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Simple Summary: Social insects, namely ants, bees, and termites, are among the most numerous
and successful animals on Earth. This is due to a variety of features: highly cooperative behavior
performed by colony members and their specialization on a variety of tasks. Diverse physiological
and behavioral specializations are regulated not only by the genetic system, but also by the epige-
netic system which alters gene expressions without modifying the genetic code. This review will
summarize recent advancements in such studies in eusocial insects.

Abstract: Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the
Blattodea, are able to generate remarkable diversity in morphology and behavior despite being
genetically uniform within a colony. Most eusocial insect species display caste structures in which
reproductive ability is possessed by a single or a few queens while all other colony members act
as workers. However, in some species, caste structure is somewhat plastic, and individuals may
switch from one caste or behavioral phenotype to another in response to certain environmental cues.
As different castes normally share a common genetic background, it is believed that much of this
observed within-colony diversity results from transcriptional differences between individuals. This
suggests that epigenetic mechanisms, featured by modified gene expression without changing genes
themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such
as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence
eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes
the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.

Keywords: epigenetics; eusocial insects; evolution; behavioral plasticity

1. Introduction

Sociality is a key feature of many of Earth’s most successful animal species. Living in
packs, herds, or groups has a variety of advantages that culminate to improve the inclusive
fitness (Table 1) of an individual. While members of many animal groups (namely arthro-
pods and vertebrates) possess social species, only a few select groups can be considered
“eusocial.” These groups possess several features that distinguish them from other groups
of social creatures, which include overlapping generations within a society, cooperative
brood care, and division of labor into reproductive and non-reproductive groups [1]. Eu-
social insects, including those of the orders Hymenoptera (ants, bees, and wasps) and
Blattodea (termites), are among the most well-studied eusocial animals.
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Table 1. Terminology associated with epigenetic study in eusocial insects.

Term Definition Reference(s)

Inclusive fitness
A measurement of fitness in which the success of an animal is derived from
the summation of an animal’s own reproductive fitness and of cooperative
or altruistic behaviors exhibited by genetically similar individuals.

[2]

Eusociality
The highest degree of sociality exhibited by animals. Distinguished by
overlapping generations in a colony, cooperative brood care, and division
of labor.

[1]

Epigenetics The study of changes in traits unrelated to changes in the genetic code.
Such traits are mitotically heritable (through cell division). [3–5]

Histone modification The addition of an acetyl group, methyl group, phosphate group, or
ubiquitin protein to histone proteins. [6–8]

H3K27ac Acetylation of histone H3 on lysine 27, a histone modification associated
with transcriptional activation. [9]

HAT Histone acetyltransferase that transfers acetyl groups to lysine amino acids. [7,10]

HDAC Histone deacetylase for removal of acetyl groups from histones. [11]

HDACi Histone deacetylase inhibitors. [12,13]

DNA methylation Addition of a methyl group to a cytosine nucleotide. [14–16]

DNMT family The DNA methyltransferase family of proteins that are responsible for
catalyzing DNA methylation. [17,18]

DNMT1 The maintenance DNA methyltransferase. [19]

DNMT3 The de novo DNA methyltransferase. [20]

N6-methyladenosine A form of RNA methylation, which has functions in RNA regulation. [21,22]

miRNAs microRNAs are non-coding RNAs of around 22 nucleotides in length. They
suppress translation by binding to mRNA. [23]

lncRNAs Long non-coding RNAs are non-coding RNAs longer than 200 nucleotides.
They have variable functions. [24–26]

Chromatin A complex of DNA and histone proteins which may be modified to be
condensed or relaxed, thereby suppressing or promoting gene expression. [27]

Epigenetic reprogramming Erasure and rewriting of histone marks and DNA methylation. [28]

Gamergate A pseudoqueen: lack of queen pheromone in the colony induces workers
to achieve reproductive status. [29]

Mushroom body The region of the insect brain responsible for olfactory and visual learning
and memory functions. [30]

IGF Homolog of insulin-like growth factor in mammals, also called Ilp-1 in Apis
mellifera and Ilp-2 in Harpegnathos saltator. [31–33]

Ins Homolog of mammalian insulin, also called Ilp-1 in Harpegnathos saltator,
Ilp-2 in Apis mellifera and Ooceraea biroi, and LIRP in Monomorium pharaonis. [31–37]

The division of labor exhibited by eusocial insects has resulted in the specialization of
society members, with many species exhibiting different “castes” that perform specific tasks
or behaviors. In many cases, castes are rigid and determined during development [38,39].
In other cases, individuals may undergo behavioral changes, performing different tasks
over time. This is particularly well-documented in the honeybee, Apis mellifera [40,41].
In other cases, individuals may switch their caste due to external cues, and even achieve
reproductive status when they were formerly non-reproductive as observed in the ant
species Harpegnathos saltator, the Indian jumping ant [42,43]. In most eusocial insects,
caste determination and behavior are not dictated by heritable genetic information [44],
further evidencing the flexible nature of the eusocial insect phenotype and calling for a
better understanding of how such differences arise in this widely successful animal group.
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Genetic diversity within a colony is typically very low, and in some cases colony members
may even be genetically identical. The array of phenotypes within a single colony along
with colony-wide genetic similarity suggests that diversity is likely a result of changes in
an individual’s gene expression, not differences in the genetic code itself, and differences
in gene expression play an important role in eusocial insect colony structure and function.

The study of epigenetics (Table 1) focuses on molecular changes (particularly in regard
to gene expression) unrelated to changes in the genetic sequence [3]. Specifically, this field
aims to understand the molecular mechanisms and developmental processes occurring to
establish diverse phenotypes without a change in genotype [4,5]. The epigenetic changes
are mitotically heritable over the course of an organism’s life, but the degree to which these
changes are inherited by offspring differs depending on the type of organism. In some
groups (such as plants) epigenetic features are highly heritable across generations (trans-
generational epigenetic inheritance) [45,46], whereas they are less heritable in mammalian
groups [46,47].

Epigenetic system responds to changes in the environment. Environmental signals
induce activation of sensory neurons and internal hormonal responses, which in turn mod-
ulate signal transduction pathways and activity of transcription factors (TFs). TFs recruit
epigenetic factors and turn on the expression of target genes (reviewed in [48–51]). Even
when the environmental signal is no longer present, the changes in hormonal composition
or target gene expression may be maintained, suggesting that epigenetic processes could
be at play in the maintenance of molecular changes induced by the environment [48–50].

Epigenetic mechanisms involve modifying histones (Table 1), as in the addition of
acetyl group, methyl group, phosphate group, or ubiquitin protein [6–8], and adding side
groups to DNA, as in methylation (Table 1), the process of adding a methyl group to a
cytosine nucleotide [14–16]. These modifications control gene expression by condensing
and relaxing chromatin (Table 1), a complex of DNA and histone proteins, thereby altering
the accessibility of genes for transcription. Non-coding RNAs (ncRNAs) also play promi-
nent roles in epigenetic regulatory control and alteration of gene expression: microRNAs
(miRNAs) (Table 1), for example, are small ncRNAs (~22 nucleotides in size) that are
involved in translational suppression through binding to messenger RNA (mRNA) [23];
long non-coding RNAs (lncRNAs) (Table 1) are greater than 200 nucleotides in length,
and their most notable regulatory role has been determined in HOX gene expression,
dosage compensation, genomic imprinting, etc. [24–26]. Varying epigenetic processes may
also interact with one another. The lncRNA HOTAIR, for example, is known to recruit
polycomb repressive complex 2 (PRC2), which catalyzes histone H3K27 methylation. The
ncRNA Xist is involved in X-chromosome inactivation, recruiting chromatin modifiers
to induce heterochromatin formation, and silencing the whole chromosome, providing
another example of the interaction of multiple mechanisms [25]. It is important to keep in
mind that a single mechanism is often not acting alone. However, mechanistic interaction
in eusocial insects has not been heavily examined.

Epigenetic mechanisms have been shown to regulate caste determination, aging, repro-
duction, behavior, and other categories in eusocial insects (as reviewed in [49,50,52–55]), but
there is still much to be gained from further study that can aid in building a clearer picture
of eusocial insect life history and evolution. This review primarily aims to summarize recent
advancements in our understanding of these mechanisms, their implications, and how they
apply to the evolutionary history and success of eusocial insects.

2. Caste Determination, Plasticity, and Caste-Specific Behavior

Eusocial insects exhibit the ability to generate more than one phenotype from a single
genome. Castes within a single colony may differ morphologically and behaviorally to
such a degree that they visually appear to be different species. If genetically similar or
identical individuals can develop such differing morphological and behavioral forms, there
is basis for the assumption that different gene expression patterns must be established
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during the developmental period. What role might the insect epigenetic system have in
caste determination and plasticity?

One of the defining factors of eusociality is reproductive division of labor [1]. Most
members of a colony are non-reproductive and few produce fertile eggs. Typically, repro-
ductive capability is determined in the juvenile (larval) state. Considering how funda-
mental this form of caste differentiation is to eusocial insect societies, understanding how
it occurs from an epigenetic perspective is important for bettering our understanding of
eusocial insect societies.

DNA methylation, catalyzed by members of the DNA methyltransferase (DNMT)
family (Table 1), is an important factor in caste determination. Unlike mammals and other
vertebrates, most eusocial insect species exhibit lower levels of DNA methylation [56,57]
and those areas which are methylated tend to be gene body regions [57,58]. Still, it seems to
be an important feature of caste determination. Silencing dnmt3 (Table 1), a gene involved
in de novo DNA methylation, results in A. mellifera larvae developing into reproductive
queens instead of non-reproductive workers [59]. When fed diets high in methionine, a
methyl donor, A. mellifera larvae tend towards development into workers [60], and the
effects of methionine appear to be neutralized when coupled with a DNA methylation
inhibitor [60]. Therefore, higher levels of methylation induce development of the worker
phenotype, while having comparatively less methylation induces a queen phenotype
(Figure 1).
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Figure 1. Epigenetic modifications occur at different points in the A. mellifera life cycle. Embryos hatch into larvae, which
may develop into workers or queens. Workers overall possess a higher level of methylation than queens, opposing the case
in bumblebees and ants. Honeybee workers also possess decreased expression of JH synthesis genes. As workers age, they
switch from a nursing behavioral phenotype (signified by the hive icon) to a foraging behavioral phenotype (signified by
the basket icon). This switch is associated with decreased Vg and increased JH production, as well as expression differences
in the foraging gene and associated lncRNAs.

Many Hymenopteran species are understudied, and whether methylation is involved
in their caste determination process is unknown. Recent efforts expanded this area of
research into DNA methylation-related genes in the bumblebee, Bombus terrestris. Caste-
specific patterns were identified for DNMTs, methyl-CpG-binding domain proteins (MBDs,
which recognize methylated sites for recruitment of repressive chromatin modifiers) and
ten-eleven translocation proteins (TETs, which are DNA demethylases). Reproductive
tissues in queens exhibit high expression of most of these genes, except for TET [61],
implying a need for higher methylation levels in bumblebee queens. One hundred and
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eleven differentially methylated genes have been identified between castes of B. terrestris,
including genes involved in processes related to reproduction [62]. In the narrow-headed
ant Formica exsecta, DNA methylation occurs to a higher degree in queens as opposed to
workers [63]. These findings align with previous work in the red harvester ant Pogono-
myrmex barbatus [64]. This trend of increased methylation in ant and bumblebee queens
opposes the notion in honeybees that increased methylation results in a worker phenotype,
suggesting that the relationship between DNA methylation and reproductive development
may differ across the Hymenoptera. However, the supposed role of methylation in the
queen phenotype has not been verified. Differing levels of DNA methylation may also
result from different genetic backgrounds, seasonal factors, or age, which should be taken
into consideration when concluding whether methylation is truly important for develop-
ment of queen and worker castes. Indeed, the role of DNA methylation in eusocial insect
caste determination is a debated subject (a thorough review in [65]). Furthermore, it is
possible that certain DNMTs have functions aside from methylating DNA (such as the role
of DNMT1 in the beetle Tribolium castaneum [66]).

It is important to note that DNA is not the only nucleic acid which can be modified.
RNA can also undergo modifications which impact gene expression post-
transcriptionally [67]. In eukaryotes, N6-methyladenosine (m6A) (Table 1) is a modifi-
cation applied to mRNA to serve a variety of functions, including regulation of RNA
processing and translation [21,22]. The RNA m6A methylome of A. mellifera was recently
reported, and workers were shown to have a higher number of m6A-modified transcripts
than queens. Notably, juvenile hormone acid O-methyltransferase (JHAMT) transcripts had
higher methylation in worker larvae [68] (Figure 1). JHAMT is a component of the juvenile
hormone (JH) biosynthesis pathway, regulating the activation of this well-established hon-
eybee caste determinant [69]. Worker larvae also had elevated m6A levels on transcripts
for vitellogenin (Vg), a JH antagonist [68] (Figure 1). Queen-like features (namely increased
JH levels) resulted from chemical suppression of m6A marks by 3-deazaadenosine (DAA)
during the larval stage [68]. As of now, these marks have only been studied in a single
species, A. mellifera. Given that m6A seems to impact caste determination and development
in this species, it will be important to expand this work to other species to determine
whether RNA modification is a universal caste determinant.

DNA/RNA methylation is not the only modification involved in caste determination.
Acetylation of histone H3 on lysine 27 (H3K27ac) (Table 1), a modification associated with
transcriptional activation, exhibits caste bias in honeybee larvae. In queen larvae, H3K27ac
is localized within exons and around transcriptional start sites, while it is located in introns
of worker larvae [70].

Similar to the Hymenoptera, termite colonies also share similar genetic backgrounds
and are able to form varied castes, suggesting that gene expression differences are re-
sponsible for phenotypic differences in this group as well. This has been studied in the
termite species Reticulitermes labralis, a species in which workers become reproductive
upon isolation. Differentially expressed genes (DEGs, exhibiting upregulated or downreg-
ulated expression between groups) have been identified between isolated and non-isolated
workers [71], suggesting that dynamic changes in gene expression are involved in caste
transition. Older work in the dampwood termite Zootermopsis nevadensis also exemplifies
gene expression differences between reproductive and non-reproductives, showing that Vg
and Neofem4 are upregulated in reproductives (Figure 2) [72]. Adult reproductive plasticity
of this type also notably occurs in the Hymenoptera and will be discussed in detail in
Section 4.
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body, and ovary) in reproductive and non-reproductive castes. Additionally, genes found to be upregulated in transcriptome
analyses of whole insect bodies are also included. Non-reproductive females possess larger brains and inactivated ovaries,
while reproductive females generally experience a reduced brain size, but much larger activated ovaries. Representative
genes from all major eusocial insect lineages are listed here, including genes from ants [31–34,37,73,74], bees [75–80], social
wasps [81,82], and termites [72].

The primary discussion of this section has been on the differentiation between royals
and workers. Many eusocial insect species have caste structures of much greater complexity,
possessing several non-reproductive castes. Recently, it was shown that miRNAs influ-
ence termite soldier caste development. Eight differentially expressed miRNAs have been
identified among the non-reproductive castes of R. speratus, three being up-regulated in
workers and five being up-regulated in soldiers [83]. Four differentially expressed miRNAs
(mir-87a, 2765, 133, and 125) are shared between honeybees [84] and termites [83], suggest-
ing that differential expression of miRNAs between castes may be an important factor in
the evolution of sociality and caste structure across different lineages. However, miRNAs
known to be associated with queen development in A. mellifera are not differentially ex-
pressed in B. terrestris. In contrast, two miRNAs, Bte-miR-6001-5p and Bte-miR-6001-3p, are
highly expressed in queen-destined B. terrestris larvae [85]. These two species share a prim-
itively eusocial common ancestor [86], suggesting that the differences in their caste-specific
miRNA expression must have arisen after their evolutionary divergence.

In species with castes that are both morphologically and behaviorally distinct, these
traits are generally fixed in adulthood. However, they can be artificially manipulated,
and one caste may be forced to “switch” its behavioral phenotype, despite being morpho-
logically suited for alternative tasks. In Camponotus floridanus, the Florida carpenter ant,
workers can be divided into the major caste (which performs defensive behaviors) and
minor caste (which performs nursing and foraging behaviors). A histone post-translational
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modification, H3K27ac, is involved in regulating expression of genes involved in this caste
identity, aiding in the generation of distinct phenotypes from a common genotype [87]. Ma-
jors can be reprogrammed to foraging via administration of histone deacetylase inhibitors
(HDACi’s) (Table 1), shifting behavioral phenotypes towards the minor form as acetylation
levels are increased [88]. Corepressor for element-1-silencing transcription factor (CoREST)
also experiences upregulation when HDACi is administered, and subsequently promotes
JH synthesis by repressing JH-degrading enzyme production [89]. These findings imply
the involvement of CoREST and acetylation in the development of these two distinct castes,
though there has not yet been a study to validate this possibility.

Histone acetylation also appears to be involved in circadian rhythm (also known
as the sleep-wake cycle) in eusocial insects. Circadian rhythm may be determined by
task specialization, age, and social context [90,91], and differs between castes. Foraging
insects, for example, must leave the nest at different times of the day to collect food.
Nurses and queens, on the other hand, may experience different circadian activity due
to their remaining inside the nest. Histone acetyltransferase (HAT) (Table 1) inhibition
eliminates circadian rhythmicity almost entirely in workers of the ant species Temnothorax
longispinosus [92], a reminiscence of studies in mammals that transcription of circadian
rhythm-related genes are dependent on histone acetylation [93,94]. Currently it is unknown
whether acetylation plays a unanimous role in the circadian rhythm of eusocial insects.

In summary, caste determination is a fundamental process essential to the formation
of the typical eusocial insect colony structure. While many factors play a role in caste
determination, the role of epigenetic mechanisms in such morphological and behavioral
diversity deserves further examination.

3. Reproduction and Juvenile Development

Within a colony of eusocial insects, the number of reproductive individuals is typically
limited to a single or a small number of queens. In the case of termites, there is additional
presence of a king. Spermatogenesis and oogenesis, the processes yielding the two types of
gametes needed for sexual reproduction, may experience epigenetic influence that could
impact the resulting offspring in a manner independent of offspring genotype.

DNA methylation likely influences gametogenesis in eusocial insects. A study of
caste-specific gene expression patterns in the bumblebee B. terrestris found TET2 expression
in drone testes to be very high [61], suggesting a need for demethylation in the process of
sperm production. Conversely, DNMT3, the de novo DNA methyltransferase, is highly
expressed in testes of the termite R. speratus [95] and in ovaries and embryos of the fire
ant Solenopsis invicta [96]. High levels of DNMT1 (Table 1), the maintenance DNA methyl-
transferase, are present in testes of S. invicta [96]. This raises the possibility that different
forms of methylation are required in testes and ovaries of different species. In S. invicta
for example, methylation marks might be maintained in sperm during cell division. In
ovaries and embryos, on the other hand, epigenetic reprogramming (Table 1) might occur
via establishment of new methylation marks. Further study in B. terrestris has illustrated a
relationship between methylation and egg production of queens. Treatment with a methy-
lation inhibitor results in higher egg production by queens, and differential methylation
of loci involved in oogenesis [97]. However, as most insects are featured with gene body
methylation which is not associated with transcriptional repression, it is not clear how
induced methylation differences modify gene expression in bumblebees. Furthermore, the
aforementioned study did not examine the expression levels of any identified differentially
methylated genes. This is an area of research worthy of more focus.

Most eusocial insects are rigid in their eusociality, except for a few facultatively
eusocial species such as the Megalopta genalis sweat bee. Females of this species nest either
socially or solitarily, so they are good candidates for comparative studies and may be a
reasonable model for eusocial evolution. Female gene expression differs between eusocial
and solitary nesting phenotypes and shows correlation to developmental gene expression
changes [98]. Understanding how gene expression differs between social and solitary
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groups could add a significant component to our knowledge of the underlying changes
that have led to advanced sociality and nesting behavior.

After fertilization and egg-laying, further epigenetic modifications related to hor-
mones and molting periods take place. RNA interference (RNAi) of histone methyltransferase
4–20 (Hmt4-20) in Z. nevadensis resulted in extended developmental stages. This is likely
due to delayed JH action, as expression of JH synthetic genes and JH signaling genes were
decreased in Hmt4-20 RNAi [99], and the hormone itself is critical for termite development
and caste determination [38,100]. Evidently, epigenetic mechanisms have significant influ-
ence over insect development. The gene targeted in the aforementioned study has only
been examined in the context of termites, and so similar research should investigate other
members of the Hymenoptera to identify epigenetic mechanisms potentially controlling JH
synthesis and molting periods.

4. Age-Dependent Behavior, Aging, and Longevity

Eusocial insects display variable lifespans among castes, with queens living notably
longer than workers. Differential lifespan in queens vs. workers may arise without genetic
change, and instead under epigenetic control, modifying phenotype without influencing
genotype [101]. In addition, multiple environmental factors may modulate epigenetic
system and gene expression, thereby altering lifespan of individuals within the same caste.

Environmental factors, such as seasonality, impact longevity in honeybees. In warmer
seasons, honeybees live only a few weeks. During the winter season, honeybees from
the same hive may live for months. Differences in gene expression are likely involved in
this stark difference, suggesting epigenetic involvement. The hypopharyngeal glands of
honeybees are responsible for secreting royal jelly proteins, important for queen develop-
ment [102]. In captive honeybee colonies, workers are put in an induced low-activity state
to help their overwintering. Consequentially, the hypopharyngeal glands are suppressed
during the winter, while they are activated in warmer months by colony activity [103]. DNA
methylation may facilitate the restoration of atrophied hypopharyngeal glands, specifically
regulating epidermal growth factor receptor (EGFR) and forkhead box protein O (FOXO)
genes [104].

Parasites are also capable of impacting longevity in ants. Temnothorax nylanderi ants are
an intermediate host to the tapeworm species Anomotaenia brevis. Infected workers display
increased fecundity and longevity comparable to that of a queen, even though they are not
of a royal caste [105]. Queens and infected workers share high expression of one known anti-
aging gene, carboxypeptidase B [106], which has a suggested role in delayed senescence [107].
Enhanced lifespan of infected workers may also be due to overexpression of immunity-
related genes, although there is little overlap between immunity gene expression in queens
vs. infected workers [106]. Future research may benefit from examining the relationship
between increased fecundity and longevity in infected workers to better understand the
physiological changes that occur when a worker is parasitized.

Non-reproductive H. saltator ant workers may undergo transition into fertile pseudo-
queens (“gamergates”) (Table 1) without experiencing genomic change. The transition is
accompanied by a change in nervous cell composition, e.g., with gamergates experiencing
a ~40% increase in neuroprotective ensheathing glial cells in the brain [73]. This change
in cellular composition may contribute to an increased longevity in gamergates, fivefold
in comparison to workers, by allowing the brain to actively respond to damage as the
individual ages [73]. In addition, a damage responsive gene Mmp-1 is upregulated in
gamergates, providing a molecular mechanism responsible for their longer lifespan [73].
Gene expression changes in the ovaries and fat bodies occur, preluded by initial gene
expression changes in the brain of the transitioning individual. These changes included in-
creased ecdysone, Ins, ELOV, and Vg, and decreased JH, corazonin, and Gp-9 [33] (Figure 3).
Interestingly, gamergates can be reverted to regain worker phenotypes [108]. The gamer-
gate transition involves a reduction in brain size and activation of the ovaries, but when
reverted, the original brain size is restored, and the ovaries are inactivated once again.
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Gamergates exhibit fertility-signaling cuticular hydrocarbons (CHCs) and a reduction in
venom gland size, features that also revert when gamergates switch back to a worker
phenotype. Changes in gene expression (notably decreased Vg and ELOV expression) also
occur during reversion [108] (Figure 3).
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Figure 3. Harpegnathos saltator workers undergo changes in gene expression and tissue structure to become reproductive
gamergates. In the absence of queen pheromones, workers will commence dueling, a behavior in which antennal strikes are
rapidly exchanged between workers. Victors will become destined reproductive. Changes in gene expression in the brain
will trigger gene expression changes in fat bodies and ovaries, eventually resulting in reproductive status. The gamergate
state is not permanent and can be reversed following isolation and subsequent introduction to the pheromone of another
reproductive. Changes in gene expression and tissue structure undergo reversion, and the gamergate behaves like a regular
worker once again. The brain figure is adapted from Smith et al., 2016 [109], and the ovary images are adapted from
Gospocic et al., 2017 [32].

The process of aging in eusocial insects varies among different species and castes,
and in some cases behavioral changes are associated with age. A. mellifera honeybees
undergo a behavioral switch as they age, transitioning from performing tasks within the
nest, such as nursing, to performing tasks that involve leaving the nest, such as foraging.
This is associated with hormonal fluctuations, namely a decrease in Vg and an increase
in JH levels (Figure 1), which promotes the foraging behavior [110]. There may be a
relationship between methylation and this hormonal aspect of aging, as inhibiting DNMTs
in mature honeybees results in increased Vg levels and longevity [111]. This suggests that
Vg acts independently of JH, with increased levels generating a longer lifespan regardless
of JH levels. While there appears to be a connection between methylation, Vg levels, and
longevity, it is not understood how methylation affects Vg.

The age-dependent behavioral switch from nurse to forager is thought to be associated
with lncRNAs TCONS_00207749 and TCONS_00207751, which target the foraging gene
for inhibition. foraging has higher expression in foragers than in nurses and helps to
regulate the behavioral transition from one state to the other [112]. Consistent with this,
TCONS_00207749 and TCONS_00207751 have low expression in foragers [113], allowing
foraging to attain the higher expression levels seen in foraging behaviors (Figure 1). This
suggests a correlation between these lncRNAs and age-dependent behavioral plasticity, and
it is assumed that lncRNAs might be responsible for the inhibition of foraging during the
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young nursing stage and their lower expression may be responsible for foraging expression
during the older foraging stage. However, functional analysis is not performed yet to
address the role of lncRNAs in age-dependent behavioral transition.

5. Social Communication

Eusocial insects coexist in groups that often populate into thousands and millions of
individuals. Social stimuli, such as pheromones and other volatile molecules, dominance
behavior, and presence of brood can all impact the behavior and functional status of
the colony. Although behavioral consequences of social interactions have been well-
studied in vertebrates [114,115], there is much yet unknown in eusocial insects. In better
understanding the molecular nature of eusocial insect interactions and social context, we
may gain insight into their evolution and their highly cooperative nature.

Eusocial insect colony structure is somewhat plastic in that the relative propor-
tion of brood to workers varies over time. Colony dynamics have profound effects on
different aspects of A. mellifera physiology, including impacting longevity and worker
behavior [116–121]. Findings have illustrated a relationship between DNMTs and social
context in A. mellifera workers [122]. Brood presence affects dnmt3 and dnmt1 transcript
levels, suggesting that some DNA methylation may be occurring in a manner dependent
upon colony composition [122].

Much of the communication that occurs within a colony is a result of pheromones and
other volatile chemicals (chemical communication is reviewed in [51], and the evolution
of the insect olfactory system is reviewed in [123]), and it is worth noting that dnmt3
expression is associated with queen-related pheromonal cues in honeybees as well as in
ants [124]. Queen mandibular pheromone (QMP) manipulates a variety of physiological
traits of honeybee workers, including reproductive inhibition [125,126], learning [127], and
various aspects of behavior [128,129]. QMP action may depend on epigenetic mechanisms
in the brains of worker honeybees, as expression of dnmt3 and histone modifier genes (such
as lysine acetyltransferase 8, aka kat8, associated with acetylation, and histone deacetylase 1,
aka hdac1, associated with deacetylation) increase in worker brains when exposed to QMP
(Figure 2) [130]. Further studies should investigate how queen-related and brood-related
pheromones impact worker DNA methylation levels, and thus may impact different aspects
of worker physiology and colony dynamics.

6. Neural Tissue and Functionality

Eusocial insect behavior and caste systems are influenced by a variety of factors, many
of which have already been discussed above in this review. The interconnectedness of these
factors leads to epigenetic regulation of genes within the nervous tissues of eusocial insects.

Epigenetic mechanisms acting at different developmental stages are responsible for
differential brain development in A. mellifera workers and queens [131]. tum, mnb, Tor, and
insulin receptor 1 (InR-1) genes are expressed at greater rates in workers than queens during
development. In contrast, insulin-like growth factor (IGF, see Table 1) is expressed more
in queens during the same phase [131]. Notably, tum and mnb have known neurogenic
function [132,133], while RNAi knockdown of Tor has been shown to induce a worker
phenotype by reducing JH levels in queen-destined larvae [134]. Differential expression
of certain genes during development leads to morphological distinctions between worker
and queen brain structures [131].

Altered gene expression in the brain is also associated with the dramatic caste switch-
ing observed in H. saltator gamergates. Expression of corazonin in the brain is notably
downregulated and insulin (Ins, see Table 1) level in the brain is increased, along with a
global decline in JH levels. Decreased JH levels and lowered corazonin expression contribute
to increased Vg expression in reproductive tissues [33] (Figures 2 and 3). The change in Ins
levels is also supported by work in the clonal raider ant Ooceraea biroi, in which worker
ovaries can be strongly activated using Ins supplementation [34]. Notably these changes
in gene expression likely reflect the need to alter the phenotype of the ant from worker to
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reproductive pseudoqueen, and alterations to the molecular workings of the brain may be
key components of this transition. Some of these genes, such as corazonin and Ins, are likely
conserved DEGs related to reproductive capabilities in different eusocial insect groups.

The activation and inhibition of DNA methylation in honeybees can affect learning
and odor memory [135], and have been linked to long-term memory formation and re-
learning [136–138]. Examination of mushroom bodies (Table 1) in A. mellifera has shown a
positive relationship between methylation levels and olfactory learning [139].

DNA methylation in honeybee neural tissue is likely a powerful determinant of behav-
ior. Behavioral diversity in A. mellifera is of great interest in the entomological community
due to the drastic differences in aggression between honeybee subspecies. Africanized
honeybees (A. m. scutellata) are far more aggressive than the European (or western) hon-
eybee. Previous work illustrated differential expression of aggression-related genes in
the brains of Africanized honeybees and other subspecies [140], as well as methylation
differences between subspecies [141]. In European honeybees, the brain undergoes molec-
ular changes and altered gene expression when aggressive behavior is necessary [142–146].
Aggression-specific methylation profiles in European honeybees were recently reported,
also providing the first evidence of an epigenetic component of aggression in bees [147].
Interestingly, some of the differential methylation resulting from aggressive behavior in
European honeybees overlaps with differential methylation between the Africanized and
European subspecies [141,147]. This suggests possible conserved epigenetic regulation of
aggressive behaviors.

miRNAs are thought to play a critical role in eusocial evolution by participating
in regulation of socially important traits. Evidence suggests that social and solitary bee
species express different neural miRNAs [148]. One hundred and fourteen and ninety-
seven miRNAs have also been identified in brain tissues of the Formosan subterranean
termite Coptotermes formosanus and R. speratus termites, respectively [149]. The miRNAs
miR-11-3p and miR-13b-3p, found in both species, are among the most upregulated [149].
These miRNAs target genes important for neural function, including Comm2, fra, FucTA,
Ara, Cas, and other genes [149–153]. It is still not understood how miRNAs expressed by
the brain affect transcription of genes linked to eusociality, providing basis for future study.

lncRNAs have also been shown to function in eusocial insect nervous systems. In
H. saltator and C. floridanus, 438 and 359 nervous tissue lncRNAs have been identified,
respectively [154]. A few of the lncRNAs identified in brain tissue include XLOC_044583,
XLOC_109542, XLOC_001194. The first is associated with various brain regions, and
the other two with the non-visual brain and the optic lobe, respectively [154]. These
lncRNAs could potentially play a role in development and function of the nervous system
in eusocial insects.

Future research should compare the epigenetic modifications occurring in neural
tissue in eusocial and solitary species, as well as queens and workers of eusocial species.
For example, recent comparative analysis of the transcriptomes of queen, male, gyne,
and worker brains in the pharaoh ant Monomorium pharaonis identified where they dif-
fer (Figure 2) [37]. Studies such as these are important for building the foundation for
future studies of epigenetic mechanisms. To gain a better understanding of the epigenetic
pathways regulating neural plasticity, epigenome and transcriptome profiles should be
established using brain tissue from workers, queens, and males from both eusocial and
solitary insect species, followed by functional analysis, e.g., in model eusocial insects
(as below). Only then can we begin to understand insect nervous system development
and regulation.

7. Transgenerational Epigenetic Inheritance

Epigenetic modifications and molecular mechanisms play well-established roles in
affecting gene function and regulation in eusocial insects, as well as in other invertebrates
and vertebrate animals. However, whether epigenetic modifications (e.g., DNA methyla-
tion) are heritable across generations in insects is still debated. In mammals, methylation
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marks are erased and re-established during early embryo development [28,155]. This
pattern hinders epigenetic inheritance in mammalian reproduction, though it does oc-
cur to a small extent. Whether a similar pattern occurs consistently across insect groups
remains to be determined. Previous studies have suggested parental effects in social
insects [57,156–158]. However, there has been little evidence to prove that transgenera-
tional epigenetic inheritance is specifically responsible for these observed parental effects.

It is well-established that the level of DNA methylation observed in eusocial insects
is relatively lower than what is observed in vertebrates [56,57], and primarily located at
gene body regions, which are not associated with gene silencing [57,58]. Studies on epige-
netic remodeling and methylation reprogramming in invertebrates (namely in A. mellifera)
have shown methylation marks to remain relatively stable during embryogenesis, sug-
gesting that eusocial insects may differ from vertebrates in their ability to maintain DNA
methylation marks across generations [159,160].

Patriline differences have been shown to affect worker characteristics, including
reproductive traits [161], suggesting that there are heritable paternal effects being passed
down from drone to worker. While these differences could have an exclusively genetic
basis, honeybee drones also possess individual-specific patterns of DNA methylation in
their semen, raising the possibility that patriline-specific methylation patterns could be
inherited by a drone’s daughters [162]. In the case of honeybees, male drones are haploid,
and thus all the sperm of a drone is genetically identical. In assuming that epigenetic marks
in honeybees are not reprogrammed during embryogenesis, the epigenetic marks present
in a drone’s semen should not undergo extensive change from the point of fertilization on
through the development of the daughter worker. Consequentially, a drone’s daughters
should share 100% of their paternal methylome with their sisters. Indeed, there is evidence
that is consistent with this notion, as workers share a high proportion of methylated sites
with their fathers in a patriline-specific manner, differing in methylation patterns from
their half-sisters [163]. While this provides evidence for heritable epigenetic effects in
honeybees, these effects are only intergenerational (across two generations). For these
effects to be considered transgenerational, further study needs to prove their heritability
across multiple generations.

Little focus has been placed on matriline-specific methylation and worker inheritance
of queen epigenetic marks. It is possible that workers inherit some maternal methylation
marks. However, if no reprogramming occurs, queens would be expected to give rise
only to queens in offspring. Yet, honeybee queens give rise to workers who possess
higher levels of methylation. Queen and worker caste development seems to rely to
some extent on different levels of methylation and de novo methylation by DNMT3, as
discussed previously in the body of this review [58,59]. These ideas suggest that some
degree of epigenetic reprogramming likely occurs in eusocial insects, at least in a matriline-
specific manner.

While honeybees may inherit epigenetic marks from their parents, whether there a
true lack of reprogramming is debatable. Evidence from work in S. invicta suggests that
some level of erasure and reprogramming occurs in Hymenopteran development. dnmt3 is
highly expressed in ovaries and in embryos of this ant [96], as well as in testes of termite
R. speratus [95]. Why would this methyltransferase be present in gametogenesis unless de
novo methylation were occurring? Perhaps methylation marks are erased and rewritten
during gametogenesis, but with near-complete fidelity. This may give the illusion that
these insects lack developmental reprogramming. Alternatively, perhaps reprogramming
does not occur in early embryo development, but rather later in the larval stage to result
in queen and worker phenotypes. Finally, it is possible that DNMT genes play roles
beyond methylation. Perhaps observed dnmt expression is not a sign of methylation, but
rather these genes serve some other role in reproduction that has not been identified in
eusocial insects. This is evidenced by studies in non-eusocial species, such as the red
flour beetle Tribolium castaneum, a species with little to no observable DNA methylation
that still expresses dnmt1 through its entire life cycle. Knockdown of the gene in beetle
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mothers is associated with high offspring mortality [66]. Given the lack of methylation
in this species in conjunction with the apparent necessity of dnmt1, it is suggested that
DNMT genes may serve multiple roles in insects. dnmt1 has also been shown in other
insects to play a potential role in female fecundity and in embryo survival, including in
one species of wasp [164–166]. Further study from this perspective may yield interesting
and novel results.

8. Eusocial Insects as Models

Through the pioneering efforts of early researchers in the field, genetic and epige-
netic studies of eusocial insects have become more numerous and easier to perform as
our understanding of the field has improved. Establishment of genetic tools in eusocial
insects continues to expand into new species. The CRISPR/Cas9 system has notably been
established in three ant species, H. saltator [167,168], O. biroi [169], and most recently in
the fire ant S. invicta [170]. CRISPR/Cas9 [171–176] and transgenesis [177,178] have also
been established in the honeybee A. mellifera. Such tool development and its application in
functional studies are foundational for future molecular work, as continued progress of
epigenetic studies in eusocial insects depends on constant improvement of our manipula-
bility of enzymes that catalyze epigenetic modifications. Precise epigenome editing has
been widely used in mammals (reviewed in [179,180]). With continued development of
genetic tools, similar approaches will be applied to eusocial insects in the future.

Eusocial insects exhibit arguably the highest degree of social organization of any
animal group. Furthermore, they exhibit incredible potential for serving as models for
epigenetic modifications and mechanisms. Due to their plasticity (i.e., the ability to develop
a variety of castes within a single colony) and the increasing number of species which can
be kept in labs, they present opportunities for unique research focused on the evolution
of social behavior and the phenotypic diversity differentiating these groups from other
insects, studies which cannot be done in other insect groups. While these insects present
complex phenotypes, they are relatively simple systems in terms of body structure and
neuroanatomy, evidencing the benefits of using such organisms for studies that may be
more difficult to perform in complex mammalian model systems. Continuing to sequence
genomes and transcriptomes of these insects will provide novel targets for functional
analysis using genetic and epigenetic tools in diverse eusocial insects, allowing for better
insights into the mechanisms underlying eusociality.

9. Conclusions

The last several years have seen important advancements in our understanding of
epigenetic mechanisms in eusocial insects. Indeed, scientists have made breakthroughs in a
variety of entomological and genetic subfields, expanding our knowledge of the molecular
underpinnings of eusocial insect development, neuroscience, and behavior. Now more
than ever, research is illustrating the importance of epigenetics in deciphering the unique
features exhibited by eusocial insects, such as their diverse caste structures as well as their
plasticity in reproductive capabilities and longevity. It is this natural plasticity, along with
the increasing ease of rearing social insects in laboratory settings, that makes this group
suitable for epigenetic study.

Despite continual advancements in our understanding of eusocial insects, there are still
many questions remaining to be answered. Caste determination appears to be regulated
at least in part by epigenetic factors, but how conserved this regulation is across species
remains to be seen. Of particular interest is the ability of some species to transition
from non-reproductive to reproductive caste, extending a lifespan several times longer
than that of a normal worker. The molecular mechanisms underlying this transition are of
growing interest and considerable importance to aging research. Other notable unanswered
questions involve whether epigenetic modifications are heritable across generations, and
whether Hymenopterans and termites undergo any epigenetic reprogramming during
development. Additionally, it is worthwhile to continue studying epigenetic modifications
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from a behavioral perspective, as such study could be beneficial to ecology and pest
management. Given the continual expansion of this field into more species, the rich new
findings that are being made, and the increasing ease of performing such studies, epigenetic
research in eusocial insects will continue developing into a fruitful field.
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