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Abstract

Formation of large protein fibrils with a characteristic cross b-sheet architecture is the key indicator for a wide variety of
systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates,
transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time,
amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric
intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or
oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but
also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white
lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and
dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers
switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually,
disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of
net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from
monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among
individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive
charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge
screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states
can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates
emerging along the monomeric vs. oligomeric assembly path.
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Introduction

Deposits of insoluble protein fibrils with cross b-sheet structure

are the molecular hallmark of an increasing number of human

disorders, including Alzheimer’s disease, Parkinson’s diseases and

type II diabetes [1,2,3,4,5]. Oligomeric intermediates, transiently

formed during fibril assembly, are consistently implicated as main

culprits responsible for cellular toxicity of both neuropathetic and

systemic forms of amyloidoses [6,7,8]. At the same time, amyloid

polymerization can proceed along multiple assembly pathways, not

all of which give rise to oligomeric intermediates [9,10,11,12]. Fibril

assembly of b2-microglobulin, for example, can yield "worm-like",

"rod-like" or "long straight" intermediates [12]. Different aggrega-

tion intermediates during amyloid polymerization have been

documented, as well, for amyloid-b [9,11], human serum albumin

[13] or the yeast prion Sup-35 NM [14]. Given the significance of

oligomeric intermediates to amyloid toxicity, it is important to

elucidate the protein and solution attributes regulating fibril

assembly pathways. Exposing these mechanisms will not only

improve our basic understanding of amyloid fibril self assembly but

could help devise new treatment strategies by directing amyloid

formation towards non-toxic assembly pathways.

The wide variety of structurally and functionally unrelated

proteins that can condense into amyloid fibrils with a common b-

sheet structure has led to the suggestion that amyloid fibril

formation might be driven more by the generic physical chemistry

of polypeptide chains than the specific biochemical and structural

details of amyloid proteins [15]. However, it is not clear yet what

the relevant biophysical parameters might be. Research on phase

separation during protein crystallization suggests one such possible

parameter: the "potential of net force". This ‘‘potential of net

force’’ represents the average of all (repulsive and attractive)

intermolecular interactions among the monomers while they are

rapidly tumbling in solution. Solution conditions favorable for

protein crystal growth are characterized by a narrow range of

negative values, indicating weak net attraction, prevailing under

these conditions [16,17,18,19,20]. Hence, we wondered whether

changes in fibril assembly pathways could be correlated to the

potential of net force. Yet, we are not aware of any systematic

efforts at evaluating the prevailing intermolecular interactions

among amyloidogenic proteins under conditions leading to

amyloid fibril growth. We were also intrigued by the observation

that many in vitro assays of fibril formation with native proteins

involved highly acidic solution conditions. Under these conditions
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many proteins become highly charged. For example, lysozyme

monomers carry a positive net charge which can reach +15e at

pH = 2.0 [21,22]. Hence, we wanted to determine what role non-

specific charge interactions among the partially denatured

monomers played during the assembly of amyloid fibrils.

To investigate these questions, we studied in vitro amyloid fibril

formation by the small enzyme hen egg white lysozyme. There are

multiple reasons why lysozyme is a favorable system to investigate

these correlations. Human mutants of lysozyme are among the

growing class of natively folded proteins implicated in organ-

specific or systemic forms of amyloidoses [23,24]. The disease-

related lysozyme mutants are structurally nearly identical to their

native counterpart while their thermal stability is reduced [25].

Finally, amyloid fibrils formed by disease mutants are morpho-

logically as well as structurally indistinguishable from those formed

by native lysozyme under a wide variety of solution conditions

[26]. Hence, results obtained with native lysozyme are likely to be

directly applicable to their disease-related mutants. We investigat-

ed lysozyme fibril formation at pH = 2.0 and T = 50uC [27,28,29].

Under these conditions, dynamic light scattering (DLS) and atomic

force microscopy (AFM) can detect and resolve all intermediates

along different aggregation pathways while assembly proceeds at a

sufficiently fast rate to perform the numerous experiments

required for this study.

We characterized the nucleation and growth kinetics of

lysozyme fibrils under conditions of increasing charge screening

(increasing salt concentrations) using DLS and correlated AFM

[28]. Characterizing the morphologies and physical dimensions of

intermediates emerging during the assembly process permitted us

to distinguish among different assembly pathways. Using CD

spectroscopy we monitored whether changes in observed assembly

pathways were related to modifications in the residual structure of

the denatured protein or to shifts in denaturation temperature.

The character and strength of the net intermolecular interactions

among the lysozyme monomers under our growth conditions was

quantified using static light scattering (SLS).

Results

Lysozyme Fibril Growth at Low Salt Concentrations: Self-
assembly via Monomeric Filaments

We determined the nucleation and growth kinetics of lysozyme

amyloid fibrils grown at different concentrations of sodium

chloride by combining DLS with correlated AFM [28]. Below

150 mM fibril assembly kinetics was characterized by extended lag

periods lasting multiple days (Fig. 1A, left two panels). Throughout

the lag period, only particles with physical dimensions and overall

volumes matching monomeric lysozyme were detected in AFM

microscopy (Fig. 1B and C, top row and Table 1). During this pre-

nucleation period, the shapes of monomers observed with AFM

imaging became slightly more elongated and flattened, and their

apparent affinity for the mica surface increased (Fig. 1B, top, two

left panels). Yet, their overall volume clearly identified them as

lysozyme monomers (Table 1). After multiple days of incubation, a

nucleation event resulted in the near-simultaneous emergence of

not one but two aggregate populations with distinctly different

hydrodynamic radii. The new aggregate peaks were centered at

hydrodynamic radii of around 30 and 300 nm, respectively

(Fig. 1A, second panel). AFM images of aliquots removed during

DLS measurements indicated that the nucleation event corre-

sponded to the formation of stiff, rod-like polymers (Fig. 1B, top

row, panel 3&4).

The two polymeric filament species emerging after nucleation

had cross-sectional areas that were indistinguishable from one

another and from the monomers present during the latency period

(Table 1). Therefore, we labeled these two populations of

nucleating polymers short and long monomeric filaments (MF-S

and MF-L), respectively. At the late stages of the incubation

period, a third population of thicker fibers appeared in the AFM

images without leaving a distinct signature in the DLS signals. The

cross-sectional area of these mature fibrils was close to three times

that of the monomeric filaments (Fig. 1C, top panel). This suggests

that mature fibrils were assembled via intermolecular crosslinking

of three monomeric filaments. Overall, the above observations

indicate that, at low salt concentrations, amyloid fibril assembly

involves the near-simultaneous nucleation of two filament

populations of different length. Their cross-sections identified

them as linear assemblies of monomers. These monomeric

filaments eventually further cross-assembled into thicker, mature

fibrils composed of three filaments.

We further investigated the near-simultaneous nucleation of two

aggregate species indicated by DLS. The inversion of DLS

correlation functions into aggregate peaks can sometimes introduce

spurious peaks. However, analysis of the length distributions for

these polymers seen in AFM also yielded a bimodal peak

distribution. For a more quantitative comparison of AFM with

DLS results we further determined the hydrodynamic radii

corresponding to the near-cylindrical filaments seen in AFM

(Fig. 1B) using established theoretical predictions [30,31]. Overall,

both DLS and AFM do indicate two distinct aggregate peaks with

comparable ranges of hydrodynamic radii (Fig. 2). The noticeable

difference in the relative peak amplitudes for short vs. long filaments

derived from DLS vs. AFM is consistent with the dramatic increase

in the sensitivity of DLS for larger aggregates and differences in

surface affinity for short vs. long fibers to the mica surfaces used for

AFM imaging. Finally, the near-constant values for the hydrody-

namic radii vs. time for the polymer peaks (Fig. 1A, panel 2) deserve

comment. They might result from intrinsic slow growth combined

with the insensitivity of the hydrodynamic radius to increases in

cylinder length. We prefer the interpretation, instead, that these

intermediates exist in a narrow size range, with growth not

proceeding via monomer addition but via assembly of these

preformed ‘‘building blocks’’ into higher-order structures.

Lysozyme Fibril Growth at Intermediate Salt
Concentrations: Self Assembly via Oligomeric
Intermediates

A distinctly different nucleation and growth pattern was observed

at salt concentrations between 150 mM and 350 mM. Lag periods

prior to nucleation were shortened from days to a few hours (Fig. 1A,

two right panels). DLS measurements still yielded a prominent

nucleation event, but only a single new aggregate peak emerged.

The initial hydrodynamic radius of these nuclei was around 20–

30 nm and grew steadily to about 50 nm within the following

24 hours. The overall width of the nucleated aggregate distribution

increased in unison with the hydrodynamic radius. AFM analysis of

aggregate morphologies in this regime indicated an assembly

pathway distinctly different from that observed at low salt

concentrations (Fig. 1B and C, bottom row). Even during the lag

period, AFM images revealed the formation of compact oligomeric

intermediates. These oligomers had the shape of oblate ellipsoids

and were characterized by a tight distribution of physical

dimensions [28]. Based on the ellipsoidal oligomer geometry, the

oligomer volume was estimated at eight monomers (Table 1).

Following nucleation, short polymeric aggregates with a character-

istic "beaded" structure emerged (Fig. 1 B). The cross sections of the

beaded polymers matched those of the oligomers present prior to

nucleation (Table 1). We therefore labeled these polymers
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oligomeric filaments (OF). Such beaded structures are similarly

referred to as protofibrils [12,32]. As growth proceeded, oligomeric

filaments assumed an increasingly curvilinear geometry, again

consistent with observations in several other amyloid systems. Near

the end of our incubation period, AFM images indicated the

formation of larger and much stiffer fibrils. No discernable signature

of this late stage event was present in the DLS data. The cross

sections for these late-stage fibrils, obtained from calibrated AFM

images, were close to twice the cross-sectional area of the oligomeric

filaments (table 1). This suggests that oligomeric filaments cross-

assembled into double-stranded mature fibrils.

Aggregation at High Salt Concentrations: Onset of
Disordered Precipitation

With NaCl concentration raised beyond 350 mM, the lag

period disappeared completely and a large aggregate peak

Figure 1. Monomeric vs. Oligomeric Assembly Pathways for Lysozyme Amyloid Fibrils. (A) In situ particle size distributions at different
stages of growth and corresponding temporal evolution of the detected aggregate peaks during lysozyme fibril growth at 50 mM NaCl (left two
panels) vs. 175 mM NaCl (right two panels), as obtained from dynamic light scattering measurements. The temporal evolution of the aggregate peak
radii (1A panel 3&4) highlights the dramatic difference in lag periods (see vertical dashed line) and distinctly different nucleation signatures: Low-salt
samples always yielded two peaks while only a single peak nucleated at elevated salt concentrations (B) Morphology of growth intermediates in the
presence of 50 mM NaCl (top row) vs. 175 mM NaCl (bottom row), as observed with atomic force microscopy. The vertical dashed line separates
samples taken before and after the nucleation event detected by DLS. The false color scale indicates the height of the different aggregates in nm. The
scale bars represent 50 nm, except for the 200 nm scale bars in the last image in either series. AFM images and aggregate dimensions for the
175 mM data are adapted from our earlier work (Hill et al, 2009). They are representative of the behavior observed throughout the "intermediate" salt
concentrations (150 mM to 350 mM) associated with the oligomeric assembly regime. (C) Cross sectional areas for the various aggregates in (B)
measured with calibrated AFM tips. Note the distinctly different cross sections for aggregates along the two different assembly pathways. Top: Cross-
sectional areas of monomers, monomeric filaments and mature lysozyme fibrils grown at 50 mM NaCl. At low salt, no globular oligomeric species are
detected. The cross sections for monomers and monomeric filaments are identical then increase by a factor of three for mature fibrils. Bottom: At
intermediate salt concentrations, ellipsoidal oligomers are formed well before the nucleation event seen in DLS. These oligomers have a volume close
to eight monomers (see Table 1). The filaments emerging after nucleation have a cross section identical to that of the ellipsoidal oligomers. Late stage
mature fibrils, in turn, had cross sectional areas close to two oligomeric filaments.
doi:10.1371/journal.pone.0018171.g001
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emerged immediately (Fig. 3B). The scattering intensity associated

with these samples increased without any noticeable delay, as well

(data not shown). The onset of multiple scattering and inner

filtering associated with the rapid growth of aggregates prevented

further quantitative analysis of the DLS data. AFM imaging

revealed the presence of compact, randomly shaped aggregates of

widely different sizes (Fig. 3A). A Congo-Red binding assay

indicated that these aggregates did not contain any fibrillar

structures. This is in marked contrast to the noticeable

enhancement and red-shift seen with samples grown at lower salt

concentrations (Fig. 3C). Hence, lysozyme aggregation switched

from fibril growth with well-defined populations of intermediates

to a precipitation pathway producing a wide distribution of

compact precipitates without discernable order or internal

structure.

Structure and Thermal Stability of Lysozyme Monomers
One possible cause for the observed transition in aggregation

behavior between low and intermediate salt concentrations could

be a salt-induced transition in the structure of the lysozyme

monomers or a salt-induced shift in the thermal stability of the

monomers. Studies on human lysozyme indicated that the

structure of disease-related mutants was only slightly more

disordered than those of native lysozyme. However, the stability

of the mutants towards thermal denaturation was significantly

reduced [24,25]. We investigated the structure of lysozyme

monomers under our partially denaturing solution conditions in

the presence of either 50 or 200 mM NaCl. These salt

concentrations positioned the monomers well inside either the

monomeric or oligomeric fibril assembly pathways described

above. At both salt concentrations lysozyme became marginally

more disordered when raising the temperature from 37 to 50uC
(data not shown). Yet, neither the secondary (see Fig. 4 A) nor the

tertiary structure (data not shown) of lysozyme showed any

discernable differences between the two salt concentrations.

Similarly the midpoint temperature for lysozyme denaturation

(55uC) was unaffected by changes in NaCl concentrations (Fig. 4B).

The steep sigmoidal shape of the temperature profile remained

invariant with changes in salt concentration, as well. Hence, there

were no signs that increased NaCl induced additional folding

intermediates such as a molten globule state [33]. Instead,

lysozyme denaturation remained a two-stage transition between

a native and a denatured state [34].

Intermolecular Interactions among Partially Denatured
Monomers

The above observations imply that there are no pronounced

structural changes in the secondary or tertiary structure of partially

denatured monomers that would account for the salt-induced

transitions in aggregation behavior. There are several indications

however that the transition might be related to the effects of salt-

screening on the charge interactions among the partially

denatured lysozyme monomers and the aggregates they form.

First of all, under the acidic solution conditions used in our

experiments lysozyme carries a substantial net charge of +15 e

[21,22]. Furthermore, oligomeric aggregates with compact

Table 1. Summary of Aggregate Dimensions.

Monomeric Fibril Assembly Height (nm) Width (nm) Cross-section (nm2) Volume (nm3)

Monomer (init.) 2.960.4 4.860.8/3.160.8 (*) 10.962.4 22.667.7

Monomer (pre-nucl.) 2.160.4 5.560.9/4.061.0 (*) 9.161.8 24.268.5

Monomeric Filaments 2.460.4 5.560.6 10.462.1

Mature Fibril 5.460.3 7.260.9 30.564.3

Oligomeric Fibril Assembly Height (nm) Width (nm) Cross-section (nm2) Volume (nm3)

Monomer 3.060.2 (#) 3.860.8 (#) 9.062.0 22.767.0

Oligomer 3.960.1 9.561.0 29.163.2 184627.6

Oligomeric Filament 3.960.3 9.561.7 29.165.5

Mature Fibril 6.060.2 13.961.0 65.565.2

(*) values quoted for width observed parallel/perpendicular to AFM scan direction.
(#) heights/widths for oligomer pathway match those in our earlier work [27].
doi:10.1371/journal.pone.0018171.t001

Figure 2. Distribution of Hydrodynamic Radii for Straight
Monomeric Filaments: AFM vs. DLS. Comparison of the hydrody-
namic radii distributions obtained with AFM (shaded bins) vs. DLS (solid
lines). For ease of comparison, filament lengths measured with AFM
were converted into their corresponding hydrodynamic radii using
established theoretical predictions for straight cylinders of variable
length [30,31] and diameters close to monomeric filaments (4 nm) or
mature fibrils (7 nm).
doi:10.1371/journal.pone.0018171.g002
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geometries only begin to form as salt concentration increases while

the monomeric filaments nucleating at low salt concentrations all

assume a highly extended conformation. The transition from an

extended to compact geometry for the initial intermediate is

consistent with the idea that repulsive charge interactions would

suppress small compact intermediates until salt screening helps to

overcome the energy cost imposed by long-range charge repulsion.

Finally, it is well established that the intermolecular interactions of

lysozyme undergo pronounced changes in response to salt-

screening [20,35,36,37].

We used static light scattering (SLS) to determine the character of

the intermolecular interactions among lysozyme monomers under-

going amyloid formation. Specifically, we investigated net lysozyme

interactions at four different salt concentrations (50, 200, 300 and

400 mM NaCl) located in the three different aggregation regimes

(monomeric vs. oligomeric fibril assembly vs. precipitation), respec-

tively. Near the denaturation temperature, solutions at 300 and

400 mM rapidly became unstable toward aggregation. Hence, we

initially measured interactions at 20uC. Fig. 5 A shows the Debye-plot

of the scattering parameter KC/R vs. lysozyme concentration at each

salt concentration. The slope of KC/R for lysozyme is positive at low

and intermediate salt concentrations and reaches almost zero near

400 mM NaCl. Positive slopes at low salt concentrations indicate the

prevalence of charge repulsion among the monomers. As charge

repulsion is increasingly screened out by the double layer formed by

salt ions, short-range attractive interactions begin to prevail. As shown

in Fig. 5B, the changes in the intermolecular interaction parameter ks

can be readily extrapolated and indicate that the sum of short-range

attraction and long-range charge repulsion begin to cancel each other

around 400 mM NaCl.

It is not obvious a priori that the intermolecular interactions at

20uC among folded monomers are representative of the

interactions among the partially denatured monomers near

50uC. We therefore investigated how temperature-induced

denaturation of lysozyme altered its intermolecular interactions.

These measurements were limited to lower salt concentrations

where charge repulsion prevented rapid aggregation. In addition,

we took special precautions to eliminate contamination of

interaction measurements from aggregate formation (see Materials

and Methods). Intriguingly denaturation in the monomeric vs. the

oligomeric aggregation regime changed lysozyme’s intermolecular

interactions in opposite direction (Fig. 5C). In the monomeric

aggregation regime ([NaCl] = 50 mM), net interactions became

slightly more repulsive (slope increases) upon reaching the

denaturation threshold of 50uC. This increase is probably

indicative of the increased volume the monomers take up upon

Figure 3. Precipitate Formation of Amyloidogenic Lysozyme. (A) AFM image of precipitates and their corresponding height distributions
observed shortly after the onset of aggregation. (B) DLS aggregate peaks of lysozyme in 400 mM NaCl before and right after partial denaturation of
lysozyme (see vertical dashed line). (C) Congo Red spectra of native lysozyme (—) and lysozyme precipitates (&) are indistinguishable. In contrast,
mature fibrils grown at lower salt concentrations (open circles) induce the red shift and shoulder characteristic for binding to amyloid fibrils.
doi:10.1371/journal.pone.0018171.g003
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denaturation, which is equivalent to an enhanced hard-core

repulsion. In contrast, net intermolecular interactions in the

oligomeric aggregation regime ([NaCl] = 200 mM) became more

attractive upon denaturation. Hence, at intermediate salt concen-

trations denatured monomers can sample some of their short-

range attractive interactions among their exposed hydrophobic

cores. Overall, though, amyloid fibril formation occurs under

conditions in which charge repulsion dominates the intermolecular

interactions among the denatured monomers.

It is important to remember that the net interaction parameter

measured here quantifies net two-body interactions. Partially

denatured monomers will sample a much broader range of

conformations than their native counterparts. As a result, any

specific pair of denatured monomers will experience a range of

different values for their mutual interactions, depending on their

respective conformations and the amount of the hydrophobic core

these conformations expose. Two-body repulsion further implies

that that the repulsive contribution from lysozyme’s net charge is

unlikely to be overcome by only two interacting monomers.

Instead, aggregation will require multiple monomers to coalesce,

thereby increasing their attractive contact regions. This provides a

natural explanation why at least eight monomers are required to

stabilize oligomeric intermediates, which is the smallest amyloido-

genic intermediate in our system.

Salt-mediated Effects on Amyloid Assembly: Charge-
Screening vs. Ion-Specific Effects on Protein Interactions?

The above static scattering data indicate that intermolecular

protein interactions are strongly modulated by the concentration

of sodium chloride. However, there are multiple ways salt ions can

modulate protein interactions. Besides charge screening via the

Debye-Hückel double-layer of diffusive ions, ion-specific absorp-

tion onto the protein or ion-specific changes to solvent-mediated

hydrophobic/hydrophilic interactions could underlie the interac-

tion changes. Using different salt ions carrying different net

charges, we evaluated the relative importance of diffusive salt

screening vs. ion-specific changes to protein interactions. The

extent of diffusive charge screening is solely determined by the

ionic strength I of the solutions, given by

I ~ 1=2 Z2
aCa z Z2

cCc

� �
ð1Þ

where Ca, Cc are the molar concentrations of anions and cations

and Za, Zc are their respective charge numbers [38]. If salt-

mediated charge screening is the dominant mechanism for the

switch from monomeric to oligomeric fibril assembly, this

transition should occur at comparable ionic strengths I for

different salts. We repeated lysozyme aggregation studies using

either NaBr or MgCl2. This selection altered either the co-ion

(Mg2+ vs. Na+) or counter-ion (Cl2 vs. Br2) and included a divalent

ion (Mg2+). For both salts, though, we observed the same transition

from monomeric fibril assembly at low ionic strength to oligomeric

fibril assembly at intermediate ionic strength (see Fig. 6). More

specifically, the transition occurred near 150 mM for NaCl and

NaBr while it shifted to between 50 and 75 mM for the divalent

Mg2+ ion. Hence, non-specific charge screening by salt ions

represents the dominant mechanism driving the transition from

monomeric to oligomeric fibril assembly.

Discussion

Together, the above data indicate that aggregation of

amyloidogenic lysozyme falls into two broad categories: up to

modest salt concentrations (,350 mM) lysozyme assembles into

amyloid fibers while, at elevated salt concentration, disordered

protein precipitation sets in. Within the regime of moderate salt

concentrations, amyloid fibril self-assembly itself abruptly switches

from a monomeric to an oligomeric assembly pathway. Mono-

meric assembly prevails at low salt concentrations (,150 mM

NaCl) and involves the nucleation of two filament populations of

different length (MF-L and MF-S). Their physical characteristics

imply that these filaments are linear assemblies of monomers.

Monomeric filaments eventually cross-link into mature fibrils

composed of three monomeric filaments (MF) per fibril. No

Figure 4. CD Spectroscopy and Thermal Denaturation of
Lysozyme Monomers. (A) Far uv CD spectra and (B) normalized
thermal denaturation profile of lysozyme measured at 222 nm in either
50 mM (#) or 200 mM NaCl (&).
doi:10.1371/journal.pone.0018171.g004

Charge Repulsion and Amyloid Assembly Pathways
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compact, oligomeric intermediates are detected in this regime. For

intermediate salt concentrations (150 mM.[NaCl],350 mM),

compact oligomeric intermediates are the basic building block for

all subsequent fiber assemblies. Compact, globular oligomers

begin to form without discernable lag period. Eventually,

oligomeric filaments (OF) nucleate, which themselves grow in

length and become increasingly curvilinear. As indicated by the

doubling in cross-sectional area, double-stranded mature fibrils are

formed by cross-assembly of two oligomeric filaments (OF).

The presence of distinct amyloid assembly pathways for lysozyme

together with the detailed morphological characterization of all

intermediates within each pathway, to our knowledge, has not been

described in this system before. Earlier in vitro studies did use pH = 2,

but typically very low ionic strength. In addition, morphological

characterizations were performed at the late stages of aggregation,

long past the formation of intermediates we report here. [27,29,39,40].

Keeping these limitations in mind, these earlier reports observed long,

very rigid fibrils under low-salt conditions at pH = 2, consistent with

the low-salt monomeric filament pathway in our experiments.

The observations of distinct pathways with distinct intermediates,

however, does resemble those made with b2-microglobulin, the

protein underlying dialysis-related amyloidosis [12]. Specifically,

our monomeric filaments share many features with "long-straight"

fibrils while oligomeric filaments resemble "rod-like" or "worm-like"

b2-microglobulin fibrils. The ability to interconvert rod-like and

worm-like b2-microglobulin fibrils is consistent with the interpreta-

tion that the former represent the same species of oligomeric

filaments at an earlier stage of their growth process. While our

experiments were not specifically designed to address the question

whether monomeric and oligomeric assembly pathways compete

with one another or represent distinct assembly pathways, our data

support the latter interpretation. First, mature fibrils assembled

under either "monomeric" or "oligomeric" growth conditions show

clearly distinct physical characteristics (Fig. 1C and table 1). Ideally

one would like to determine the structure of composite fibrils, and

the specific number of filaments they contain, using high-resolution

structural information. Yet, the integer increments in the cross-

sectional areas of mature fibrils compared to their precursors

(Fig. 1C) imply that mature fibrils emerge via cross-assembly of

either three monomeric filaments (monomeric assembly pathway)

or two oligomeric filaments (oligomeric assembly pathway). Hence,

we suppose that monomeric vs. oligomeric growth conditions

represent two distinct pathways that, under our conditions, do not

coexist.

Figure 5. Net Interactions among Native and Denatured
Lysozyme Monomers. (A) Debye plot of the static light scattering
intensity (KC/R) vs. lysozyme concentration C at T = 20uC. The positive
slope of these curves indicates that the interactions among the
lysozyme monomers are predominately repulsive. This repulsion
becomes screened out once NaCl concentrations reach about
400 mM. (B) Plot of the static interaction parameter ks (which is
proportional to the slope of KCp/R vs. Cp) vs. salt concentration for the
Data in A. The dotted line is a guide to the eye indicating how repulsion
decreases with increasing salt concentration. The two dashed vertical
lines mark the switch of lysozyme aggregation from monomeric (MF) to
oligomeric fibril (OF) assembly and, eventually, precipitate formation
(P). (C) Change in net interactions as lysozyme monomers undergo
thermal denaturation in the presence of 50 mM (#) and 200 mM (&)
NaCl. The vertical dashed line indicates the onset of thermal
denaturation at 50uC. Note that, the prevailing intermolecular
interactions remain repulsive (positive Ks values) even after thermal
denaturation. At the same time, denaturation at 50 mM NaCl makes
lysozyme slightly more repulsive while the monomers become less
repulsive following denaturation at 200 mM NaCl.
doi:10.1371/journal.pone.0018171.g005
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Net Protein Interactions as Regulator of Fibril Assembly
vs. Precipitation

The switch from ordered fibril assembly at low and intermediate

salt concentrations to disordered precipitation at elevated salt

concentrations (Fig. 1 vs. 3) closely correlates with the salt-induced

transition from net repulsion to net attraction among lysozyme

monomers (Fig. 5B). This correlation might appear counterintuitive,

at first. It is well-established that modest attractive interactions are a

necessary precondition for protein crystallization of native proteins,

while precipitation sets in as net attraction exceeds a threshold value

[16,19,20,36]. At the same time, the low-salt, low pH values used

during amyloid fibril growth have been shown to result in net

repulsion, at least while lysozyme remains below the unfolding

transition [20,35,37]. Our data in Fig. 5C confirm that net

interactions remain repulsive even after lysozyme has undergone

denaturation. This apparent contradiction can be readily resolved by

considering the distinctly different role of protein charge interactions

during amyloid fibril assembly vs. protein crystallization. First, as long

as solution temperature was kept below the denaturation tempera-

ture, lysozyme monomers did indeed never aggregate since their

mutual interactions are repulsive (Fig. 5C). Raising the solution

temperature to partially denature lysozyme was a necessary condition

for fibril assembly. Such partial denaturation as a pre-condition for

amyloid formation of native proteins has been well documented [41].

However, partial denaturation alone does not turn the prevailing net

repulsion into attraction (Fig. 5C). Instead, net charge repulsion

prevents partially denatured monomers from forming intermolecular

cross-links, unless their conformations permit them to establish beta-

sheet bonds (low salt) or micelle-like structures sharing hydrophobic

interactions. Once net repulsion is abolished, any of the partially

denatured monomers can begin associating and random precipitation

sets in. Hence, we consider charge repulsion to play the role of a ‘‘gate

keeper’’ for those conformations of partially denatured monomers

that can form energetically sufficiently favorable, ordered precursors

for amyloid formation.

Charge Repulsion as Switch between Monomeric and
Oligomeric Assembly Pathways

So far, we have argued that the transition from net repulsive to

attractive protein interactions provides a natural explanation for

the salt-induced transition from fibril assembly to precipitation.

We further contend that charge interactions, which remain

repulsive under fibril growth conditions, also trigger the transition

from monomeric to oligomeric fibril assembly pathways. We noted

that the transition from monomeric to oligomeric fibril assembly

occurs at comparable ionic strengths, independent of salt identity

(Fig. 6). Debye-Hückel theory indicates that salt screening is

associated with an intrinsic length scale lD

lD ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0erkBT

2e2NAI

s
ð2Þ

where e0 and er are the vacuum permittivity and dielectric

constants of the medium, kBT is the thermal energy and I is the

ionic strength. lD represents the distance over which salt ions

screen out the long-range charge repulsion among two charged

Figure 6. Lysozyme Fibril Growth in the Presence of MgCl2 vs NaBr. DLS nucleation and growth kinetics (left panel) and corresponding AFM
images of late-stage aggregates (right panel) for lysozyme amyloid fibrils grown in (A) 50 mM MgCl2, (B) 75 mM MgCl2 (C) 100 mM NaBr and (D)
150 mM NaBr.
doi:10.1371/journal.pone.0018171.g006

Charge Repulsion and Amyloid Assembly Pathways

PLoS ONE | www.plosone.org 8 April 2011 | Volume 6 | Issue 4 | e18171



proteins. To a first approximation, it also sets the length scale over

which individual charge residues within a given protein polymer

become screened from one another. Using the ionic strength of

150 mM for the transition from monomeric to oligomeric

assembly and er = 70 for water at T = 50uC, the corresponding

screening length lD becomes 0.78 nm. This is a factor of 2–3

below the hydrodynamic radius Rh = 1.9 nm for lysozyme [42].

Hence, the transition occurs as the repulsive interactions among

individual charged residues on the same monomer become

screened (Fig. 7).

This transition from charge repulsion among multiple mono-

mers to partial screening of charges within a single monomer puts

different constraints on both the geometry of intermediate

aggregates and their rate of formation. First charge repulsion

strongly favors only those intermediates that can form sufficiently

large numbers of favorable intermolecular contacts, similar to those

stabilizing the structure of the native monomers. At low salt

concentrations in particular, the large range of charge repulsion

favors aggregate structures that are tightly bound while spreading

out the charges along the aggregate, thereby reducing the

repulsive electrostatic contributions to the aggregate’s free energy.

This charge constraint on aggregate morphology favors linear

aggregate geometries. As the Debye screening length drops below

the typical separation of charged groups within a monomer,

compact (oligomeric) intermediates become more favorable since

their geometry provides more opportunities for intermolecular

contacts across multiple monomeric units. In addition, the

entropic constraints are likely to be relaxed since a larger number

of denatured conformations can participate in sharing their

hydrophobic cores. Such simultaneous relaxation of both energetic

and entropic constraints on aggregate geometries provides a

compelling reason for the sharp transition in aggregation

pathways.

Model for the Effects of Charge Interactions on Amyloid
Fibril Assembly

The above considerations lead us to propose the following

model for self-assembly of lysozyme under amyloidogenic solution

conditions (Fig. 8). At low salt concentrations, only long, extended

monomeric filaments can overcome the constraints imposed by

charge repulsion on bond strength (b-sheets) and aggregate

geometry. These monomeric filaments eventually cross-assemble

into thicker mature fibrils with three filaments linking up to form a

fibril strand. As charge repulsion becomes sufficiently screened out

at intermediate salt concentrations, the formation of compact

oligomeric intermediates becomes both energetically and entropi-

cally more favorable. These oligomers form immediately and, as

their concentration increases, nucleate and grow into oligomeric

filaments with a pronounced curvilinear geometry. Oligomeric

filaments then cross-assemble into mature fibrils composed of two

oligomeric filaments per fiber. These mature fibrils are clearly

distinct from those emerging at low salt concentrations. Finally, as

screening length decreases further, short-range attractive interac-

tions balance or overcome charge repulsion. At that point,

constraints on aggregate morphology and favorable conformations

among the binding partners are eliminated and lysozyme

monomers assemble into random precipitates.

This model provides a compelling rationale for the transition

among different amyloid assembly pathways and helps to

rationalize the geometry of their intermediates. It explains why

and when partially denatured monomers precipitate instead of

forming ordered fibril assemblies. Equally intriguing, these

considerations highlight that charge interactions play distinctly

different roles during crystallization or liquid-liquid phase

separation of native, folded proteins vs. their role during self-

assembly of fibrillar structure from partially denatured or

disordered proteins.

Materials and Methods

Protein and Chemicals
For all experiments, 26 recrystallized, dialyzed and lyophilized

lysozyme from Worthington Biochemicals (Lakewood, NJ) was

used. All other chemicals were from Fisher Scientific (Pittsburgh,

PA), and were reagent grade or better. 18 MV RO purified water

(Barnstead E-pure, Dubuque, IA) was used throughout.

Preparation of HEWL Samples
Solutions of lysozyme were prepared by dissolving lyophilized

lysozyme at twice its final concentration in 25 mM KH2PO4 pH 2

buffer, and mixing it 1:1 with a NaCl/25 mM KH2PO4 buffer

solution, also at twice its final NaCl concentration. Before mixing,

Figure 7. Effects of Salt-mediated Charge Screening on
Denatured Monomers. The schematic indicates how the spatial
extent (Debye screening length lD) of salt-mediated charge screening
changes the character of the net interactions among denatured
monomers and favors the formation of different aggregate geometries.
The black curvy line represents the protein backbone while the blue
perimeter symbolizes the short-range attractive protein interactions
(hydrophobic, dipole-dipole, hydrogen bonding). Individual charged
residues are represented by small positive spheres, and the extent of
charge screening mediated by the salt ions is indicated as a red cloud
surrounding the charge residues. At low salt concentrations, (mono-
meric assembly pathway) individual charges on the same monomer
strongly repel each other and those on neighboring monomers. Only
those few conformations of denatured monomers that can form
intermolecular bonds similar to those in the native monomer are
aggregation competent. In addition, charge repulsion among mono-
mers will favor extended, polymeric structures for intermediates since
that will separate the monomer charges from each other while
preserving sufficient intermolecular contacts. When salt screening
reduces lD below the separation of charged residues (oligomeric
assembly pathway) along the monomer backbone, charge repulsion
within a given monomer and, concurrently, among several aggregated
monomers is significantly reduced. This favors the formation of more
compact (oligomeric) aggregate assemblies and requires fewer
monomers to share their hydrophobic cores to overcome the residual
charge repulsion and loss in configurational entropy. Finally, when lD

becomes comparable in range to the attractive interactions, the charge
restrictions on "suitable" aggregate morphologies and favorable
monomer conformation fall by the wayside and the denatured
monomers precipitate randomly out of solution.
doi:10.1371/journal.pone.0018171.g007
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lysozyme solutions were warmed to 45uC to remove any

preformed clusters. All samples were filtered consecutively through

a 220-nm and a 20-nm pore size syringe filter. Actual lysozyme

concentrations were determined from uv absorption measured at

l = 280 nm (a280 = 2.64 mL mg21 cm21).

DLS Kinetics during Amyloid Aggregation
DLS measurements were performed with a Zetasizer Nano S

(Malvern Instruments, Worchestershire, UK) containing a 4 mW

He-Ne laser (l = 633 nm) with built-in temperature control for

sample cuvettes. After thermal equilibration of the samples (typically

10 min), autocorrelation functions were collected every 10 min, using

acquisition times of 180 s. Autocorrelation functions were converted

into particle-size distributions, using the ‘‘narrow modes’’ or ‘‘general

purpose’’ algorithms provided with the Zetasizer Nano S.

SLS Measurements of Lysozyme’s Net Intermolecular
Interactions

SLS measurements of lysozyme’s interaction parameters were

performed under two different set of conditions. Below the

denaturation temperature of 50uC, measurements could be

completed with NaCl concentrations up to 400 mM without

signs of aggregate formation (Fig. 5A). Conversely, measurements

above the denaturing temperature (Fig. 5C) could only be

performed up to NaCl concentrations of 200 mM. In the later

case, the presence of a nucleation barrier suppressed the onset of

any significant aggregation for at least several hours, i.e. long

after the completion of our SLS measurements. In all cases, the

reported data are derived from averaging 5–10 intensity values

sampled for 1 minute each. Sequential measurements were

scrutinized for any signs of systematic, time-dependent increases

suggestive of aggregation. Since the SLS measurements were

performed with the Malvern DLS unit, we simultaneously

obtained correlation functions. Only samples with polydispersities

of their correlation functions below 0.07 were included in our

measurements. Finally, the y-axis intercepts for all measurement

(see Fig. 5A) yielded the inverse of lysozyme’s monomeric

molecular weight of 14.3 kD. These precautions exclude

noticeable contamination of the data by the presence of

equilibrium or non-equilibrium aggregation.

Figure 8. Schematic of Lysozyme Amyloid Assembly as Function of Net Intermolecular Interactions. On the left side, the schematic
indicates a collection of partially denatured monomers in different conformations. The relative distribution of denatured conformations will vary both
with solution temperature and with the intramolecular interactions, which are affected by salt screening, as well. At the lowest salt concentration,
charge repulsion suppresses the formation of compact oligomeric intermediates with their high local concentration of charge. Instead, the
monomers have to form extended "short" monomeric filaments that spread out the net charge and which are held together by strong hydrogen
cross-links (b-sheets). This process has a much higher nucleation barrier since many more monomers have to condense into the nucleus and the
corresponding extended conformations of the denatured monomers are bound to be less frequently populated. Short monomeric filaments can
assembly head-to-head into long monomeric filaments. These, in turn, can form mature fibrils via cross-assembly of three monomeric filaments. As
salt concentration is increased (middle third of plot), lysozyme interactions become less repulsive. In this regime, monomers can assemble into
oligomeric intermediates if they share their hydrophobic cores. This happens without apparent nucleation barrier. The nucleation step here is the
formation of oligomeric filaments with, we suppose, partially overlapping core structures. These oligomeric filaments can form cross-links and
restructure to form mature fibrils. At elevated salt concentrations (bottom third of plot), charge repulsion among the lysozyme monomers will be
screened out and net intermolecular interactions become exclusively attractive. In this regime, monomers will undergo diffusion-limited aggregation
and form random precipitates.
doi:10.1371/journal.pone.0018171.g008
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Static Light Scattering Analysis and Direct Protein
Interactions

For static light scattering the excess scattering from the solution

due to lysozyme (Itot – Isol) is compared against the scattering from

a known standard like toluene and quantified as the Rayleigh

ratio, Rh

Rh ~
Itot{Isol

Itol

n0

ntol

� �2

Rl, tol

where Itot, Isol, Itol are the measured scattering intensity of the

protein solution, the salt/buffer background and the toluene

standard, respectively. The ratio (no/ntol)
2 accounts for the

differences in observed scattering volume in the two solvents and

Rl,tol is the Rayleigh ratio for toluene at the measurement

wavelength. For l = 633 nm, we used a value of

Rl,tol = 13.561026 cm21. For typical stgciqengths of protein

interaction, the normalized Rayleigh ratio increases linearly with

protein volume fraction and can be presented by the lowest-order

virial expansion

KCp

Rh
~

1zksw

M

where M is the molecular weight of the protein, ks is the direct

interaction parameter, and W is the protein volume fraction. The

optical constant K is given by K = (2 p 2 no
2/NA lo

4) (dno /dCp)
2

where NA is Avogadro’s number, lo is the wavelength of incident

light, and the differential refractive index increment for lysozyme

at our wavelength is (dno /dCp) = 0.185 ml/g. This relationship was

used to obtain the static interaction parameters ks for lysozyme

under different solution conditions (see Fig. 5).

Circular Dichroism (CD)
CD measurements were carried out on an Aviv Biomedical

Circular Dichroism Spectrometer, Model 215 with a temperature

controlled cell holder. For far-UV wavelength measurements, the

protein concentration was 30 mM and the quartz cell path length

was 1 mm. The wavelength scans were measured from 190–

260 nm with a step size of 1 nm and an averaging time of 10

seconds per step. Each measurement was an average of three scans

with a temperature equilibration time of five minutes. For the

temperature denaturation scans, the signal was monitored at

222 nm with a temperature scan rate of 1uC per minute. The

temperature step size was either 5uC or 2uC with a temperature

equilibration time of 5 minutes and a 10 second averaging time

per step.

AFM Characterization of Amyloid Aggregates
Amyloid samples were imaged in air with a MFP-3D atomic-

force microscope (Asylum Research, Santa Barbara, CA) using

NSC36/NoAl (Mikromasch, San Jose, CA) or PPP-FMR

(Nanosensor, Neuchatel, Switzerland) silicon tips with nominal

tip radii of 10 nm and 7 nm, respectively. The cantilever was

driven at 60–70 kHz in alternating current mode and a scan rate

of 0.5 Hz, acquiring images at 102461024-pixel resolution. Raw

image data were corrected for image bow and slope. As previosly

described [28], AFM tips were calibrated to correct for the dilation

in the apparent particle width by imaging 5-nm gold colloid

standards (GC5, BBI International).

During DLS measurements of amyloid fibrillogenesis, aliquots

of solution were taken from the DLS cuvette for subsequent AFM

imaging. Aliquots were diluted 100-fold for 175 mM NaCl

solutions and 20-fold for 50 mM NaCl solutions. Typically,

75 mL of the solution was deposited onto freshly cleaved mica,

rinsed with deionized water, and dried with dry nitrogen. For

175 mM NaCl solutions, all aggregated samples were deposited

onto mica for 5 minutes, while monomers were deposited for 15

minutes. For 50 mM NaCl solutions, all samples were deposited

for 15 minutes except the mature fibrils which were deposited for 5

minutes.
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