ng/ml IL-1β for 24 hours to determine the
dose for later experiments. Caspase-3 activity and DNA fragmentation were determined using
cell lysates as described previously [36]. NO production in the conditioned media was deter-
mined using a 2,3-diaminonaphthlene assay (DAN) [37]. Prostaglandin E2 (PGE2) and matrix
metalloproteinase-13 (MMP-13) activity were measured in the conditioned media using kits
following the manufacturer’s directions.

To examine the effect of 24R,25(OH)2D3 on IL-1β stimulated chondrocytes, confluent cul-
tures of rat articular chondrocytes were treated with 10 ng/ml IL-1β for 12 hours. For the next
12 hours, cells were treated with 10 ng/ml of IL-1β or 10 ng/ml of IL-1β with 10−9–10−7 M of
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24R,25(OH)2D3. Chondrocyte gene expression was determined using real-time PCR and levels
of NO, PGE2, and MMP-13 were measured as described above. To assess the specificity of the
effect of 24R,25(OH)2D3, confluent cultures of rat articular chondrocytes were treated for 12
hours with 10 ng/ml IL-1β. For the next 12 hours, cells were treated with 10 ng/ml IL-1β or 10
ng/ml IL-1β with 10−7 M 24R,25(OH)2D3 or 10

−8 M 1α,25(OH)2D3. The dose used for each
metabolite was based on prior studies [26,38]. MMP-13 activity was used as the outcome
measure.

To examine the protective effect of TGF-β1 on chondrocytes stimulated by IL-1β, confluent
cultures were treated with 10 ng/ml IL-1β for 12 hours. For the next 12 hours, cells were treated
with 10 ng/ml IL-1β or 10 ng/ml IL-1β with 0.1, 1, or 10 ng/ml TGF-β1. Levels of NO, PGE2,
and MMP-13 were measured.

To investigate the interaction of 24R,25(OH)2D3 and TGF-β1 on MMP-13 activity, conflu-
ent rat chondrocytes were treated with 10−8 M 24R,25(OH)2D3 ± 0.1 ng/ml TGF-β1 for the last
12 hours in addition to the 10 ng/ml IL-1β treatment.

24R,25(OH)2D3’s effect on regulating TGF-β1 production and signaling was examined by
treating confluent rat articular chondrocytes with 10−9–10−7 M 24R,25(OH)2D3. TGF-β1 was
measured in the conditioned media via ELISA (R&D Systems) [39]. Total TGF-β1 was mea-
sured by acidifying the conditioned media in HCl for 10 min followed by neutralization with
NaOH. Active TGF-β1 was measured in unacidified conditioned media. Latent TGF-β1 levels
were calculated by subtracting the active TGF-β1from the total TGF-β1. Secreted TGF-β1 was
normalized to DNA content of the cell lysates. mRNA expression of TGF-β1 receptor type II
(Tgfbr2), and signaling molecules Smad2 and Smad3 was measured using real-time PCR as
described below.

To examine if the effect of 24R,25(OH)2D3 on MMP-13 activity was mediated by TGF-β1,
confluent rat articular chondrocytes were treated with IL-1β for 12 hours and prior to the addi-
tion of combination of IL-1β and 24R,25(OH)2D3, 2 μg/ml antibody for blocking the type II
TGF-β1 receptor (R&D Systems, AF-241), or a soluble ligand binding receptor peptide (R&D
Systems) was added to the media for 30 min. Outcomes were measured at 12 hours using
ELISA assays (R&D Systems). The goat polyclonal anti-human type II TGF-β1 receptor anti-
body was raised against Ile24-Asp159 (Human), which has 79.9% homology to rat P38438
[88.9% positive amino acid recognition].

Gene expression. RNA was harvested using a TRIzol1 (Life Technologies) extraction
method following the manufacturer’s protocol. mRNA was quantified using a NanoDrop spec-
trophotometer (Thermo Fisher Scientific, Waltham, MA). RNA (250 ng) was amplified using
reverse transcription (High Capacity cDNA Reverse Transcription Kit, Life Technologies). Start-
ing quantities of mRNA were determined using SybrGreen chemistry (Power SYBR1 Green
PCRMaster Mix, Life Technologies) in a StepOne Plus imaging system (Life Technologies) using
gene-specific primers (Table 1). mRNA levels for chondrocyte genes encoding aggrecan (Acan),
type II collagen (Col2), and sex determining region Y-box 9 (Sox9), as well as for Smad2, Smad3,
and Tgfbr2 were measured by quantitative real-time PCR (qPCR). All mRNAs are presented as
normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

DNA fragmentation. At 90% confluence, cells were incubated with 1 μCi/ml 3H-thymi-
dine (Perkin Elmer, Waltham, MA) for four hours before IL-1β treatment. Cells were then
treated for 24 hours with 10 ng/ml IL-1β. At the end of the treatment period, cell monolayers
were lysed [10mM Tris-HCl, 1mM EDTA, 0.2% Triton X-100] and then were subjected to
three freeze-thaw cycles. Intact DNA was separated from fragmented DNA by ultracentrifuga-
tion at 13,000g for 15 min. Intact DNA (pellet) and fragmented DNA (supernatant) were mea-
sured by liquid scintillation counting. Results are presented as percent fragmented DNA/total
DNA.

24R,25(OH)2D3 Prevents Osteoarthritis following ACL Transection
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Caspase-3 activity. Caspase-3 activity was determined using a colorimetric assay
(CaspACE1 Assay, Promega, Madison, WI). Monolayers were lysed in cold lysis buffer for 10
min at 4°C, and the cell lysates centrifuged at 10,000g for 1 minute. The resulting supernatant
was combined with 2x reaction buffer and DEVD-pNA substrate and incubated at 37°C for 2
hours. Absorbance at 405 nm was determined using a microplate reader (VersaMax, Molecular
Devices, Sunnyvale, CA). Caspase-3 activity was normalized to total protein content (Pierce
660nm Protein Assay, Thermo Fisher Scientific).

Nitric oxide. Nitric oxide in the conditioned media was measured using a 2,3-diamino-
naphthalene (DAN) fluorescent assay by measuring the total amount of nitrite and nitrate in
the media. NO production was normalized to total DNA (Promega, Madison, WI).

Prostaglandin E2. PGE2 production was measured in conditioned media using a competi-
tive enzyme immunoassay (R&D Systems, Minneapolis, MN), and normalized to total DNA
(Promega).

Matrix metalloproteinase-13 activity. MMP-13 activity in conditioned media was deter-
mined using a fluorometric assay kit (AnaSpec, Fremont, CA). To determine MMP-13 activity,
a monoclonal anti-human-anti-MMP13 was used to pull down both pro- and active forms of
MMP-13. The activity of MMP-13 was quantified by a 5-FAM/OXL 520 fluorescence reso-
nance energy transfer (FRET) peptide and normalized to total DNA (Promega).

Statistical analysis. Data are presented as mean ± SEM of n = 6 independent cultures per
variable. All experiments were repeated to validate the results. Data presented are from one
representative experiment of two trials. Data were examined by analysis of variance (ANOVA)
and post hoc test using Bonferroni’s modification of Student’s t-test. P<0.05 was considered to
be significant. The treatment/control value was calculated by dividing the value of each sample
from the treated group by the mean of the control group. Each data point represents the
mean ± SEM for six normalized values; the control value of 1 is indicated using a dashed line.
Significance was determined by Mann-Whitney test. p� 0.05 was considered to be significant.

ACL transection model study design
The anterior cruciate ligament transection model was selected for this study based on studies
showing that the damage to the articulating surface of the joint is similar to what is seen in
post-traumatic osteoarthritis [40]. We hypothesized that the anti-apoptotic effects of 24R,25
(OH)2D3 observed on growth plate chondrocytes in vitro [25,26] would mitigate tissue damage
due to inflammation associated with transection of the ACL and disruption of the normal
mechanical properties of the joint. To test this hypothesis, the vitamin D metabolite was
administered by injection into the joint space immediately after ACL transection and then at

Table 1. Primer sequences used in real-time qPCR analyses.

Gene Name Accession Number Forward Primer Reverse Primer

Acan NM_022190.1 GCTTCGCTGTCCTCAATGC AGGTGTCACTTCCCAACTATCC

Col2a1 NM_012929.1 GCTTCTTCTCCTTGCTCTTGC TGGCGAGTCTTGCGTCTAC

Sox9 XM_001081628.5 ATCGGAGCGGAGGAGGAG GTGGGAGCGACAACTTTACC

Comp NM_012834.1 TCCCCGTCCTGGTCTTGG AGTGACAGCGATGGTGATGG

Col10a1 XM_008773017.1 ATAGTGCTGCTGCCTGTTG TTTCTGGGATGCCTCTTGTC

Col1a1 NM_053304.1 AGTGATAGGTGATGTTCTGG CGAGTATGGAAGCGAAGG

Smad2 NM_019191.1 TCCTGTCCATTCTGTTCTCC CGTCCATCTTGCCATTCAC

Smad3 NM_013095.3 CGACCACCAGATGAACCACA CGACCACCAGATGAACCACA

Tgfbr2 NM_031132 ACAGCGTTGCAGCGCGACGT ATGACCTGGCCAACAGCGGGCA

Gapdh NM_017008 CATACTCAGCACCAGCATCACC AAGTTCAACGGCACAGTCAAGG

doi:10.1371/journal.pone.0161782.t001
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seven-day intervals (S1 Fig). The study was terminated at 28 days based on literature indicating
that tissue damage would be evident at that time point in the absence of treatment [20,40]. A
power analysis was used to determine the number of animals in each of the two cohorts (10
rats per group: ACL transection followed by vehicle only injections v. ACL transection treated
with 24R,25(OH)2D3). All animals received injections in the right knee, and the left knee was
used as an internal control for changes due to altered weight bearing. Rats were randomized
into each cohort. No rats were lost during the study, either as a result of surgery or treatment.

The 25 μL injection volume was selected so that the test articles would be diluted by four in
the ~100uL of synovial fluid in the joint. 4�10-7M 24R,25(OH)2D3 was selected as the concentra-
tion for each injection based on the observation that healthy, vitamin D replete rats had 10-7M
24R,25(OH)2D3 in their articular cartilage [27]. In addition, our in vitro results presented in this
paper indicated that 10-7M 24R,25(OH)2D3 inhibited production of inflammatory cytokines in
vitro.

The study was performed once using histologic assessment of tissue quality as the end-
points. Synovial fluid was collected at 28 days to evaluate effects of treatment on composition.
Serum was collected at surgery and at 28 days to assess systemic effects of treatment.

Surgical method. 20 male Sprague Dawley rats (275–300 grams) were used in the study.
Surgeries were performed at Charles River Laboratories Preclinical Services in Montreal, Can-
ada (PCS-MTL) under IACUC approval by the PCS-MTL Institutional Animal Care and Use
Committee. Animals were housed in the Charles River Laboratories vivarium. ACL transection
surgery was performed under isoflurane anesthesia, and all efforts were made to minimize suf-
fering. A parapatellar skin incision was made on the medial aspect of the right knee joint and
then on the medial side of the patellar tendon. The patella was then dislocated laterally to pro-
vide access to the joint space and the ACL was transected in the flexed knee. A positive anterior
drawer test was performed to confirm complete transection of the ligament. The joint was then
irrigated with sterile saline to avoid ancillary inflammation, and a purpose-made suture was
inserted. Buprenorphine was administered as analgesic on the day of surgery (approximately
30 min before surgery and the second dose after 8-12h).

Intraarticular injection of 24R,25(OH)2D3. 24R,25(OH)2D3 was purchased from Enzo
Life Sciences (Plymouth Meeting, PA, USA) and dissolved in ethanol at a stock concentration
of 10-4M. 40μl was then dissolved in 10 ml of sterile PBS, resulting in a final concentration of
4�10-7M 24R,25(OH)2D3. 24R,25(OH)2D3 or vehicle (40μl ethanol dissolved in sterile 1xPBS
to a final concentration of 0.4%) was dosed immediately after the ACL surgery by irrigating the
articular space with 25μl of either formulation using a micropipette. Intra-articular injections
of 24R,25(OH)2D3 or vehicle (25μl) were administered every seven days until day 21 (S1 Fig).
During injection, animals were maintained under general anesthesia with isoflurane. After
anesthesia was achieved, the animal was restrained in a dorsal recumbent position; the hind
limb articulation was shaved and wiped generously with an alcohol solution to facilitate the
localization of the injection/collection site. The injection site was examined grossly by palpa-
tion of the tibia head and the patellar ligament, to identify the injection site. The needle was
inserted above the tibia head and behind the patellar ligament. The injection was performed
with a 29G needle by slowly releasing of the test item into the articular space.

Blood serum and synovial fluid collection. Blood was collected terminally on Day 28 as
well as via jugular puncture on Day 1 post-surgery. Terminal bleeds were done under isoflur-
ane anesthesia and blood (~1 mL) and was collected via abdominal aorta following which ani-
mals were euthanized by exsanguination of the abdominal aorta. All blood samples were
processed for serum using standard serum separator tubes (without EDTA). On Day 28, syno-
vial fluid lavage from both knee joints was collected following the terminal blood collection
and immediately before the knee joint collection. Injection of lavage fluid (100μl 0.9% saline)
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was done following the intra-articular injection procedure. The limb was flexed and extended
several times, and lavage fluid was drawn by re-inserting the needle at the same location.

Histology. Immediately after the synovial fluid collection, intact right and left knee joints
were harvested and were fixed separately in neutral buffered 10% formalin. Whole knee joints
were decalcified (Decal Chemical Corporation, Tallman, NY) for 16 hours on a rotating plat-
form before being dehydrated in a series of 95% and 100% ethanol and xylene washes. Samples
were embedded in paraffin. Sections (7μm thick) were stained with hematoxylin and eosin,
toluidine blue, or safranin-O. Samples were imaged using a Zeiss Observer Z1 using a 20x
objective. Scoring systems based on toluidine blue staining of the cartilage ECM [41] and safra-
nin-O staining of ECM sulfated glycosaminoglycan [42] were performed. A modified Mankin
scoring system was used for semi-quantitative histopathology grading for each sample [43]
characterizing structural changes in the cartilage (scored 0–10), toluidine blue staining of the
articular surface (scored 0–6), clone/cluster formation (scored 0–3), and loss of chondrocytes
on the condyle/plateau (scored 0–6). Normal, healthy cartilage would receive a score of 0; a
higher score would indicate more cartilage damage. All three scores were performed by blinded
reviewers on sections taken from the same level of the joint.

ELISA analysis of synovial fluid and serum samples. Levels of inflammatory factors
involved in OA (Bio-Plex Pro™Multi-Plex Kit 171K1001M) and TGF-βs (1, 2, and 3) in the
synovial fluid and serum were measured using a magnetic-bead-based multiplex assay (Bio-
Rad, Hercules, CA, USA).

Statistical analysis. Data are presented as mean ± SEM of n = 10 animals per group. Data
were examined by analysis of variance (ANOVA) and post hoc test using Tukey's Multiple
Comparison Test. Non-parametric histomorphometry was analyzed by Mann-Whitney test,
and all other data were analyzed by unpaired t-test. P<0.05 was considered to be significant.

Results

24R,25(OH)2D3 blocks the effects of IL-1β on articular chondrocytes
In a preliminary set of experiments, we examined whether it would be possible to passage the
rat articular chondrocytes to increase the number of cells and reduce the need for primary cul-
tures. Phenotypic expression of chondrocyte genes was determined by real-time PCR in conflu-
ent cells at passage 1, 2, 3, and 4. Expression of mRNAs for Acan (S2A Fig), Col2a1 (S2B Fig),
Sox9 (S2C Fig), Comp (S2D Fig), and Col10a1 (S2E Fig) were all markedly decreased by pas-
sage 2. In contrast, expression of mRNA for Col1a1 (S2F Fig) was increased. These results con-
firmed that it would be necessary to use first passage cells for our experiments, which were
most similar to primary chondrocytes.

The addition of IL-1β caused a dose-dependent increase in nitric oxide production (Fig 1A),
MMP-13 activity (Fig 1B), and PGE2 production (Fig 1C). At the highest concentration of IL-
1β, caspase-3 activity (Fig 1D) and DNA fragmentation (Fig 1E) were increased as well. Expres-
sion of chondrocyte genes including Acan (Fig 1F), Col2a1 (Fig 1G), Sox9 (Fig 1I) and Col10a1
(Fig 1J) was reduced by IL-1β at all concentrations examined. Comp (Fig 1H) mRNA were not
affected by IL-1β treatment.

In a preliminary study, we sought to establish a treatment regime for our study. To deter-
mine how 24R,25(OH)2D3 might mitigate the effects of IL-1β, we examined nitric oxide pro-
duction by confluent first passage rat articular chondrocytes treated for 12 hours with either 0,
10 ng/ml IL-1β or 10−7 M 24R,25(OH)2D3, or the two together (Fig 2). Media were replaced at
12 hours with new media containing either vehicle alone, IL-1β, 24R,25(OH)2D3, or IL-1β plus
24R,25(OH)2D3. The DAN assay was performed at the end of the treatment. Our results show
24R,25(OH)2D3 exhibited the best inhibitory effect when it was added at the last 12 hours of
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the treatment (Fig 2). Therefore, all the future experiments were done by adding 24R,25
(OH)2D3 for the last 12 hours.

24R,25(OH)2D3 treatment reversed inflammatory, apoptotic, and matrix decreases induced
by IL-1β. By itself, 24R,25(OH)2D3 did not affect nitric oxide production (Fig 3A), MMP-13
activity (Fig 3B), PGE2 production (Fig 3C), or caspase-3 activity (Fig 3D), but it reduced the
stimulatory effects of IL-1β in a dose-dependent manner. Similarly, Acan (Fig 3E), Comp (Fig
3F), and Col2a1 (Fig 3G) were not affected by treatment with 24R,25(OH)2D3, but the vitamin
D metabolite partially reversed the inhibitory effect of IL-1β on expression.

The effects of 24R,25(OH)2D3 were specific. Treatment of articular chondrocytes with
1α,25(OH)2D3 did not reduce the stimulatory effect of IL-1β on MMP-13 activity (S3 Fig).

24R,25(OH)2D3 and TGF-β1 act in an additive manner and interact to
reduce the inflammatory effects of IL-1β
Previous results from our lab showed an inter-relationship between 24R,25(OH)2D3 and TGF-
β1 in regulating proliferation and differentiation of costochondral cartilage. These observations
suggested that the mitigating effects of 24R,25(OH)2D3 in the inflammatory response of rat
articular chondrocytes might involve TGF-β1. First, we treated first passage chondrocytes for
12 hours with 0 or 10 ng/ml IL-1β. Then media were replaced with media containing 0 or 10
ng/ml IL-1β plus 0, 0.1, 1 or 10 ng/ml TGF-β1 and cultures were incubated an additional 12
hours. TGF-β1 alone had minimal effect on nitric oxide production (Fig 4A), but it reduced IL-
1β-stimulated production in a dose-dependent manner. TGF-β1 had a small, but significant,
effect on IL-1β-dependent increases in PGE2 production (Fig 4B). TGF-β1 caused a dose-
dependent decrease in IL-1β stimulated MMP-13 activity (Fig 4C). These results were very
similar to the protective effects seen after 24R,25(OH)2D3 treatment, leading us to further
investigate the inter-relationship between IL-1β, TGF-β1, and 24R,25(OH)2D3.

IL-1β has been reported to inhibit TGF-β1 signaling [44], suggesting that it might alter the
availability of one or more components of the TGF-β1 signaling pathway and that 24R,25
(OH)2D3 may act to reverse this. IL-1β reduced Smad2 expression, and this was partially

Fig 1. Assessment of catabolic, apoptotic, and chondrocytic mRNA levels in rat articular chondrocytes stimulated with IL-1β. First passage
articular chondrocytes were treated with IL-1β for 24 hours. (A) NO production was measured in the conditioned media using a fluorometric assay. (B, C)
MMP-13 activity and PGE2 production were measured in conditioned media using ELISA. (D, E) Apoptosis factors were measured in cell lysates using
fluorometric assay and 3H-thymidine labeling. Amount normalized to total DNA. First passage articular chondrocytes were treated with IL-1β for 12 hours.
(F-J) Expression of mRNA for chondrocyte genes was measured by real-time qPCR and normalized to Gapdh mRNA. * p<0.05 vs. control; # p<0.05 vs. 1
ng/ml IL-1β; $ p<0.05 vs. 5 ng/ml IL-1β.

doi:10.1371/journal.pone.0161782.g001
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reversed by 10−8 M 24R,25(OH)2D3 (Fig 5A). IL-1β caused an increase in Smad3 expression,
and this was enhanced by the inclusion of 10−8 M 24R,25(OH)2D3 but was returned to control
levels at 10−7 M (Fig 5B). IL-1β caused a marked reduction in Tgfbr2 expression, and this was
partially reversed by 24R,25(OH)2D3 (Fig 5C). Importantly, IL-1β and 24R,25(OH)2D3 both
increased active TGF-β1 when cells were treated with either factor alone (Fig 5D). However,
when cells were treated with both factors in combination, the effects were additive. In contrast,
latent TGF-β1 levels were not affected by either factor (Fig 5E).

To further clarify the interaction between 24R,25(OH)2D3 and TGF-β1 in mitigating the
response to IL-1β, we set up a matrix study design using MMP-13 activity as the outcome mea-
sure. Confluent first passage chondrocytes were cultured for 12 hours with 0 or 10 ng/ml IL-
1β. At that time, media were replaced with media containing IL-1β plus either 24R,25(OH)2D3

or TGF-β1. Borth 24R,25(OH)2D3 and TGF-β1 reduced IL-1β’s effect, and treatment with the
two factors together caused an additive reduction in MMP-13 activity (Fig 6A). In a second
study, cultures were treated with 0 or 10 ng/ml IL-1β for 12 hours and the media were then
replaced with media containing either IL-1β or 24R,25(OH)2D3. A blocking antibody to the

Fig 2. Effect of 24R,25(OH)2D3 treatment at different time points on IL-1β stimulated nitric oxide production. First
passage rat articular chondrocytes were cultured with IL-1β or 24R,25(OH)2D3 for 12 hours. The media was removed, and
fresh treatments of IL-1β or 24R,25(OH)2D3 were applied for another 12 hours. NO production was measured in the
conditioned media, and each sample normalized to the total DNA content in the cell lysate. * p<0.05 vs. IL-1β control; #
p<0.05 vs. 24R,25(OH)2D3 control; $ p<0.05 vs. 10–9 M.

doi:10.1371/journal.pone.0161782.g002
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TGF-β1 type II receptor was added to one-half of the cultures (Fig 6B). By itself, 24R,25
(OH)2D3 had no effect on MMP-13 activity; however, when the cultures were treated with IL-
1β, activity was stimulated, but it was not affected by the inclusion of the antibody. A similar
result was found when the cultures were treated with a receptor inhibitor rather than the block-
ing antibody (Fig 6C). These results demonstrated that the protective effects of 24R,25
(OH)2D3 were not mediated through TGF-β1.

Fig 3. Dose-dependent effect of 24R,25(OH)2D3 treatment. First passage rat articular chondrocytes were treated with 10 ng/ml IL-1β for 12
hours. Then, the medium was exchanged and cells incubated with 10 ng/ml IL-1β containing 0, 10−9, 10−8 and 10−7 M 24R,25(OH)2D3. (A-C) After
24 hours, NO, MMP-13 and PGE2 levels in the conditioned media were measured and normalized to total DNA content of each sample. (D-F) After
12 hours of treatment, mRNA levels of Acan, Col2a1, and Comp were measured and normalized to Gapdh. * p<0.05 vs. IL-1β control; # p<0.05 vs.
24R,25(OH)2D3 control; $ p<0.05 vs. 10−8 M; ^ p<0.05 vs. 10−7 M.

doi:10.1371/journal.pone.0161782.g003

Fig 4. Effect of TGF- β1 signaling on IL-1 β-stimulated changes in rat articular chondrocytes. (A-C) First passage rat articular chondrocytes
were treated with doses of TGF-β1 for 24 hours. Levels of NO, MMP-13 and PGE2 were measured in the conditioned media and normalized to
DNA content in the cell lysate. * p<0.05 vs. TGF-β1 control; # p<0.05 vs. IL-1β control; $ p<0.05 vs. 0.1 ng/ml TGF-β1.

doi:10.1371/journal.pone.0161782.g004
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Fig 5. Cross talk between 24R,25(OH)2D3 and TGF-β1 signaling. First passage rat articular chondrocytes were treated with 10 ng/ml IL-1β for
12 hours. Then, the medium was exchanged and cells incubated with 10 ng/ml IL-1β containing 0, 10−9, 10−8, and 10−7 M 24R,25(OH)2D3. (A-C)
After 12 hours, mRNA for TGF- β1 signaling molecules Smad 2, Smad3, and receptor Tgfbr2 were measured. * p<0.05 vs. 24R,25(OH)2D3

control; # p<0.05 vs. IL-1β control. (D, E) After 24 hours, active and latent TGF-β1 levels in the conditioned media were measured and normalized
to DNA content in the cell lysate for each sample. * p<0.05 vs. IL-1β control; # p<0.05 vs. 24R,25(OH)2D3 control; $ p<0.05 vs. 10−9 M 24R,25
(OH)2D3.

doi:10.1371/journal.pone.0161782.g005

Fig 6. Effect of 24R,25(OH)2D3 is not mediated through TGF-β1 signaling. (A) Effect of 0.1 ng/ml TGF-β1 with 10−8 M 24R,25(OH)2D3 co-treatment on IL-
1β induced MMP-13 activity. Levels normalized to total DNA. * p<0.05 vs. IL-1β control; # p<0.05 vs. 24R,25(OH)2D3 control; $ p<0.05 vs.10-8 M 24R,25
(OH)2D3; ^ p<0.05 vs. 0.1 ng/ml TGF-β1. (B, C) Effect of blocking TGF-β1 signaling using either an antibody against TGF-β1rII or a decoy receptor on MMP-
13 activity in cells treated with IL-1β and 24R,25(OH)2D3. Levels normalized to total DNA in cell lysates of each sample. * p<0.05 vs. IL-1β control; # p<0.05
vs. 24R,25(OH)2D3 control; ^ p<0.05 vs. 10 ng/ml IL-1β.

doi:10.1371/journal.pone.0161782.g006
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24R,25(OH)2D3 prevents OA changes due to ACL transection in
immunocompetent rats
We next wanted to examine whether 24R,25(OH)2D3 was chondroprotective in an in vivo
model of osteoarthritis whereby the ACL is severed, destabilizing the knee and leading to joint
inflammation and damage to the articular cartilage. At 28 days after ACL transection, OA
changes were evident in the knees injected with vehicle only (Fig 7C). They appeared as rough-
ened patches on the articular surface of the medial and lateral femur and medial tibia, but not
on the lateral tibia or any of the cartilage surfaces of the contralateral knees (Fig 7A and 7B). In
contrast, surface damage was significantly reduced when the operated knees were treated with
24R,25(OH)2D3. Histology of the knees confirmed this. Whereas control knees exhibited full
thickness cartilage on all articulating surfaces (Fig 7A), cartilage was markedly reduced on the
medial and lateral femur and absent from the medial tibia when transected joints were injected
with PBS containing only vehicle (Fig 7C). However, when the transected joints were treated
with 24R,25(OH)2D3, cartilage thickness was reduced compared to control knees, but it was
still present on all surfaces (Fig 7D). Treatment with 24R,25(OH)2D3 markedly reduced dam-
age to the medial and lateral femur by over 60% and to the medial tibia by 50% but did not
alter the toluidine positive tissue on the lateral tibia (Fig 7I–7L, respectively).

Sections of the knee stained with safranin-O, which stains sulfated glycosaminoglycans, told
a similar story. Contralateral control knees had full thickness cartilage on all articulating sur-
faces (Fig 7E). The medial femur and medial tibia of knees treated with the vehicle after ACL
transfection exhibited markedly reduced safranin O positive stain (Fig 7G). While the lateral
femur and tibia were less affected, the stain was still reduced compared to the contralateral con-
trols. Safranin-O staining was reduced on all joint surfaces compared to the contralateral con-
trols in knees treated with 24R,25(OH)2D3 (Fig 7H), but the contours of the articular cartilage
surfaces were smooth and intact (Fig 7F). Quantitative scoring supported these morphological
observations. The safranin-O scores for the medial femur, lateral femur, and medial tibia were
all lower in the 24R,25(OH)2D3-treated joints, whereas no differences were detected in the lat-
eral tibia (Fig 7M–7P, respectively).

When all measurements of cartilage health were compiled as a composite score using a
modification of the Mankin system [45,46], 24R,25(OH)2D3 reduced damage to the medial
femur by more than 80% (Fig 7Q), to the medial tibia by 75% (Fig 7R), and to the lateral femur
by 90% (Fig 7S), but did not affect cartilage health in the lateral tibia (Fig 7T).

Intra-articular treatment with 24R,25(OH)2D3 modulates the composition
of synovial fluid
To better understand the changes in tissue response, we examined the effects of the injection
protocol on the composition of a broad range of factors associated with inflammation and
arthritis in the synovial fluid (Fig 8A–8AI). Overall, the intra-articular injections of PBS con-
taining either ethanol vehicle alone or 24R,25(OH)2D3 in the operated knee did not affect the
composition of the synovial fluid of the non-injected contralateral knees at 28 days post-sur-
gery. However, the composition of the synovial fluid in the operated knees was impacted by the
OA changes induced by ACL transection and was differentially affected by injection with
24R,25(OH)2D3. For most of the factors assayed, 24R,25(OH)2D3 mitigated the effect of ACL
transection and treatment with PBS+vehicle, either by reducing its stimulatory effect or by
increasing its inhibitory effect compared to levels in the contralateral knee.

We categorized the proteins based on the potential of each factor to contribute to reduced
inflammation and tissue healing versus increased inflammation and tissue degeneration. TGF-
β1 was markedly reduced in synovial fluid from operated knees treated with PBS+vehicle
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Fig 7. Histopathological staining and scoring of rat articular joints.Male Sprague-Dawley rats underwent ACLT and allowed to recover for
28 days. (A-D) Representative images of toluidine blue staining of vehicle or 24R,25(OH)2D3 treated rat knees after ACLT as well as
contralateral control knees. (E-H) Representative images of safranin O staining of vehicle or 24R,25(OH)2D3 treated rat knees after ACLT as
well as contralateral control knees. (I-L) Scores for toluidine blue staining for four quadrants of rat knees that were treated with either vehicle or
24R,25(OH)2D3 from histological sections taken at the same level of the joint. (M-P) Scores for safranin-O staining for four quadrants of rats
knee that were treated with either vehicle or 24R,25(OH)2D3 from histological sections taken at the same level of the joint. (Q-T) Total composite
scores of rat knees that were treated with either vehicle or 24R,25(OH)2D3 using a modified Mankin system from histological sections taken at
the same level of the joint. * p<0.05 vs. control.

doi:10.1371/journal.pone.0161782.g007
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compared to the contralateral control (Fig 8A). In contrast, TGF-β2 (Fig 8B) and TGF-β3 (Fig
8C) were increased. 24R,25(OH)2D3 partially blocked the reduction in TGF-β1, but it had no
effect on the increase in TGF-β2 or TGF-β3. VEGF was increased more than three-fold in the
operated knees treated with PBS+vehicle compared to the contralateral knees (Fig 8D); 24R,25
(OH)2D3 caused a significant reduction in VEGF content. Effects on erythropoietin (EPO, Fig
8E) were reversed from those on VEGF. 24R,25(OH)2D3 had no effect on synovial fluid IL-4 in
the operated knees (Fig 8F), but it did mitigate the effects of ACL transection plus treatment
with PBS+vehicle on IL-5 (Fig 8G) and IL-10 (Fig 8H). IL-13, which has been shown to protect
synoviocytes from apoptosis in rheumatoid arthritis [47], was upregulated by treatment with
vehicle alone and further increased by 24R,25(OH)2D3 (Fig 8I), which demonstrates the com-
plexity of events in the knee joint. Treatment with vehicle alone reduced macrophage colony-
stimulating factor (M-CSF), and 24R,25(OH)2D3 partially restored this (Fig 8J).

Factors that are associated with tissue degradation or inflammation were also differentially
present in the synovial fluid. In all cases, synovial fluid from operated knees treated with PBS+-
vehicle had higher levels than the contralateral knee (Fig 8K–8W). Treatment with 24R,25
(OH)2D3 partially reduced the content of granulocyte-colony stimulating factor (G-CSF, Fig
8K) and completely blocked the effect of PBS+vehicle on granulocyte macrophage colony-
stimulating factor (GM-CSF, Fig 8L). The effect of 24R,25(OH)2D3 on levels of interleukins in
synovial fluid varied: IL-1α was partially reduced (Fig 8M); IL-1β was reduced to levels seen in
the contralateral knees(Fig 8N); IL-4 was lower, but this difference was not statistically signifi-
cant (Fig 8O); IL-7 was lower (Fig 8P); IL-12p70 was unaffected (Fig 8Q); IL-17 was reduced
(Fig 8R); and IL-18 was reduced to levels seen in the contralateral knees (Fig 8S). Interferon-
gamma (IFN-γ) was partially reduced by 24R,25(OH)2D3 (Fig 8T), but tumor necrosis factor-
alpha (TNF-α, Fig 8U), growth-related oncogene (GRO, Fig 8V) and macrophage inflamma-
tory protein-3 alpha (MIP-3α, Fig 8W) were all reduced to levels observed in the contralateral
knees. The levels of IL-2 (Fig 8X) and MCP-1 (Fig 8Y) in the synovial fluid were unaffected by
ACL transection or by injection with PBS+vehicle or 24R,25(OH)2D3. Neither MIP-1α (Fig
8Z) nor regulated on activation, normal T cell expressed and secreted (RANTES, Fig 8AI) was
detected in any synovial fluid samples.

Intra-articular injection of 24R,25(OH)2D3 increases anti-inflammatory
cytokines and reduces inflammatory cytokines in the serum
With the exception of serum TGF-β1 (S4A Fig) and IL-10 (S4H Fig), which were increased by
day 1 following injection of 24R,25(OH)2D3, no other changes in serum factors were evident
on day 1 as a function of intra-articular injection with either PBS+vehicle or 24R,25(OH)2D3

(S4B–S4G and S4I–S4W Fig). At 28 days post-surgery, TGF-β1 was elevated in rats treated
with 24R,25(OH)2D3 at levels comparable to those seen on day 1 (Fig 9A). However, neither
TGF-β2 (Fig 9B) nor TGF-β3 (Fig 9C) was affected. 24R,25(OH)2D3 treatment of the operated
knees caused a decrease in serum VEGF (Fig 9D) and an increase in serum EPO (Fig 9E). IL-4
(Fig 9F), IL-5 (Fig 9G), and IL-10 (Fig 9H) were increased; IL-13 was unaffected (Fig 9I), and
M-CSF (Fig 9J) was increased in animals treated with 24R,25(OH)2D3. Importantly, treatment

Fig 8. Synovial fluid profile of cytokines, chemokines and growth factors.Male Sprague-Dawley rats
underwent ACLT and allowed to recover for 28 days. Factors were measured at the end of the study using a
magnetic-bead-based multiplex ELISA. (A-D) Growth factors involved in cartilage remolding during osteoarthritis.
(E-J) Anti-inflammatory factors involved in osteoarthritis. (K-W) Pro-inflammatory factors found in osteoarthritis.
(X-AI) Cytokines and inflammatory factors. T represents the ACLT knee with either vehicle or 24R,25(OH)2D3. C
represents contralateral control knee for either vehicle or 24R,25(OH)2D3 group. * p<0.05 vs. vehicle contralateral
control knee; # p<0.05 vs. contralateral 24R,25(OH)2D3 knee; $ p<0.05 vs. vehicle treated knee.

doi:10.1371/journal.pone.0161782.g008
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of the ACL-transected knee with 24R,25(OH)2D3 resulted in a decrease in all of the inflamma-
tory cytokines assayed in comparison to knees injected with PBS+vehicle alone (Fig 9K–9W).
IL-2 (S4X Fig), MIP-1α (S4Z Fig), and RANTES (S4AI Fig) were all detected in serum one day
post-operatively, but their levels were not affected by 24R,25(OH)2D3. MCP-1 (S4Y Fig) was
downregulated on day 1 in animals receiving by 24R,25(OH)2D3. However, on day 28, the lev-
els of all four factors were reduced in serum from animals treated with the vitamin D metabo-
lite (Fig 9X–9AI).

Discussion
In the present study, we used articular chondrocytes treated with IL-1β as a surrogate for
inflammation-induced cartilage damage [48,49]. The results showed that 24R,25(OH)2D3

reduced the stimulatory effects of IL-1β on the production of reactive oxygen species, activity
of MMP-13, production of PGE2, and caspase-3 activity. The effects of 24R,25(OH)2D3 were
specific; 1α,25(OH)2D3, which is also produced in articular cartilage [27], did not reduce the
stimulatory effect of IL-1β on MMP-13. 24R,25(OH)2D3 also reversed the inhibitory effects of
IL-1β on cartilage matrix synthesis. We have shown that 24R,25(OH)2D3 inhibits apoptosis
induced by a number of apoptogens [25,26,50] via PLD-dependent signaling [51,52], and this
study further supports its chondroprotective effects.

Our results show that acute intra-articular treatment with 24R,25(OH)2D3 can prevent the
development of OA following transection of the ACL in Sprague Dawley rats. Our data demon-
strate that OA damage following ACL transection in rats is associated with a number of
changes in synovial fluid composition. Factors that elicit inflammation, including Il-1β were
increased as was enzyme activity that these factors stimulate. Anti-inflammatory factors were
reduced. Treatment with 24R,25(OH)2D3 has the opposite effect. Pro-inflammatory factors
were reduced, anti-inflammatory factors were increased, and activity of the matrix processing
enzymes was reduced.

To test the effects of 24R,25(OH)2D3 on osteoarthritis in vivo, we chose the ACL transection
model for its clinical relevance and applicability to translational research. Others have shown
that the changes seen in the cartilage in this model follow the changes observed in human carti-
lage after ACL rupture [53,54]. Our results indicate that acute intra-articular treatment with
24R,25(OH)2D3 can prevent the development of OA following transection of the ACL in Spra-
gue Dawley rats. Previous studies using this model have tested technologies to reverse OA
damage [55–58]. Our results suggest that a series of weekly injections of 24R,25(OH)2D3

immediately following ACL trauma and during the early healing period reduces inflammatory
markers and may prevent OA changes in the articular cartilage. Destabilization of the knee
resulted in the loss of cartilage matrix sulfated glycosaminoglycans and fibrillation of the sur-
face. This outcome was markedly reduced in knees that were treated with the vitamin D
metabolite.

24R,25(OH)2D3 is normally present in the blood as a consequence of hydroxylation of 25
(OH)D3 in the kidney [59]. Recently, we demonstrated that 24,25(OH)2D3 is present in syno-
vial fluid aspirated from human knees removed during total knee arthroplasty [60]. It is not
clear whether this represents diffusion from the vasculature or is due to local production by

Fig 9. Serum levels of cytokines, chemokines, and growth factors on postoperative day 28.Male Sprague-
Dawley rats underwent ACLT and allowed to recover for 28 days. Factors were measured in the serum of rats that were
treated with either vehicle or 24R,25(OH)2D3 at day 28 immediately before euthanasia. (A-D) Growth factors involved in
cartilage remodeling during osteoarthritis. (E-J) Anti-inflammatory factors involved in osteoarthritis. (K-W) Pro-
inflammatory factors found in osteoarthritic knees. (X-AI) Cytokines and inflammatory factors. * p<0.05 vs. vehicle
control group.

doi:10.1371/journal.pone.0161782.g009
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knee tissues. Chondrocytes possess the ability to hydroxylate 25(OH)D3 to both 1,25(OH)2D3

and 24,25(OH)2D3, and this is regulated by hormones and growth factors [28,61], suggesting
the content of vitamin D metabolites in the knee is essential for cartilage health. The observa-
tion that low serum 25(OH)D3 is correlated with OA [62] supports this.

TGF-β1 elicited outcomes similar to 25R,25(OH)2D3 using the same cell culture model
and was additive with 24R,25(OH)2D3 in blocking responses to IL-1β. While this shows that
each factor acts via an independent mechanism, our results also support the involvement
of an inter-dependent mechanism. 24R,25(OH)2D3 blocked the reduction in Smad2 and
increase in Smad3 caused by IL-1β, and reduced the inhibition of the TGF-β type II receptor.
Whereas Smad2 mediates TGF-β1 signaling controlling proliferation, apoptosis, and differ-
entiation, Smad3 induces the repression of target genes, particularly c-myc [63]. IL-1β
caused a small but significant increase in latent TGF-β1 that was unaffected by 24R,25
(OH)2D3. However, 24R,25(OH)2D3 markedly increased levels of active TGF-β1 even in
IL-1β treated cells, suggesting that the increase in TGF-β1 noted in vivo was specifically due
to direct effects of 24R,25(OH)2D3 on activation and release of the growth factor. TGF-β1
can then act back on the cells to stimulate ECM production [64–66] and to reduce inflamma-
tion [67–69].

Intra-articular injection of 24R,25(OH)2D3 caused a rapid increase in serum TGF-β1 within
24 hours, and this remained elevated to the same extent on day 28. TGF-β1 was first identified
as a chondrogenic factor present in guanidine-HCl extracts from cartilage [70] and has been
used to induce chondrogenesis in cultures of mesenchymal stem cells [71–73]. It is present in
cartilage ECM in the latent form [70], and its storage in the matrix via latent TGF-β binding
protein is regulated by 24R,25(OH)2D3 [30]. We found that TGF-β1 present in synovial fluid
was markedly reduced in ACL-transected knees injected with PBS in comparison to contralat-
eral control knees. In contrast, levels were higher in synovial fluid treated with 24R,25
(OH)2D3. Whether this was due to the greater synthesis of TGF-β1 or to the regulation of
TGF-β1 storage via latent TGF-β binding protein or to altered activation of latent TGF-β1 is
unknown. It is evident, however, that the effects are specific to 24R,25(OH)2D3 and TGF-β1,
and support the changes seen in chondrocyte phenotype in our cell culture model. TGF-β2 and
TGF-β3 were both elevated in synovial fluid from ACL-transected joints compared to contra-
lateral knees, but 24R,25(OH)2D3 had no effect. Also, serum levels of both TGF-β2 and TGF-
β3 were unaffected. It is also interesting to note that after only four injections of 24R,25
(OH)2D3 into the joint, we were able to observe such changes in the serum.

Our results indicate that many factors are regulated by 24R,25(OH)2D3 and are likely to
contribute to the overall anabolic effect of the hormone. While we have focused on IL-1β and
TGF-β1, it is clear that there is a complex milieu generated in the joint by 24R,25(OH)2D3.
Vitamin D metabolism also complicates the story. 25(OH)D3 is hydroxylated on the 1-carbon
by cytochrome p450 27B1 (Cyp27B1). In chondrocytes, this is regulated by TGF-β1 [61]. Alter-
natively, it can be hydroxylated on the 24-carbon by Cyp24A1, and this is regulated by 1α,25
(OH)2D3 [74]. Thus, some of the effects attributed to 24R,25(OH)2D3 may also reflect actions
of other vitamin D metabolites. Future studies must also examine osteoarthritis in the
Cyp24a1-/- mouse, which lacks 24,25(OH)2D3, to definitively demonstrate the role of 24,25
(OH)2D3 in osteoarthritis progression.

Our results suggest that 24R,25(OH)2D3 reduced activity of enzymes associated with tissue
damage, reduced apoptosis, or reduced production of inflammatory mediators as well as to
stimulation of matrix synthesis in articular cartilage in osteoarthritic conditions in vitro and in
vivo. Acute intra-articular injection of 24R,25(OH)2D3 may prevent the development of articu-
lar cartilage damage after trauma, and reduce or prevent early onset osteoarthritis.
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Supporting Information
S1 Fig. Animal study design. Schematic showing injection timeline and study design of in
vivo 24R,25(OH)2D3 injection in rat knees.
(TIF)

S2 Fig. mRNA levels of chondrocyte phenotype genes in rat articular chondrocytes in cells
cultured to different passages. Articular chondrocytes were isolated from rats and cultured.
At passages 1–4, RNA was extracted and the chondrocyte phenotype characterized by mRNA
levels of Acan (A), Col2a2 (B), Sox9 (C), Comp (D), Col10a1 (E), and Col1a1 (F). �p<0.05 vs.
P1.
(TIF)

S3 Fig. Effect of 24R,25(OH)2D3 is specific to the vitamin Dmetabolite. First passage rat articu-
lar chondrocytes were treated with 10 ng/ml IL-1β for 12 hours. Then, the medium was exchanged
and cells incubated with 10 ng/ml IL-1β containing either full medium, 10–7M 24R,25(OH)2D3,
or 10–8M 1α,25(OH)2D3. After 24 hours, MMP activity was measured and normalized to DNA
content in the cell lysate for each sample. �p<0.05 vs. untreated cells; #p<0.05 vs. no IL-1β treat-
ment; $p<0.05 vs. IL-1β treatment; ^p<0.05 vs. 24R,25(OH)2D3 treatment.
(TIF)

S4 Fig. Serum levels of cytokines, chemokines, and growth factors one day following ACLT.
(A-D) Growth factors involved in cartilage remolding during osteoarthritis. (E-J) Anti-inflam-
matory factors involved in osteoarthritis. (K-W) Pro-inflammatory factors found in osteoar-
thritic knees. (X-AI) Cytokines and inflammatory factors. � p<0.05 vs. vehicle control group.
(TIF)
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