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Abstract: The prospect of growth of a railway system impacts both the network size and its occu-
pation. Due to the overloaded infrastructure, it is necessary to increase reliability by adopting fast
maintenance services to reach economic and security conditions. In this context, one major problem
is the excessive friction caused by the wheels. This contingency may cause ruptures with severe
consequences. While eddy’s current approaches are adequate to detect superficial damages in metal
structures, there are still open challenges concerning automatic identification of rail defects. Herein,
we propose an embedded system for online detection and location of rails defects based on eddy
current. Moreover, we propose a new method to interpret eddy current signals by analyzing their
wavelet transforms through a convolutional neural network. With this approach, the embedded
system locates and classifies different types of anomalies, enabling an optimization of the railway
maintenance plan. Field tests were performed, in which the rail anomalies were grouped in three
classes: squids, weld and joints. The results showed a classification efficiency of ~98%, surpassing
the most commonly used methods found in the literature.

Keywords: rail surface defects; eddy current; railway maintenance; rail grinding; wavelets; convolu-
tional neural network

1. Introduction

The railway is an essential and advantageous means of transport well consolidated in
several countries. They act in the supply of cargo and goods for various commercial and
production sectors and people’s transport. Nowadays, the degree of reliability in cargo
transportation is ever-increasing due to personal safety, preventing loss of assets, meeting
deadlines and reducing maintenance expenses. Furthermore, these factors have a direct
impact on the market competitiveness.

The expansion of the number of loads and the increase of the rails’ use causes acceler-
ation of the rails’ wear. This results in increased surface defects on the rails, altering the
balance of contact between the rail and the wheels and consequently cause accidents and
even derailment [1]. Accidents and severe damage can occur if the faults on the tracks are
not repaired. Therefore, the detection and maintenance of railway defects are paramount
issues in the operation of any railway system. Among all different areas, the literature
shows an increasing number of works [1–4] that seek to improve maintenance stages by
assigning reliability and logistics. With the development of research and new tools to assist
in the railway system’s logistics and operation stages, the corrective maintenance steps
have been replacing by preventive maintenance steps.

The rails are responsible for sustaining large loads, which results in structural wear.
The defects can be worn-out rails, joint and weld problems, internal structural defects,
corrugations and rolling contact fatigue (RCF) [1,5]. The RCF have various intensities, such
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as surface cracks, head checks, squats, spalling and shellings. Head checks are small thin
cracks with a few millimeters; spalling or flacking is a degradation of the running part of
the rail, usually associated with areas of high contact stress; and shelling occurs when parts
of the gauge or the top rail are broken.

These types of defects are usually repaired through the rail grinding process, in some
cases, by welding or replacing severely damaged sections [1,5]. Rail grinding is the method
of roughing the rail using a machine with a certain number of grinding wheels, which
removes the rails’ defects by removing metal from the surface. It is applied to restore the
profile and remove irregularities from worn rails, prolonging its lifespan [5]. The critical
point in the maintenance process is the determination of the ideal moment to perform the
interventions, intensity and sections of the track.

The previous knowledge of the regions where the rails are worn and the type of wear
that it possesses confers a significant advance in the maintenance process’s performance.
This work presents a new method for detection and classification of the superficial defects
of the rails. The method proposes an Eddy Current (EC) and wavelet-based tool to provide
information on maintenance process planning and guidelines for the grinding stage.

Traditionally, the detection and classification of such problems are done manually.
The specialized operators traverse the tracks seeking to visually identify the points with
defects and classify the occurrences according to their experience. This realization leads to
high costs and excessive time demand and does not produce a well-structured diagnostic.
A mapping of the rails with the identification of the positions and more detailed faults
provides a very relevant improvement to the maintenance process.

In the literature, there are some proposals that seek to assist in this activity. Different
sensors are applied to track fault detection, such as EC-based, ultrasound, image processing
and more. Moreover, different processing techniques, type of defect detected and classified
intensity of failures, besides the application’s purpose can be found in the literature.

The work in [6] presents a system to detect squats on rails based on a device that
monitors the train wheel’s oscillation frequency. In it, the sensor should be installed directly
on the service trains. It uses wavelet power Spectrum in Frequencies between 1060 and
1160 Hz and a simple threshold for squat identification. This work is limited to squats
detection for preventive maintenance.

Image processing is also applied in the field, as shown in [7]. This work presents
an intelligent vision detection system, seeking image enhancement through nonlinear
processing that improves illumination of the capture scene. Other applications based on
track image analysis to identify surface defects can be seen in [8–10]. In [11], it is proposed
a method to surface reconstruction of the rail from a 3D laser. It compares the reading
profile with a pattern, and the points with large deviations are indicated as possible defects.

In [12], the authors present a method for detecting specific defects in welds to eliminate
the hidden risk of breakage, making it possible to evaluate the welding step through
parasitic current use. The presence of a defect is detected by applying a threshold in the
evaluated signal. In this study, four types of welds anomalies are defined beyond the
standard sample. The technique applied in detection and classification is the combination
of Continuous Wavelet Transform (CWT) and Convolutional Neural Network (CNN). Two
steps of this technique are used to detect the presence of the anomaly and perform its
classification. This report does not detail how the sampling process was performed, and its
application is aimed at welding analysis only.

In [13], the author used signals from accelerometers installed on the train to capture
irregularities in the tracks, particularly in this case, 34 squat samples were collected and
later analyzed using the wavelet transform. This method allows the identification and
classification of this type of RCF with a prediction accuracy of 88.2%. The author did not
detail the algorithm used, but it is possible to notice the application of prediction methods
through wavelet transform in RCF signals.

In [14], the authors use a 16-channel matrix eddy current inspection device to inspect
head check and shelling defects. Samples with known width and depth were used to
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calibrate the probes and elucidate the depth through the correlation with the phase of the
eddy current signal obtained by the probes divided into real and imaginary parts. After
equalizing the correlation, the 2D signal was compared to 3D signals, and an accuracy
of + or −1 mm was proven. In this article, the author does not mention details of the
algorithm used in the comparison but shows the potential of using eddy current as a
potential solution for problems of this nature.

As mentioned above, this work presents a new embedded system capable of detection,
location, and classification of rail surface anomalies along the track. It makes use of an EC
as the base sensor, nonlinear filtering for online event detection, and CWT and CNN to
perform the classification. The main novelties of this work are the embedded system for
online detection and location of rails defects, and the automatic classification of the EC
acquired signals based on CNN combined with Wavelet Power Spectrum (WPS). Although
the application of metal surface wear detection through eddy current probes is widely
used as a non-destructive method, the proposed embedded system is capable of automatic
detection, location, and classification of rail surface anomalies, going a step further in
preventive rail maintenance. Moreover, while recent works propose the use of wavelet
transform combined with deep neural networks to process images of the rail surface, the
proposed work relies on the EC acquired signal to keep the capability to detect and classify
anomalies that are not visible.

The rest of this paper is organized as follows. In Section 2, the basic concepts of the
types of rail defects and the maintenance procedures are presented. Section 3 presents the
proposed method for detection and classification of rail surface defects. The implemented
system and the field test performed to validate the proposed method are presented in
Section 4. In Section 5, a discussion about the field test result is presented. The conclusions
of this paper are given in Section 6.

2. Rail Surface Defects

The effective maintenance of a railway line’s components provides safety and elimi-
nates wear and imperfections that can lead to accidents [1]. Railway operation requires
efficient planning for maintenance. Process optimization for assessing the operational
conditions of rails and locomotives is vital. In this way, all the tools that help evaluate
rail’s defects and rolling stock are fundamental. Therefore, any technique or procedure that
enables the identification and mapping of defects provides advances for railway safety and
operation.

The accidents have been decreasing sharply due to the railway structure components
practical inspection and maintenance components such as rail lubrication and rectifica-
tion [15]. The work in [15] presents a general analysis regarding defects and their conse-
quences on the railway. It shows that the costs caused by railway problems and accidents
have decreased consistently due to the increased inspection process. Reducing costs associ-
ated with the inspection and maintenance processes is a challenge for the operation of the
railway system. It can be achieved by improving tools and developing technologies that
improve process performance. Another piece of essential information is provided in [15],
which describes tooling in the structuring of problems currently requiring more resources
and time. He points out that RCF problems are the primary focus on the maintenance
process due to the increasing demand for railway work, which results in increased speed,
loads and traffic density.

Squats is the name of RCF ’s defects starter on the rail surface. It is caused by a
combination of high normal and tangential stresses between the wheel and the rail, which
cause strong shear of the surface layer of the rail and fatigue or exhaustion of the material’s
ductility [15].

In this work, three structural classes are considered to be detected and classified by
the proposed method. Figure 1 shows the squat type defects along with welds and joint
joints between rails. The latter two are not superficial defects but may generate false alarms
in the detection process. Therefore, they were included as identification patterns enabling
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the respective characteristic. Besides, the mapping of points containing welds and joints
allows the track’s maintenance to be improved.

Figure 1. Types of anomalies considered.

Some characteristics of each of the classes evaluated by the method are given below to
allow their identification.

2.1. Squat

It appears appear predominantly occurs in flat areas of the rail surface [1]. This crack
grows progressively, branching horizontally below the bearing surface, separating it from
the rail body. They are categorized according to the severity of the defect as follows: mild
multiple gauge corner, moderate/medium running, severe/large running surface, severe
and very severe/large multiple running surfaces.

2.2. Weld

Welding produces a weak point susceptible to irregularities, and it is present in the
construction stage and the maintenance of rails. In the assembly of a new line, the joining of
some rails is done by welding. Now, the maintenance step uses this process when replacing
the railings.

2.3. Joint

Joints can be insulated or dried in order to avoid fractures due to rail expansion.
They can perform electrical isolation between successive sections of the rail called the
track circuit (TC) [16]. TC scans are used in the train detection process and in signaling
control. Therefore, the mapping of these structures is of great importance for the track’s
maintenance and management.

2.4. Maintenance—Rail Grinding

As stated in [5], grinding consists of intentional wear on the maintenance teams’ tracks.
This practice aims to prevent the progress of surface wear caused by the rail wheel contact.
They are divided into three instances: corrective, preventive and cyclic.

The grinding process is vital and guarantees good contact between the tracks and
wheels. It is a slow procedure and requires the interruption of traffic requiring many hours
of work and often excessive wear of the ways. Therefore, the mapping carried out by
identifying the sections with defects adds the characterization of the wear intensity, thus
allowing a gain of performance in the rail grinding process. Targeting through defect
mapping would result in lower losses, higher productivity and longer rail life.

3. Proposed Method for Detection, Location and Classification of Rail Surface Defects

The proposed system aims to detect, classify and map the defects on the track’s surface.
It brings structural information from the railway surface line that allows workers to carry
out maintenance processes in the most efficient way. Therefore, it allows the elaboration of
a schedule to perform the repair operations, evaluating the best way of acting is possible.

Figure 2 shows a diagram with the integration of the Rail Surface Defect Verification
System (RSDVS) components into the inspection vehicle. In it are installed the mechanical
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structure to fix the probes that perform the reading of the surface of the rail, a computer
for the control and processing of data, a Global Positioning System (GPS) with positioning
system for evaluating the positioning to capture the coordinates of the defects and a camera
system to make acquisitions of the tracks and allow to check the detected defects.

Laptop

Eddy 
Current

Probe Fixer

GPS

Rail Surface Defect Verification System

Inspection Vehicle

Antenna GPS

USB Cable

Antenna Cable Image 
Capture

Figure 2. Rail surface defect verification system diagram.

Figure 3 shows details of the proposed system, where the inspection vehicle is
equipped with RSDVS. On the left, it can be seen the camera installed on the top and two
probes that perform the analysis through the EC. In the middle, it is possible to observe
the probe attachment trolley. A detailed view of the attachment trolley can be seen on the
right. These EC probes are fixed at a distance of ~2 mm from the rail surface.

Figure 3. Probes installed in the inspection vehicle. (a) The camera and the two probes installed.
(b) The probe attachment trolley. (c) A detailed view of the trolley.

Figure 4 illustrates the process in which a railroad vehicle travels along the track
searching for defects. The proposed system identifies the rail defect, informs the operator,
stores the data and its geographic coordinates and acquires an image from the rails.

Zoom

Test vehicle

Region with surficial defect in the rail

Figure 4. Vehicle track monitoring process illustration.

3.1. Rail Surface Defect Verification System

The proposed system aims to map the track’s defects through the identification of the
regions with squats. Moreover, the knowledge of the points containing welds and joints
on the railway line allows distinguishing between squats, adding important information
for the track management and maintenance. To make this possible, the system must
periodically monitor long stretches of the track.
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On the railway, maintenance vehicles are widely used in various types of applications.
Therefore, the proposed system was designed to be embedded into such vehicles.

The proposed system stores the signal from the EC probes, the vehicle route, the
geographic coordinates and images of the detected rail defects.

Figure 5 shows a diagram illustrating the steps taken to analyze the rail’s surface
and map the faulty points. In general, the vehicle travels the section under analysis with
constant speed between 5 and 30 km/h. The recommendation is the use of lower speed to
decrease noise due to trepidation. Initially, the signal undergoes an adjustment to remove
the baseline fluctuation. Nonlinear filtering is applied to remove noise and a threshold is
applied to detect and locate the rail defects. The GPS stores the route information during
the inspection and the coordinates of the located fault. These steps take place on-line
during the rail inspection. Later, the classification of the type of surface defect is performed
offline. In this step, windows of the filtered signal with the detected defects are selected.
After that, the CWT is applied to the selected window. Finally, the CWT image feeds a
CNN for rails defect classification.

After the inspection, a report is generated, which will be used later for rail maintenance,
knowing the location and type of defect. In this way, it is possible to determine the amount
of rail that should be roughed, acting more precisely.

Offset
Spikes filtering
Heaviside filtering
Threshold

Signal Processing

Extraction
CWT

Signal Window

CNN

Cassification

Signal Acquisition
GPS coordinates
Image capture

Rail Inspection

GPS coordinates
Defect Type
Intensity
Defect Image

Report

Figure 5. Step diagram for detecting surface defects on rails.

The EC signal is acquired with a sampling rate of 7.5 kHz, where the frequency of the
injected sinusoidal signal is 50 kHz. The EC equipment used allows generating signals in
the frequency range from 20 Hz to 20 MHz. The GPS has an acquisition rate of 5 Hz, which
is sufficient to map the entire trajectory.

3.2. Continuous Wavelet Transform

Spectral analysis of a stationary signal can be performed by Fourier transform (FT) [17].
The frequency content of these signals are not time-dependent. Conversely, the CWT
produces a high-resolution time-frequency analysis. Therefore, the CWT can be used to
analyze the non-stationary signal.

The CWT is a time-frequency transform, where the evaluated function is multiplied
by a set of shifting and scaling functions [18,19]. It is a linear integral transform that can be
used to explore non-stationary signals characteristics, being useful to extract information
of variations in specific frequency bands, and to detect local structures. For a given signal,
its integral transform is defined as

wψ
f (a, τ) =

1√
a

∞∫
−∞

f (t)ψ ∗
(

t− τ

a

)
dt, (1)

where wψ
f (a, τ) are the wavelet coefficients; a is a scaling factor, (a > 0); f (t) is the analyzed

signal; ∗ indicates a complex conjugate; ψ(t) a mother wavelet; and τ is a continuous
variable and t sampling time of the analyzed signal.

The FT characterizes a signal from a series of sine waves with distinct frequencies.
The CWT uses wavelet functions, which are small signals with different scales and located
in time. The wavelet function and CWT are usually complex, having a real and imaginary
part that can be represented as magnitude and phase [20]. The WPS allows you to describe
the intensity of the energy contained in each frequency as shown:
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WPS =
∣∣∣Wψ

x (a, τ)
∣∣∣2. (2)

where WPS is power spectrum of wavelet transform.
Equation (3) presents the complex Morlet wavelet that was used in this work. There-

fore, applying the CWT method is informed as inputs the signal to be evaluated, mother
wavelet ψ(t) and the range of scales. A vector containing 511 elements starting at 1 with a
unit step up to 512 was employed as the scale applied in the wavelet.

ψ(t) =
1√
πB

exp−
(

t2
B

)
exp(2jπCt), (3)

where B is the bandwidth and C is the center frequency.

3.3. Convolutional Neural Network

A convolutional neural network is a select type of multilayer neural networks [21]. It
has high capacity to recognize existing patterns in images, where little computational effort
is required to treat pixels. It is robust and can recognize patterns with significant variability,
even with distortions and geometric transformations [22]. Therefore, it configures an
excellent tool to characterize the patterns transcribed by the frequency spectrum generated
by CWT scalogram.

Figure 6 shows an illustration of the architecture of a CNN. It works similarly to
a classical Multi-Layer Perceptron (MLP) network, where the layers contain models of
neurons [23]. The initial layers have extracting features, being commonly called feature
maps. Convolution is a linear process and allows the extraction of relevant information
to the classification. The subsampling layer (pooling) spatially reduces the data size by
maintaining the dominant characteristics that are invariant. The pooling layer reduces
the computational effort, which is specially important for the training process. The final
layer performs the classification. It uses the features extracted from the image as inputs
to identify patterns. The definition of parameters during a CNN project follows: kernel
dimension, how borders are processed; step size in convolution; and kernel quantity and
type [21].

Image

Convolution: 3x3
MaxPolling: 3x3
Dropout: 0.25

Convolution: 3x3
MaxPolling: 2x2
Dropout: 0.25

Convolution: 3x3
MaxPolling: 2x2
Dropout: 0.25

Neural Network

32x32x3

32x32x32
16x16x32

8x8x32
2048

512

Convolution Neural Network

Squat

Weld

Joint

Figure 6. Architecture diagram of a convolutional neural network.

The CNN architecture implemented for RSDVS receives the scalogram generated
through CWT as the input image. The images are resized to 32 × 32 pixels and separated
into three layers of Red Green Blue (RGB) colors (an acronym for the additive color
system combining Red, Green and Blue). The feature extraction stage occurs through two
convolution sequences followed by subsampling. Thirty-two filters are used in the first
convolution stage. After, the obtained characteristics feeds the inputs of the classification
network. It generates a 512 length vector that serves as input for the classification step.

In Section 4, the data acquisition process is detailed, as well as the training and
validation steps of the proposed method.
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4. Method Validation

To validate the proposed method of detecting and identifying surface defects on the
tracks, a series of field trials were carried out on the MRS Logística railway (company
that has the railway concession in southeast region of Brazil). The device to attach the
EC sensors to the proposed inspection vehicle in the RSDVS can be removed and used
manually. EC acquisitions were performed manually to ensure enough statistic and to
enable previously identification of the rail defects by experts. Note that the EC coupling
with the rail was kept the same as in the vehicle, which contributes to maintain similar
signal behaviour for both acquisitions.

Figure 7 shows two examples of EC acquired signals with a sampling frequency of
7.5 kHz. The vehicle acquired signal can be seen on the bottom, and the one acquired
manually can be seen on the top. Due to the higher velocity of the vehicle in comparison
with the manual acquisition, the number of samples is 5 times smaller than the manual
acquisition for approximately the same rail length, but the signal behaviour is similar
for both acquisitions, showing that the manual acquisition can be used without loss of
generality to design and validate the offline classification method. The data set used in this
work is available in [24].
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Manual acquisition

Figure 7. Comparison between manual (top) and vehicle acquisition (bottom). The signal behaviour
is the similar for both acquisitions.

Table 1 shows the total number of samples acquired for each type of anomaly, which
was used to design and validate the method. The data was split in two sets—training and
validation—following the proportion of 75% for training and 25% for validation.

Table 1. Data set separation.

Type Total Samples Total Validation

Squat 939 227
Joint 954 242
Weld 955 243

The samples were collected at different points of the railway. Small stretches were
covered on the track, containing the evaluated defects. Therefore, it was possible to
characterize visually the signals referring to the respective defects and those regions of the
rails in normal conditions.

4.1. Defect Detection and Location

The embedded system for online detection and localization of rails defects based on
EC signals were evaluated in field tests and will be detailed described in this section.

The first step of the signal defect detection and localization is the signal filtering,
aiming to remove noise. Due to the probe coupling with the rail (see Figure 3), it is normal
to have noise in the readings due to vibrations and electromagnetic interference.
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The noise called spikes is prevalent in the signal. A spike is an impulsive noise
consisting of narrow peaks with relatively high amplitude [25] that can be caused by
several sources of interference [26]. Figure 8 presents a sample of an acquired EC signal
with spikes.
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(b) Noise type Heaviside function.

Figura 1: Noise analysis.

1

Figure 8. Example of spikes. The acquired signal can be seen in black and the filtered signal in red.

Another kind of noise that can be found in the acquired signal is similar to a high-
amplitude step and can be seen in Figure 9. This kind of noise can be modeled by a
Heaviside function [27] and consists of a sudden elevation in the signal level due to the EC
sensor probe trepidation.

3.91 3.915 3.92 3.925 3.93 3.935
x 10

5

−150

−100

−50

0

50

100

Sample

A
m

pl
itu

de

 

 

Signal
Filters
Hit

NOISE

(a) Noise type spike.
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Figura 1: Noise analysis.

1

Figure 9. Example of Heaviside noise. The acquired signal can be seen in black and the filtered signal
in red.

In order to remove the spikes from the acquired signal, a median filter was used [28].
The median filter is simple but very powerful. It scans the signal with a sliding window of
a given size and its output is the median of the neighboring samples inside the window. In
this work, the size of the filter window was determined empirically using the training data
set. The selected window size was 21, which is enough to remove the spikes, preserving
the remaining signal characteristics. Figure 8 shows an example of the application of the
median filter in a sample of the signal corrupted by spikes. The acquired signal can be seen
in black and the filtered signal in red.

After the removal of the spikes using the median filter, the signal is still corrupted by
the Heaviside noise. Therefore, further processing is required. Due to the abrupt transitions
of the Heaviside noise, it is possible to identify this region using the first derivative. The
pair of peak points in the derivative allows its localization. Once the region with Heaviside
noise is located, the samples are replaced by zero. Figure 10 illustrates the application of
the technique, where the acquired signal is depicted in black, the derivative in blue and the
filtered signal in red.
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Figure 10. Heaviside noise filtering process. The acquired signal is depicted in black, the derivative
in blue and the filtered signal in red.

Figure 11 shows a signal fragment of ~134 s long (7.5 kHz sampling rate), envisaging
to illustrate the online defect detection and localization process. In the top plot, we can see
the acquired signal depicted in black, the filtered signal in red and blue circles indicating
the detected defects. The horizontal axis indicates the sample number. The bottom plots are
zooming versions of the signal, around sample 3994, in order to enhance visualization. On
the right plot, the blue circle indicates the location of the GPS stamp. As already mentioned,
the first step of the online detection is the signal offset removal, followed by the application
of the median filter and the Heaviside filter. Finally, after the noise removal, the signal
amplitude is compared with a pre-selected threshold. In this work, the threshold level was
50 counts, based on the training data set.
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Figure 11. An example of the rail surface detection process. On the top, we can see a signal fragment
of about 134 s long sampled at 7.5 kHz, where the horizontal axis indicates the sample number.
The bottom plots are zooming versions of the signal. On the right plot, the blue circle indicates the
location of the GPS stamp.

After the online defect detection, a window with a predetermined width is selected
around the detection point. These signal windows are further processed by the CWT and
then classified by the CNN. A window with 2000 samples was chosen based on the signal
characteristics of the training data set.

4.2. Classification

The classification process begins with the window of the detected signals. The WPS
is computed and used as input of the CNN. The WPS image is processed by the CNN as
illustrated by the diagram shown in Figure 6. At the end of the CNN processing, the signal
is classified as squat, weld or joint, the three classes considered in this work.
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Figure 12 shows samples of the three classes divided into three columns. From top to
bottom pictures of the anomalies, the mean of the EC acquired signal over the training data
set and the WPS of the mean signal can be seen. Differences between the mean signal and
WPS image for each type of anomaly can be noted, indicating that it is possible to identify
the different classes based on the EC acquired signal, although this is not true for all events
in the data set. Therefore, a machine learning approach for classification is justified.
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Figure 12. Characteristics of the anomalies considered in this work: squat (left), joint (middle) and
weld (right). From top to bottom: picture of the anomaly, the EC acquired signal mean over the
training data set and the WPS of the mean signal.

Figure 13 presents the learning curves for CNN training and validation. It shows
the model’s performance in this process over time. In addition to the performance in
the learning stage, curves allow assessing whether the separate data sets for training
and validation are adequately structured [29]. In Figure 13a, the metric evaluated seeks
to minimize losses or errors during the training and validation process. In this form
of performance evaluation, learning is obtained by reaching the value near to zero on
the vertical axis. Figure 13b shows that the learning process is evaluated by measuring
accuracy in performing the classification. Therefore, reaching values near one indicates the
effectiveness of the learning process. On both plots, it can be seen that the CNN learning
curves were concluded around epoch 30.
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Figure 13. CNN loss (a) and accuracy (b) per epoch.

The validation data set, as presented in Table 1, is processed by the trained CNN,
and Figure 14 shows the confusion matrix for validation data set. The confusion matrix
consists of a way to evaluate the performance of the classification process [30], where the
vertical axis represents the label of a sample, while the horizontal axis the label predicted
by the model. It can be seen only one error for joints, which was incorrectly assigned as
weld; eight mistakes for welds, one assigned as a joint and seven as squats; and only two
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mistakes were found for squats, that were assigned as welds. The overall performance
achieved was ~98%.
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Figure 14. Classification confusion matrix.

4.3. Comparison with Other Methods

A comparison with other classification methods commonly found on the literature
is carried out in this section. The following methods were considered: Logistic Regres-
sion, Nearest Neighbors, Decision Tree, Extra Trees, Random Forest, MLP, Adaboost and
Quadratic discriminant analysis (QDA).

Figure 15 shows the classifiers’ overall performance. It can be seen that the proposed
CNN presented the best result, with an accuracy of ~98%.
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Figure 15. Classifiers’ accuracy comparison.

Figure 16 presents the classifiers’ precision. Again, the proposed CNN presented the
highest precision among all classifiers. Therefore, we can expect better generalization for
the CNN.
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Figure 16. Classifiers’ precision comparison.

Finally, the confusion matrix for each method can be seen in Figure 17.
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Figure 17. Classifiers’ confusion matrix.

Among the evaluated classifiers, the proposed CNN presented better overall perfor-
mance and generalization capability.

5. Discussion

Note that the proposed embedded system and method were evaluated in field tests,
going one step further to the works found on the literature, based on eddy current [6,12,31].
Moreover, the proposed CNN combined with WPS as preprocessing tool presented better
accuracy and precision in comparison with other methods.

This solution applies to the studied problem, automatically solving defects detection
proposed here and increasing the productivity of the field activity. As limitations, the
method presents the need to train a CNN to classify the types of failure demands obtaining
the respective characteristic signals of each type of failure evaluated. These signals are
obtained from tests performed on the tracks. In regions with large extensions of tunnels, it
can be challenging to obtain the geographical coordinates of the route and the points where
surface defects are detected. This interference can be minimized by estimating coordinates
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by applying Kalman filters [32,33], and additionally including the Inertial Navigation
System (INS) [34,35] combined with the GPS reading.

The probe is equipped with only one channel, where the respective sensor covers the
entire surface of the track. More channels could better detail the profile, facilitating the
identification of RCF.

Due to practical limitations related to the availability of the railway and service
vehicles, it was very difficult to acquire large data sets and other types rail surface anomalies.
Therefore, some further steps can still be done:

• improve the probe coupling with the rail, envisaging to improve flexibility;
• evaluate the proposed method for other types of rail surface anomalies; and
• estimate the rail surface anomaly intensity, based on the EC behaviour.

6. Conclusions

This work presented an embedded system to detect and identify surface rail defects.
The mapping of the surface defects on the rails can aid the maintenance process and
improve its performance, whereas the defect points and type are known. Thus, the grinding
process of the rails acts only in the regions with defects, and the maintenance process can
be carried out through the defects’ map which avoids unnecessary wear, increasing the
useful life time of the rails. Moreover, the maintenance process can be carried out quickly,
decreasing the railway line blocking time.

The proposed system can be easily embedded in any railway line inspection vehicles.
The components are robust and easy to operate. The inspection routine performed by the
system allows periodic evaluation with great agility.

The mapping of the inspection trajectory and the identified points are performed by a
GPS, which helps in the maintenance process in the case of the squat defect and identifies
points with joints and welds along the track. Additionally, the detection process captures
images of the track during the inspection, which can be used to allow visual identification
of defects or further processing.

The results from the field tests showed that the proposed method for rail defect
classification, a CNN combined with WPS, showed better performance when compared
with several other methods found on the literature.

Finally, the new embedded system assists the maintenance process of the railway
tracks and allows the location and identification of surface defects on rails, adding speed
to the grinding process, reducing losses and increasing the useful life of the rails.
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