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Introduction: Acne arises during puberty, in part, due to elevated hormones and growth

factors which stimulate de novo lipogenesis (DNL) in primary sebocytes to significantly

increase sebum production. Oral isotretinoin is an effective acne therapy, reducing sebum

production through inducing apoptosis in sebocytes. However, isotretinoin is teratogenic and

has additional unwanted side effects, including an initial acne flare-up, which limits its

utility. The biguanide, metformin has been found to alleviate severe acne in women with

polycystic ovary syndrome (PCOS) through normalization of their insulin and androgen

hormone levels. Metformin’s broader effectiveness to improve acne in non-PCOS popula-

tions lacks significant clinical support. In an effort to determine whether biguanides directly

affect sebogenesis, we investigated their ability to alter DNL in cell-based assays in vitro.

Methods: De novo lipogenesis was measured in human primary sebocytes using [14C]-

acetate labeling. Lipid species analysis was performed by extracting newly synthesized lipids

and subjecting them to thin layer chromatography. Gene expression changes in sebocytes

were identified through qPCR analysis of isolated RNA. Metabolic parameters including

oxygen consumption rate, lactate production and activation of adenosine monophosphate-

dependent protein kinase (AMPK) were assessed in human primary sebocytes.

Results: Using human primary sebocytes, we found that biguanides, isotretinoin and

azithromycin induced an acute dose and time-dependent increase in [14C]-acetate labeling

of neutral lipids, while AICAR, an AMPK activator, inhibited this DNL response.

Biguanides did not activate AMPK in sebocytes, however, they significantly reduced oxygen

consumption rate and increased lactate production. Treatment with biguanides, but not

isotretinoin, significantly upregulated ACSS2 gene expression in primary sebocytes and

showed synergism with lipogenic activators to induce DNL genes.

Discussion: These changes are consistent with an acute increase in sebocyte lipogenesis and

support the potential of biguanides to cause an initial flare-up in patients suffering from

severe acne.
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Introduction
Acne vulgaris is a common skin disorder that affects over 50 million people in the

US and is primarily caused by the overproduction of sebum by sebaceous glands,

hyperkeratinization of follicular epithelium, Propionibacterium acnes (P. acnes)

proliferation and inflammation.1,2 In particular, excess sebum production,

a complex mixture of triglyceride, wax esters, fatty acids and squalene, coupled

with increased follicular keratinocyte proliferation can clog the hair follicle and

provide a favorable environment for the growth of anaerobic P. acnes. The
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combination of bacterial products and immune cell

response through cytokine secretion causes inflammation

and exacerbates acne lesion formation. Clinically, sebum

production has been shown to correlate with acne severity

and generally higher levels of sebum are found in people

suffering from acne.3–5

Oral isotretinoin (13-cis-retinoic acid) is a highly effec-

tive acne medication that addresses all four factors in the

development of acne, however, its effect on sebum pro-

duction may be secondary to its ability to induce apoptosis

in sebocytes.6,7 Unfortunately, isotretinoin can be terato-

genic and causes severe unwanted side effects that can

limit its usage. Additionally, oral isotretinoin can induce

an acne flare-up in the early stages of treatment, resulting

in increased comedone formation and worsening of the

disorder.8–11 While the underlying mechanism for acne

flare-up is poorly understood, sebocytes rely on de novo

lipogenesis for sebum production12 and isotretinoin has

been shown to acutely activate lipogenesis in sebocytes

exacerbating existing acne conditions.13

The onset of acne typically begins during puberty

where the increase in hormones and growth factors stimu-

late de novo lipogenesis and increase sebum production.14

Similarly, women with polycystic ovary syndrome (PCOS)

often suffer from severe acne, hirsutism, anovulation and

insulin resistance due to hyperandrogenism and hyperin-

sulinemia. These patients are commonly prescribed anti-

androgens and metformin to control the symptoms of the

disease.15–18 Metformin has been shown to have beneficial

effects in reducing insulin and testosterone levels and also

improves ovulation and insulin resistance.19 Additionally,

after six months of metformin treatment to normalize these

hormones, metformin has shown a beneficial effect on

acne. Clinical trials specifically investigating the role of

metformin in reducing inflammatory acne in women with

PCOS have shown improvement in acne scores as early as

6 to 12 weeks.20,21 Based on these results and concerns

over the safety of isotretinoin, there has been considerable

speculation that metformin could be a safe and effective

anti-acne therapeutic in other populations.22–25

In non-PCOS populations the few clinical trials per-

formed to assess metformin’s effects on acne have shown

limited success.23–25 The most significant metformin

effects were in general metabolic characteristics as with

PCOS patients including insulin resistance, BMI and fast-

ing blood glucose levels, suggesting metformin’s acne

effects are secondary to its role in regulating metabolism.

Mechanistically, metformin can activate AMPK to inhibit

energy-dependent processes, including gluconeogenesis

and fatty acid synthesis, favoring energy producing activ-

ities such as fatty acid oxidation.26–28 In sebocytes this

would result in decreased de novo lipogenesis and

a reduction in sebum production with the potential to

reduce acne severity. In an effort to clarify the role of

biguanides in sebogenesis, we utilized cultured human

primary sebocytes to test their direct effects on these

cells in vitro.

Using human primary sebocytes isolated from dis-

sected sebaceous glands, we can mimic the sebogenic

process in primary culture by inducing the cells with

a combination of an LXR agonist and insulin.2,29 This

results in a significant upregulation of de novo lipogenesis

within the first 48 hrs as measured by acetate incorporation

into newly synthesized neutral lipids. This assay format

can identify antagonists as well as agonists of de novo

lipogenesis and sebogenesis. Using this system, we found

the surprising result that biguanides induce an upregula-

tion of lipid synthetic pathways and de novo lipogenesis

similar to isotretinoin, suggesting that biguanides may

induce an acne flare-up in some patients when beginning

treatment for severe acne.

Materials and Methods
Sebocyte Isolation
All procedures involving human tissues were approved by

IRB (Pearl IRB, LLC, Indianapolis, IN) and were with the

written informed consent of adult donors. Surgical waste

material from elective cosmetic surgeries was used in

these studies with no specific patient recruitment based

on age, gender, BMI or diabetes status. Sebaceous glands

were micro-dissected from thermolysin-separated epider-

mal layers of facial skin from elective plastic surgeries.

The isolated glands were trypsinized and cells were liber-

ated by gentle pipetting before collecting by centrifugation

at 300xg for 5 mins. The cells were suspended in growth

medium and seeded in collagen-1 coated flasks to propa-

gate with medium refreshment every 2–3 days. Sebocytes

were expanded in culture through three passages (<15

population doublings) and used in experiments at passage

3 or 4. Donor demographics of the sebocyte lots used in

this study are described in Table 1.

Scinitiplate [14C]-Acetate Assay
Sebocytes were seeded at 10,000 cells per well in a collagen

I-coated 96-well Scintiplate (PerkinElmer, Boston, MA) and
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allowed to reach confluence. The growth medium was

removed and Sebocyte Treatment Medium (STM, DMEM/

F12, biotin, pantothenate) was added containing compounds

plus an LXR agonist, 1 µM T0901317. The cells were

incubated overnight and the treatments reapplied in STM

containing 1 µM human insulin. 1 µCi of [14C]-acetate

(PerkinElmer, Boston, MA) was added per well and the

uptake assay incubated for 4 hrs. To normalize the data and

assess cell viability, Cell Titer Blue (CTB) reagent (Promega,

Madison, WI) was added to each well after 2 hrs of uptake

and incubated with the cells for the remaining 2 hrs. CTB

fluorescence was determined using 560nm excitation and

590nm emission wavelengths and a 570nm cutoff. To deter-

mine [14C]-acetate uptake and incorporation into lipids, the

medium was removed and cells washed twice with PBS. The

final PBS wash was removed and the monolayer allowed to

air dry before measuring incorporation by scintillation proxi-

mity counting.30

[14C]-Acetate Lipid Analysis
Sebocytes were seeded in a clear-bottom, black wall 96-

well plate and treated as described above. After treatment,

cells were harvested with trypsin/EDTA and transferred to

glass vials for lipid extraction according to the BUME

method.31 Sequential addition of equal volumes of buta-

nol/methanol (3:1 v/v), heptane/ethyl acetate (3:1 v/v) and

1% acetic acid were added to each vial, carefully mixed

and the two phases allowed to separate. An aliquot of the

upper, organic phase was mixed with scintillation fluid for

scintillation counting. The remaining organic phase was

dried under nitrogen and mixed with lipid standards for

separation and quantitation by TLC. Lipid samples spotted

on silica TLC plates were separated using a petroleum

ether/diethyl ether/acetic acid (80/20/1 v/v) mobile phase.

Lipid standards were visualized by iodine vapor and areas

corresponding to the standards scraped into 3 mL of

scintillation fluid to determine acetate labeling of each

lipid species.

RNA Isolation and qPCR Analysis
Sebocytes were seeded at 120,000 cells per well in 12-well

plates and allowed to adhere overnight. Treatments were in

STM containing 1 µM T0901317 ± 1mM metformin, 25

µM phenformin, 5 µM 13-cis-retinoic acid, or 10 µg/mL

azithromycin. Sebocytes were treated for 48 hrs and total

RNA isolated using an RNeasy kit (Qiagen, Carlsbad,

CA). Reverse transcription reactions were prepared using

1 µg of total RNA and qPCR analysis was performed in

duplicate using 10 ng/well cDNA to determine the tran-

script levels of SREBF1 (Hs01088691_m1), FASN

(Hs01005622_m1), ACSS2 (Hs00218766_m1), SCD

(Hs01682761_m1), HMGCR (Hs00168352_m1), SQLE

(Hs01123768_m1), ACLY (Hs00982738_m1), ACACA

(Hs1046047_m1), ELOVL6 (Hs00907564_m1), KRT7

(Hs00559840_m1), MUC1 (Hs00159357_m1) and TBP

(Hs00427620_m1) Taqman probes (Life Technologies,

Waltham, MA).

Oxygen Consumption Rate Analysis
Three different donor lots of sebocytes were seeded at 60,000

cells per well in a black, clear-bottom collagen-coated 96-

well plate and allowed to adhere overnight. Medium was

replaced with phenol red-free STM containing treatments,

including 1mMmetformin, 25 µMphenformin, 5 µM 13-cis-

retinoic acid, 10 µg/mL azithromycin, or 250 µM AICAR

and incubated for 2 hrs at 37°C in triplicate for each donor

lot. Pre-treatments were removed and reapplied in phenol

red-free STM. MitoXpress Xtra Reagent (Agilent

Technologies, Inc., Santa Clara, CA) was added to each

well and sealed with mineral oil. Oxygen consumption rate

(OCR) was determined using dual-read TRF lifetime detec-

tion on a FLUORstar plate reader (BMG LABTECH, Cary,

Table 1 Sebocyte Donor Demographics

Lot Number Gender Age BMI Type 2 Diabetes Medications

SEB060314D Female 55 24.8 N Synthroid, Tribenzor, Bystolic

SEB121913C Female 66 25.1 N Metoprolol, Nexium

SEB042613 Female 60 27.3 N None

SEBM022614B Female 59 27.6 N None

SEBM111913E Female 63 30.3 N None

SEBM091813B Male 58 35.7 N None

SEB031412A Female 66 32.0 Y Lipitor, Januvia, Micardis, Glucophage, Gabapentin

SEB013019A Female 49 33.5 Y Metformin, Fenoxene, Montelukast, Rosuvastatin, Synthroid

Abbreviation: BMI, Body mass index, kg/m2.
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NC) taking readings every 2 mins for 3 hrs with excitation

340 ±50 nm, emission 655 ±50 nm, delay times of 30 µs and

70 µs, and integration time of 30 µs.

Lactate Production Analysis
Three different donor lots of human primary sebocytes

were seeded at a density of 40,000 cells per well in a 12-

well plate using growth medium and allowed to adhere

overnight. Growth medium was removed and cells were

treated in STM containing 1 µM T0901317 ± 25 µM

phenformin or 5 µM 13-cis-retinoic acid in triplicate for

24 hrs at 37°C. Conditioned medium was collected and

lactate concentrations determined using the L-Lactate

Assay Kit protocol (Cayman Chemical, Ann Arbor, MI).

Phospho-AMPK, Phospho-S6RP and

Phospho-mTOR Analysis
Human primary sebocytes were seeded at 15,000 cells per

well in a 96-well collagen-coated plate and allowed to

adhere overnight. Growth medium was replaced with

STM containing 1% FBS and the cells incubated for

24 hrs at 37°C. Treatment of 1mM metformin, 25 µM

phenformin, 10 µM 13-cis-retinoic acid, 20 µg/mL azithro-

mycin, 250 µMAICAR, or 100 nM rapamycin were applied

in STM containing 1% FBS for 16 hrs; controls included no

glucose or serum containing DMEM (Glucose Starve) and

STM containing 10% FBS (Fed). Treatments were removed

and protein lysates prepared for HTRF ELISAs using

Phospho-AMPK(Thr172) and Phospho-S6RP (Ser235/

236) cellular kits (CisBio US, Bedford, MA) or colorimetric

ELISA using Phospho-mTOR (Ser2448) cellular kit (Cell

Signaling Technology, Danvers, MA). Phospho-AMPK and

phospho-S6RP signals were determined by HTRF using an

Infinite f500 plate reader (Tecan, Morrisville, NC).

Phospho-mTOR signals were determined by absorbance at

450nm using a SpectraMax iD3 plate reader (Molecular

Devices, San Jose, CA).

Statistical Analysis
Statistical analysis was performed by GraphPad Prism

software using Student’s 2-tailed t-test for two group ana-

lysis, and ANOVA Tukey’s multiple comparison test for

analysis of multiple groups. Data are presented as mean ±

standard deviation (SD). P-values < 0.05 were considered

statistically significant.

Results
Biguanides Induce Acute de novo

Lipogenesis in Human Primary Sebocytes
To determine the effects of biguanide treatment on sebo-

genesis, human primary sebocytes previously isolated

from facial skin-derived sebaceous glands were seeded in

96-well plates using growth medium. Upon confluence,

the cells were induced to stimulate sebogenesis by over-

night incubation with 1 µM T0901317, an LXRα agonist,

in the presence of increasing concentrations of biguanides

based on their relative potencies. Following the pretreat-

ment, the compounds were reapplied in medium contain-

ing 1 µM insulin and [14C]-acetate, and the incorporation

of acetate into cellular lipids monitored by scintillation

counting. The implementation of an assay using collagen-

coated Scintiplates rapidly and effectively measured these

effects without the need for lipid extraction (Figure 1A).30

In contrast to the expected decrease in lipogenesis by

biguanides, we found a significant dose-dependent

increase in de novo lipogenesis above that induced by

T0901317 + insulin. These effects were similar to those

seen with 13-cis-retinoic acid (isotretinoin) and azithromy-

cin, which has been shown to stimulate lipogenesis in

sebocyte-like Meibomian cells (Figure 1B). However, as

expected, the AMPK activator, AICAR, inhibited de novo

lipogenesis induced by insulin and the LXR agonist.

The induction in lipogenesis by biguanides was veri-

fied by using an adapted high throughput BUME lipid

extraction procedure to specifically isolate acetate-labeled

lipids.32 Sebocytes from multiple donors showed similar

lipogenic effects using both analysis methods, suggesting

that biguanides induce an unexpected acute lipogenic

response in human primary sebocytes (Figure 2A). TLC

analysis of the extracted lipids showed a corresponding

general increase in all neutral lipid species, including

triglyceride, squalene and cholesterol esters, and phospho-

lipids (Figure 2B). Additionally, this response was both

time and dose dependent, increasing the response out to

48 hrs of treatment with biguanides (Figure 2C).

Biguanides Display AMPK-Independent

Activities in Human Sebocytes
Biguanides exert their effects through complex mechanisms

of action, many of which are AMPK-dependent and regulate

cellular metabolism, including de novo lipogenesis. We

tested whether biguanides had an effect on AMPK activation

in human primary sebocytes by quantifying AMPK
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phosphorylation. Primary sebocytes were treated with met-

formin, phenformin, AICAR, azithromycin or 13-cis-retinoic

acid for 24 hrs and the level of AMPK phosphorylation was

compared with untreated, serum-fed or glucose-starved cells.

Figure 3A shows that only glucose-starvation and AICAR

treatment significantly increased AMPK phosphorylation

under these conditions. S6-kinase (p70S6K) is known to be

inhibited by activated AMPK, however, AMPK-independent

inhibition through different mechanisms, including

mTORC1, have also been identified. p70S6K activity was

assessed in these same extracts, and as expected, serum

feeding increased phosphorylation of S6 ribosomal protein

(S6RP) while glucose starvation inhibited it (Figure 3B).

Direct activation of AMPK by AICAR also greatly inhibited

S6-kinase activity. However, metformin showed no effect on

S6-kinase activity and phenformin, 13-cis-retinoic acid and

azithromycin slightly inhibited S6-kinase in the apparent

absence of AMPK activation. These results are consistent

with the slight changes in phosphorylated mTOR at S2448

caused by biguanides and the significant reductions by

AICAR and glucose starvation (Figure S1). The S2448 site

is sensitive to AMPK-dependent phosphorylation at the

nearby T2446 residue which precludes S2448

phosphorylation.

To ensure that biguanides were able to directly affect

the cells, we tested whether phenformin and metformin

had any effect on basal mitochondrial respiration.

Biguanides are known to inhibit mitochondrial complex

1 and the electron transport chain resulting in increased

levels of NADH and reduced ATP production. We found

that both metformin and phenformin readily inhibited the

oxygen consumption rate (OCR) of primary sebocytes and,
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Figure 1 Biguanides, isotretinoin and azithromycin stimulate acute de novo lipogenesis in human primary sebocytes. Sebocytes seeded in Scintiplates were incubated

overnight with T0901317 in the presence of increasing concentrations of biguanides, isotretinoin, azithromycin or AICAR. Test articles were reapplied in the presence of

insulin with T0901317 and [14C]-acetate for 4 hrs. Sebocytes were washed with PBS and the cell monolayers allowed to dry before [14C]-acetate incorporation was

determined by scintillation counting. (A) Dose response of phenformin, buformin and metformin; (B) Dose response of isotretinoin (13-cis RA), azithromycin and AICAR.

Controls are uninduced and induced with insulin plus T0901317. Values are plotted as mean ± SD compared to induced control (100%) of three independent

determinations; *denotes p < 0.05 compared to induced control.
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as a result, increased cellular lactate production, while 13-

cis-retinoic acid, azithromycin and AICAR had no effect

(Figure 3C and D).

Biguanide-Induced de novo Lipogenesis

Results from Synergism with Lipogenic

Activators at the Transcript Level
To determine if biguanides induced changes in lipogenic

gene transcript levels, primary sebocytes were treated with

biguanides in the presence or absence of 1 µM T0901317

for 48 hrs and qPCR analysis of selected mRNA per-

formed. SREBF1 mRNA transcript levels were increased

nearly 3-fold with T0901317 treatment, however, neither

biguanide significantly increased SREBF1 expression

beyond the level induced by the LXR agonist (Table 2).

In contrast, the addition of phenformin to T0901317 sig-

nificantly increased the expression levels of ACSS2,

ACLY and all lipogenesis genes. The addition of metfor-

min, however, only increased the expression levels of

ACSS2 and SCD, while slightly decreasing the expression

of HMGCR and SQLE. Phenformin and metformin

increased the expression of ACSS2 in the absence

of LXR induction even to a level higher than that of

T0901317 treatment alone. Additionally, the treatment of

cells with azithromycin and T0901317 significantly

increased FASN, SCD, SQLE and ACLY transcript levels.

All of these changes correlate with the results of the de

novo lipogenesis assays. 13-cis-retinoic acid, however,

significantly reduced the expression of all of the genes

except SCD and HMGCR after 48 hrs of treatment. Gene

expression markers of sebocyte differentiation were

assessed using these same samples. Phenformin, metfor-

min and retinoic acid shifted the gene expression pheno-

type towards the undifferentiated state as shown by

increasing KRT7 expression and decreasing MUC1

expression levels (Table 2). Phenformin was able to pro-

mote these changes in the absence of T0901317 treatment.

Azithromycin treatment unexpectedly upregulated the

expression levels of both KRT7 and MUC1.
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Figure 2 Biguanides induce a time dependent increase in de novo neutral lipid synthesis. Sebocytes from three donors in Scintiplates and culture plates were incubated

overnight (or 48 hrs) with T0901317 plus phenformin or metformin. Biguanides were reapplied with insulin plus T0901317 and [14C]-acetate for 4 hrs. Scintiplates were

analyzed as described previously. Culture plate sebocytes were harvested with trypsin/EDTA and lipid extracts prepared for liquid scintillation counting and TLC analysis of

lipid species. (A) [14C]-acetate incorporation induced by phenformin (Phen) using Scintiplate and lipid extraction assays. (B) TLC lipid species analysis: SQ-ChEst, squalene

and cholesterol esters; TG, triacylglycerols; DAG/Chol, diacylglycerols and cholesterol; PL, phospholipids. (C) Time course of Scintiplate assay. Values are mean ± SD of

three independent cultures. *p<0.05, **p<0.01, ***p<0.001.
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Discussion
Human primary sebocytes can be induced to stimulate

sebogenesis in culture and thereby provide a cell system

to dissect molecular mechanisms and identify sebogenesis

inhibitors as potential acne therapeutics.2,29,33,34 Several

methods of activation have been described, including the

addition of serum, lipids and small molecules. Our system

relies on using an LXR agonist, T0901317, combined with

insulin to stimulate sebogenesis.2 We have adapted

a scintillation proximity assay using 96-well Scintiplates
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Figure 3 Biguanides show AMPK-independent activity on S6-kinase, OCR and lactate production. Sebocytes were treated with phenformin (Phen), metformin (Met),

isotretinoin (13-cis RA), azithromycin (AZM), or AICAR for 16 hrs before preparing protein lysates for (A) phospho-AMPK and (B) phospho-S6RP ELISAs. Controls are

untreated (Unt-1% FBS), 10% FBS medium (Fed), and glucose starved. Values are mean ± SD of three independent determinations normalized to Unt. (C) Sebocytes were

incubated with treatments for 2 hrs prior to OCR analysis. Values are mean ± SD of three different donors in triplicate. (D) Sebocytes were treated for 24 hrs with insulin

plus T0901317 before lactate concentration determined in the conditioned medium. Values are mean ± SD of three different donors in triplicate. *p<0.05, **p<0.01

compared to untreated control.

Table 2 Gene Expression Changes in Primary Sebocytes After 48 hrs

Gene Uninduced Induced

Unt Phen Met Unt Phen Met 13-cis-RA AZM

SREBF1 0.36 ± 0.01** 0.35 ± 0 0.01** 0.35 ± 0.01** 1.00 ± 0.08 1.13 ± 0.11 0.86 ± 0.01 0.60 ± 0.10** 1.23 ± 0.12

ACSS2 1.27 ± 0.09* 2.06 ± 0.03** 1.93 ± 0.08** 1.00 ± 0.03 3.52 ± 0.52* 1.27 ± 0.05** 0.49 ± 0.06** 1.38 ± 0.21

FASN 0.70 ± 0.03* 0.79 ± 0.04* 0.76 ± 0.10* 1.00 ± 0.08 2.38 ± 0.35* 1.10 ± 0.12 0.44 ± 0.07** 1.71 ± 0.25*

SCD 0.40 ± 0.002** 0.56 ± 0.01** 0.47 ± 0.02** 1.00 ± 0.04 2.13 ± 0.10** 1.16 ± 0.03** 1.04 ± 0.08 1.67 ± 0.10**

HMGCR 1.34 ± 0.05** 1.30 ± 0.01** 1.27 ± 0.09* 1.00 ± 0.01 1.86 ± 0.15** 0.85 ± 0.03** 0.87 ± 0.09 1.02 ± 0.09

SQLE 1.40 ± 0.13* 1.24 ± 0.06** 1.21 ± 0.02** 1.00 ± 0.05 1.32 ± 0.05** 0.75 ± 0.03** 0.61 ± 0.06** 0.87 ± 0.04*

ACLY 1.10 ± 0.20 1.22 ± 0.02** 1.17 ± 0.05* 1.00 ± 0.05 2.50 ± 0.35* 0.96 ± 0.03 0.71 ± 0.09* 1.24 ± 0.08*

ACACA 0.82 ± 0.11 0.95 ± 0.08 0.84 ± 0.07* 1.00 ± 0.08 1.29 ± 0.09* 0.99 ± 0.04 0.79 ± 0.09* 1.37 ± 0.19

ELOVL6 1.12 ± 0.25 1.19 ± 0.01 1.18 ± 0.05* 1.00 ± 0.09 1.47 ± 0.08** 1.01 ± 0.06 0.83 ± 0.04* 1.33 ± 0.19

KRT7 0.75 ± 0.09* 1.37 ± 0.09** 1.15 ± 0.15 1.00 ± 0.04 1.51 ± 0.09** 1.23 ± 0.09* 8.56 ± 1.07** 2.66 ± 0.82*

MUC1 1.08 ± 0.26 0.71 ± 0.09* 0.88 ± 0.07 1.00 ± 0.08 0.58 ± 0.13* 0.67 ± 0.11* 0.50 ± 0.08** 3.64 ± 0.37**

Notes: Uninduced, treated 48 hrs in Sebocyte Treatment Medium; Induced, treated 48 hrs with 1 µM T0901317 in Sebocyte Treatment Medium. Values are relative gene

expression levels compared to induced control and shown as mean ± SD; *denotes p < 0.05 and **p<0.01 compared to induced control.

Abbreviations: Unt, untreated; Phen, 10 µM phenformin; Met, 1 mM metformin; 13-cis RA, 5 µM 13-cis-retinoic acid; AZM, 25 µM azithromycin.
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to monitor [14C]-acetate incorporation into newly synthe-

sized cellular lipids.30 This assay directly correlates with

a similar 96-well format using a butanol-based lipid

extraction method to specifically isolate neutral lipids for

quantification and lipid species analysis via TLC.2,32 In

these systems, phenformin, buformin and metformin cause

an acute increased flux of de novo lipogenesis in human

primary sebocytes that is dose and time dependent, and

show an increase in neutral lipid species by TLC. These

surprising results stand in stark contrast to previous reports

showing biguanide inhibition of LXR/SREBP lipogenic

signaling through activation of AMPK.35–37 Consistent

with those previous reports, we found that AICAR effec-

tively activated AMPK and inhibited lipogenesis in the

primary sebocyte assay. Biguanides, however, did not

activate AMPK in primary sebocytes, but did show

AMPK-independent inhibition of mitochondrial function

by reducing oxygen consumption, increased lactate pro-

duction and modest inhibition of S6-kinase possibly

through mTORC1 inhibition.38,39

Activation of LXR by T0901317 is known to increase

SREBP1-regulated genes necessary for increased lipogen-

esis, including FASN, SCD and ACACA.31,40 In human

primary sebocytes, T0901317 induced a 3-fold increase in

SREBF1 expression, leading to increased FASN and SCD

expression. Surprisingly, co-treatment with T0901317 and

phenformin further upregulated FASN, SCD, HMGCR,

SQLE and ACACA expression levels, which is consistent

with the increased de novo lipogenesis seen in the cell-

based assays. Unlike other acute sebogenic agonists, iso-

tretinoin and azithromycin, biguanides induced a large

increase in ACSS2, cytosolic acetyl-CoA synthetase, and

a modest increase in ACLY, ATP-citrate lyase, gene

expression on their own, which is enhanced by the addi-

tion of T0901317. Both enzymes regulate the level of

acetyl-CoA through metabolism of acetate or citrate pro-

viding the necessary building blocks for de novo lipogen-

esis. In the absence of a lipogenesis activator this likely

has little effect on sebogenesis. In fact we do not see an

increase in sebogenesis when cells are treated only with

biguanides. However, in the presence of lipogenic activa-

tors such as T0901317, there is a synergistic effect upre-

gulating several genes in the de novo lipogenesis pathway.

Several studies have also shown that metformin and

phenformin reduce TCA cycle intermediates and glucose-

derived citrate while increasing glucose-derived

lactate.41,42 These effects are mediated through biguanide

inhibition of mitochondrial complex 1 and reduction in

oxidative phosphorylation, forcing cells to utilize other

sources for fatty acid synthesis. Deficiency in respiration,

hypoxia or cancer transformation can force cells into gly-

colytic metabolism, increasing ACSS2, ACLY and FASN

to compensate for the loss of mitochondrial respiration and

capture pyruvate-derived acetyl-CoA as citrate for use in

addition to exogenous acetate for cytosolic fatty acid

synthesis.42,43 Biguanide inhibition of mitochondrial com-

plex 1 in human primary sebocytes reduces cellular

respiration and leads to a similar acute response to

increase de novo lipogenesis from acetate and citrate.

Over a longer time period it would be expected that the

reduced level of glucose-derived intermediates and oxida-

tive respiration would lead to a decrease in the overall

mass of neutral lipid synthesis as seen in other cell types.42

In support of the utility of biguanides to reduce sebocyte

maturation and differentiation, we noted a shift towards less

mature sebocytes after a 48 hr treatment with biguanides.

Metformin and phenformin significantly induced KRT7 and

decreasedMUC1 transcript levels, markers of undifferentiated

and mature sebocytes, respectively, indicating a trend towards

a less differentiated sebocyte population.44–46 Isotretinoin

demonstrated the most significant changes in these differentia-

tion markers, heavily favoring the undifferentiated state. This

is consistent with previous studies showing isotretinoin inhi-

biting sebogenesis by causing cell death and altering the sebo-

cyte populationmakeup towards the undifferentiated state.47,48

Azithromycin is known to stimulate lipogenesis inMeibomian

cells, which are sebocyte-like cells responsible for producing

lipids tomaintain tear-film stability.49,50 Azithromycin showed

a similar effect in human primary sebocytes, significantly

increasing acetate incorporation into lipids and lipogenic

gene transcripts. However, the antibiotic caused a significant

increase in both KRT7 andMUC1 transcript levels, suggesting

a possible increase in the early differentiation state and term-

inal sebocyte differentiation resulting in increased lipogenesis.

The role of metformin in improving whole body metabo-

lism is well established from its long history as a first-line

type 2 diabetes therapy.51–53 Through AMPK-dependent

and –independent mechanisms, metformin alters cellular

energy utilization to favor energy production over energy

utilization. However, most of the studies involving metfor-

min’s effects on fatty acid metabolism have been carried out

in hepatocytes, adipocytes or skeletal muscle cells and have

focused on long term effects and not on the acute effects of

biguanide treatment. Because metformin can improve insulin

resistance and prevent progression to impaired glucose
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tolerance, it is often prescribed off-label for PCOS patients

with hyperinsulinemia.54,55 In the absence of direct clinical

data, anecdotal reports by PCOS patients with severe acne

suggest that at the initiation of metformin treatment to

improve insulin resistance, some have suffered from acne

flare-up.56–60 However, after longer treatment and normal-

ization of metabolism, their acne improved. This response is

similar to the initiation of isotretinoin treatment and can

result in patients discontinuing treatment or reducing

compliance.8,9,11,61–63 To determine if metformin causes

a similar flare-up, it will be necessary to follow PCOS

patients beginning metformin treatment and assess sebum

production and acne severity in the early weeks of treatment.

Conclusion
Based on our in vitro results using human primary sebo-

cytes, we have identified an acute response to biguanide

treatment that might result in an acne flare-up in patients

starting metformin therapy, especially PCOS patients.

These patients with severe acne have high levels of lipo-

genic inducers, such as androgens and insulin, which cor-

relate to the induced state in our in vitro system. Adding

biguanides to such an induced system would be expected

to significantly increase acute sebogenesis by altering gene

expression to upregulate de novo lipogenesis, resulting in

more sebum production and the worsening of acne.
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