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Abstract

The opportunistic human pathogenic fungus Aspergillus fumigatus is able to produce the dark brown pigment pyomelanin
by degradation of L-tyrosine. Pyomelanin was shown to protect the fungus against reactive oxygen intermediates as well as
cell wall disturbing compounds and is therefore assumed to protect against immune effector cells during the infection
process. Several genes for tyrosine degradation and pyomelanin formation are organized in a cluster in the genome of A.
fumigatus. Here, we aimed at further analyzing tyrosine degradation and a possible role of pyomelanin in virulence. For this
purpose, the function of two not yet characterized genes of the cluster, i.e., hmgX and hmgR, was analyzed. Generation of
corresponding gene deletion mutants and reconstituted strains revealed that hmgX and hmgR are essential for tyrosine
degradation. Both mutants, DhmgX and DhmgR, were not able to use tyrosine as sole carbon or nitrogen source and
revealed impaired pyomelanin production. HmgR harbors a Zn(II)2Cys6-DNA binding domain. Analyses of the steady state
mRNA levels revealed that HmgR acts as a transcriptional activator for the genes of the tyrosine degradation cluster.
Consistently, an HmgR-eGFP fusion protein was localized in the nucleus of A. fumigatus cells. By contrast, HmgX was found
to be localized in the cytoplasm and does not contribute to regulation of gene transcription. HPLC analyses showed that
HmgX is crucial for the conversion of p-hydroxyphenylpyruvate to homogentisic acid, the main intermediate in pyomelanin
formation. Thus, HmgX is supposed to function as an accessory factor to mediate specific activity of HppD. Remarkably, the
ability to degrade tyrosine and to form pyomelanin is dispensable for virulence of A. fumigatus in a murine infection model.

Citation: Keller S, Macheleidt J, Scherlach K, Schmaler-Ripcke J, Jacobsen ID, et al. (2011) Pyomelanin Formation in Aspergillus fumigatus Requires HmgX and the
Transcriptional Activator HmgR but Is Dispensable for Virulence. PLoS ONE 6(10): e26604. doi:10.1371/journal.pone.0026604

Editor: Neeraj Chauhan, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, United States of America

Received June 21, 2011; Accepted September 29, 2011; Published October 27, 2011

Copyright: � 2011 Keller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was in part funded by the excellence graduate school, Jena School for Microbial Communication (JSMC; www.jsmc.uni-jena.de). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: axel.brakhage@hki-jena.de (AAB); thorsten.heinekamp@hki-jena.de (TH)

. These authors contributed equally to this work.

Introduction

The ascomycete fungus Aspergillus fumigatus is the clinically most

important member of the genus Aspergillus [1]. A. fumigatus is a

ubiquitous soil inhabitant feeding on organic material, thereby

playing a key role in recycling carbon and nitrogen sources [2]. A.

fumigatus produces small conidia that are distributed in the air and

are continuously inhaled by breathing organisms [3]. Normally,

inhaled conidia are cleared by the innate immune system [4].

Patients with a compromised immune system are not able to clear

inhaled spores and therefore are at high risk to acquire an invasive

infection.

A. fumigatus produces the pigment dihydroxynaphthalene (DHN)

melanin, responsible for the characteristic gray-green color of the

conidia. In general, melanins play protective roles in fungi and

other organisms. For example, they protect against UV radiation,

enhance cell wall integrity and mediate increased resistance

against enzymatic lysis, oxidative agents, and extreme temperature

[5]. In some plant and animal pathogenic fungi, the protective and

stabilizing activities of melanins represent virulence determinants

[6,7]. Melanins reduce the susceptibility against reactive nitrogen

and oxygen intermediates (ROI) produced by the host immune

system [8]. In A. fumigatus, the polyketide synthase PksP is the key

enzyme in the biosynthesis of DHN-melanin. Mutants deficient for

PksP produce white conidia and are attenuated in virulence [9].

DHN-melanin has been shown to protect A. fumigatus against ROI,

derived from host immune effector cells. It also has an effect on

phagolysosome maturation and thereby killing of A. fumigatus

conidia [6,10,11,12].

Recently, it was shown that A. fumigatus is able to produce the

brownish pigment pyomelanin as an alternative melanin [13]. At

first, pyomelanin was identified in the bacterium Pseudomonas

aeruginosa [14], and later on it was also described for other bacteria

and fungi, e.g., Shewanella colwelliana [15], Yarrowia lipolytica [16]

and Vibrio cholerae [17]. Pyomelanin is produced via degradation of

L-tyrosine with homogentisic acid (HGA) as the main intermediate

(Figure 1A). In higher eukaryotes, especially in humans, the HGA

pathway has been subject to detailed investigations as the origin of
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several metabolic disorders, e.g., phenylketonuria, alkaptonuria,

tyrosinaemia, and Hawkinsinuria, that have been linked to

enzymatic defects in phenylalanine and tyrosine catabolism [18].

The tyrosine degradation pathway was also investigated in the

model organism Aspergillus nidulans [19,20]. In A. fumigatus, two

enzymes of the tyrosine degradation pathway, p-hydroxyphenyl-

pyruvate dioxygenase (HppD) and homogentisate dioxygenase

(HmgA), were recently characterized in detail [13]. Deletion of

hppD prevents synthesis of HGA and consequently pyomelanin. By

contrast, deletion of hmgA prevents the enzymatic degradation of

HGA, resulting in HGA accumulation and increased pyomelanin

formation.

Remarkably, genes involved in tyrosine degradation, hppD,

hmgA, maiA and fahA, are organized in a cluster in the genome of A.

fumigatus. Here, we present data on the functional characterization

of two previously uncharacterized genes, AFUA_2G04210 and

AFUA_2G04262, that are also localized within the tyrosine

degradation cluster in A. fumigatus (Fig. 1B). We were able to show

that both genes play crucial roles in tyrosine degradation and

pyomelanin formation. However, the ability to degrade tyrosine

and to form pyomelanin does not contribute to fungal induced

mortality at least in a murine infection model for invasive

pulmonary aspergillosis.

Materials and Methods

Fungal strains and growth conditions
All A. fumigatus strains used in this study are listed in Table S1.

Wild-type strains CEA10 and DakuB [21] were used for generation

of mutants. A. fumigatus was cultivated at 37uC on Aspergillus

minimal medium (AMM) agar plates or in AMM as described

previously [22]. Unless noted otherwise, 50 mM glucose and

70 mM nitrate were used as sole carbon and nitrogen sources. The

medium was supplemented with 0.1 mg/l pyrithiamine (Sigma-

Aldrich, Germany) or 250 mg/l hygromycin (InvivoGen, France)

when required. Conidia were harvested in sterile water. For

protein extraction, 16107 conidia were cultivated in 100 ml AMM

for 16 h. When indicated, L-tyrosine was added to the medium in

a final concentration of 10 mM. After further cultivation for 12 h

the mycelium was harvested using miracloth (Calbiochem,

Germany).

Manipulation of DNA, Southern blot and Northern blot
analyses

Manipulation of DNA was carried out according to standard

procedures [23]. Sequence information were obtained from the

Central Aspergillus Data REpository CADRE (www.cadre-genomes.

Figure 1. Tyrosine degradation pathway and cluster organization. (A) Enzymes involved in degradation of L-phenylalanine and L-tyrosine
are phenylalanine hydroxylase (PhhA), tyrosine aminotransferase (Tat), p-hydroxyphenylpyruvate dioxygenase (HppD), homogentisate dioxygenase
(HmgA), 4-maleylacetoacetate isomerase (MaiA) and 4-fumarylacetoacetate hydrolase (FahA). Oxidation (O) and polymerization of homogentisate
leads to formation of pyomelanin. (B) The tyrosine degradation cluster in A. fumigatus [13] encodes four enzymes involved in degradation of tyrosine
as well as HmgX (AFUA_2G04210) and the transcriptional regulator HmgR (AFUA_2G04262). Genes are indicated as arrows.
doi:10.1371/journal.pone.0026604.g001
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org.uk) [24]. All oligonucleotides used in this study are listed in

Table S2. Chromosomal DNA of A. fumigatus was isolated using the

MasterPure Yeast DNA purification kit (Epicentre Biotechnologies,

USA). Southern blot analysis was performed as described previously

[25]. For RNA isolation, 56107 conidia of A. fumigatus were pre-

cultivated in 50 ml AMM for 16 h. Then, either supplements (L-

phenylalanine, L-tyrosine, p-hydroxyphenylpyruvate or homogen-

tisate) were added in a final concentration of 10 mM or the

mycelium was shifted to AMM without a carbon or nitrogen source

and harvested after additional incubation for up to 12 h. Total

RNA was isolated using the TriSure reagent (Bioline, Germany)

according to the manufacturer’s instructions. For Northern blot

analyses, 10 mg of RNA were separated on a denaturing agarose gel

and transferred onto a Hybond N+membrane (GE Healthcare Bio-

Sciences, Germany). Probe labeling, hybridization and detection

were performed with the digoxigenin (DIG) labeling mix, DIG Easy

Hyb, and the CDP-Star ready-to-use kit (Roche, Germany)

according to the manufacturer’s recommendations. cDNA synthesis

and reverse transcription PCR was performed as described

previously [13].

Construction of recombinant A. fumigatus strains
To generate an hmgX deletion strain, a DNA fragment was

created by PCR-based amplification of a 1.5 kb sequence

containing the hmgX gene and flanking regions using primers

hmgX5for and hmgX3rev and wild-type genomic DNA as

template. The resulting PCR product was cloned into pCR2.1

(Invitrogen, Germany), yielding pCR2.1 hmgX. The pyrithiamine

resistance cassette (ptrA) was obtained from plasmid pCR2.1 Mpka/

ptrA (kindly provided by V. Valiante, HKI Jena, Germany) by

restriction with DraI and SmaI. The ptrA fragment was ligated into

pCR2.1 hmgX at a single HincII site, located in the center of the

hmgX gene via blunt end cloning, resulting in vector pCR2.1 hmgX-

ptrA. Using this plasmid as template, a 3.7 kb DNA fragment was

amplified by PCR using Phusion high fidelity polymerase

(Finnzymes, Finland) with primers hmgX5for and hmgX3rev and

used for transformation of A. fumigatus.

Complementation of strain DhmgX was achieved by transfor-

mation of strain DhmgX with plasmid pCR2.1 hmgX. The ability to

grow on tyrosine as sole carbon source was used as selective

marker and the generated strain was designated as hmgXc.

For deletion of both hmgX and the adjacent hmgA gene, flanking

regions were generated in separate PCR reactions using primer

pairs hmgX5for/hmgX-ptrA5rev and hmgA5rev/hmgA-ptrA5-

for. The ptrA fragment was amplified from plasmid pSK275 [26]

with primers ptrAforII and ptrArevII. All three DNA fragments

were subjected to a fusion PCR using primers hmgX5for and

hmgA5for, resulting in amplification of a 3.5 kb construct that was

used to transform A. fumigatus strain DakuB.

Generation of an hmgX-egfp fusion strain was done as follows:

Using primers HmgX-Acc65Ifor and HmgX-BamHIrev the hmgX

gene and promoter region were amplified with genomic wild-type

DNA as template. The PCR product encoding BamHI and Acc65I

cleavage sites at its ends was cloned into pJET1.2 (Fermentas,

Germany) yielding plasmid pJET-hmgX. Plasmids pJET-hmgX and

pUCGH [27] were then digested using restriction endonucleases

Acc65I and BamHI, thereby removing the otef promoter sequence

present on plasmid pUCGH. The hmgX fragment was finally

ligated to pUCGH vector backbone via BamHI and Acc65I sites

resulting in plasmid pUCGHhmgXp-hmgX that was used to

transform A. fumigatus wild-type strain CEA10.

To obtain the hmgR deletion plasmid, the hmgR gene, including

up- and downstream flanking regions of 1.0 kb, was amplified by

PCR using the oligonucleotides Tf_Tyr_up and Tf_Tyr_down.

The generated DNA fragment was cloned into plasmid pCR2.1.

The obtained plasmid pCR2.1 hmgR was used as template for an

inverse PCR with the primers Tf_Tyr_SfiI_up and Tf_Tyr_SfiI_

down to modify the ends of the flanking regions with SfiI

restriction sites and to remove the hmgR coding sequence. After SfiI

digestion of the PCR product, the pyrithiamine resistance gene

(ptrA) from plasmid pSK275 was integrated into the SfiI restriction

sites, resulting in the deletion plasmid pCR2.1DhmgR-ptrA. For

transformation of A. fumigatus, the ptrA gene with the hmgR flank-

ing regions was amplified by PCR with the oligonucleotides

Tf_Tyr_up and Tf_Tyr_down.

The phenotype of the DhmgR deletion mutant was reconstituted

with the help of plasmid pUCGH-hmgR, which possesses the fusion

gene hmgR-egfp under the control of the native hmgR promoter. To

obtain pUCGH-hmgR, the hmgR gene with its 1.0 kb promoter

region was amplified by PCR using the oligonucleotides

PyoTf_BamHIrev and PyoTf59_Acc65I. The generated PCR

product with introduced BamHI and Acc65I restriction sites was

then cloned into plasmid pJET1.2, yielding pJET-hmgR. The DNA

fragment was inserted into pUCGH via the Acc65I and BamHI

restriction sites. The resulting plasmid pUCGH-hmgR was used to

transform A. fumigatus strain DhmgR.

Extraction of proteins from A. fumigatus and enzyme
assays

Activity of the enzymes tyrosine aminotransferase (Tat) and

homogentisate dioxygenase (HmgA), as well as formation of

HGA from pHPP, was determined for protein crude extracts of

different A. fumigatus strains. Protein extracts were obtained by

sonification in 50 mM potassium phosphate buffer (pH 7.0)

followed by centrifugation for 15 min at 4uC and 16,0006g. The

supernatant was used as protein crude extract in enzyme assays

as described below. Determination of protein concentration was

performed using Coomassie Plus Protein Assay (Pierce Biotech-

nology, USA).

For determination of Tat activity the method of Collier and

Kohlhaw [28] was applied, with slight modifications. In brief,

100 mM potassium phosphate buffer (pH 7.5), 0.2 mM pyridoxal

phosphate, 2 mM L-tyrosine, 100 m/ml protein crude extract and

1 mM sulcotrione (Sigma-Aldrich, Germany) were pre-incubated

at 37uC for 15 min. To start the reaction 20 mM a-ketoglutarate

was added. The final reaction volume was 500 ml. After 10 min at

37uC the reaction was stopped with 500 ml 2 M NaOH thus

leading to the conversion of pHPP to p-hydroxybenzaldehyde [29],

which was measured spectrophotometrically at 330 nm. To

determine the specific activity of Tat the molar extinction

coefficient 19,500 M21 cm21 was employed [28].

Activity of HmgA was measured using the method described by

Fernandez-Canon and Penalva [30] modified according to

Schmaler-Ripcke, et al. [13].

HHGA formation by protein extracts
To determine activity of HppD, conversion of pHPP to HGA by

protein crude extracts was measured by HPLC. Therefore, the

HmgA activity assay was adapted as follows: 50 mM potassium

phosphate buffer (pH 7.0), 2 mM ascorbate, 50 mM FeSO4 and

100 mg/ml protein extract were mixed and pre-incubated for

15 min at room temperature. After addition of 200 mM pHPP in a

final volume of 200 ml the enzymatic reaction proceeded at room

temperature for 10 min and was stopped with 50 ml 10%(w/v)

trichloroacetic acid. Proteins were precipitated by centrifugation

for 10 min at 16,0006g and 4uC. The supernatant was analyzed

by HPLC.

Tyrosine Degradation in Aspergillus fumigatus
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HPLC analysis
To monitor formation of pHPP and HGA by A. fumigatus,

samples of culture supernatants were collected at different time

points during cultivation in presence of tyrosine and analyzed by

HPLC as described by Schmaler-Ripcke, et al. [13].

Fluorescence and light microscopy
For microscopic analysis, A. fumigatus strains were cultivated

over night on coverslips with or without tyrosine. For staining of

nuclei, Hoechst 33342 (Invitrogen, Germany) was added to the

medium in a final concentration of 10 mg/ml. Microscopic

photographs were taken on a Leica DM4500B digital fluorescence

microscope and for documentation a Leica DFC480 digital

camera (Leica Microsystems, Germany) was used. Images were

obtained and processed with Leica Application Suite 2.5.0R1.

Animal infection model
The virulence of the A. fumigatus mutant DhppD and the

corresponding complemented strain hppDc was tested in an

established murine model for invasive pulmonary aspergillosis

[31,32,33]. In brief, female BALB/c or CD-1 mice were

immunosuppressed with cortisone acetate (25 mg/mouse intra-

peritoneally; Sigma-Aldrich, Germany) on days23 and 0. Mice

were anesthetized and intranasally infected with 25 ml of a fresh

suspension containing 16105 conidia. A control group was mock-

infected with PBS to monitor the influence of the immunosup-

pression. The health status was monitored at least twice daily for

14 days and moribund animals (defined by severe dyspnoea and/

or severe lethargy) were sacrificed. Infections were performed with

a group of 10 mice for each tested strain. Lungs from euthanized

animals were removed, and either stored in RNAlater (Qiagen,

Germany) for RNA extraction or fixed in formalin and paraffin-

embedded for histopathological analyses according to standard

protocols. RNA isolation and first-strand cDNA synthesis from

infected lungs was performed as described previously [13,34].

Ethics statement
Mice were cared for in accordance with the principles outlined

by the European Convention for the Protection of Vertebrate

Animals Used for Experimental and Other Scientific Purposes

(European Treaty Series, no. 123; http://conventions.coe.int/

Treaty/en/Treaties/Html/123.htm). All animal experiments

Figure 2. Transcriptional analysis of hmgR and hmgX and phenotypic characterization of hmgX and hmgR mutant strains. (A)
A. fumigatus wild type was pre-cultivated in AMM and Northern blot analyses were performed to determine mRNA steady state levels of hmgR and
hmgX in cultures with (+) or without (-) addition of L-phenylalanine (Phe), L-tyrosine (Tyr), p-hydroxyphenylpyruvate (pHPP) or homogentisate (HGA).
A time course of induction of transcription of hmgR and hmgX by addition of tyrosine was analyzed in A. fumigatus wild type pre-cultivated for 16 h in
AMM at the indicated time points. Transcript levels for hmgR and hmgX were also determined in cultures starved in glucose (-Glucose) or nitrate
(-Nitrate). 28S rRNA bands are shown as loading control. (B) Formation of pyomelanin in the wild type (WT) and DhmgR, DhmgX and DhppD mutants
cultivated for 64 h in AMM containing tyrosine. (C) Growth of A. fumigatus wild type (WT), DhmgX and DhmgR mutants and reconstituted strains
hmgRc and hmgXc on different minimal medium agar plates.
doi:10.1371/journal.pone.0026604.g002
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were in compliance with the German animal protection law and

were approved by the responsible Federal State authority

‘‘Thüringer Landesamt für Lebensmittelsicherheit und Verbrau-

cherschutz’’ and ethics committee ‘‘Beratende Komission nach 1
15 Abs. 1 Tierschutzgesetz’’ with the permit number 03-001/08.

Results

Tyrosine degradation pathway and cluster organization
Several genes involved in tyrosine catabolism are organized in a

cluster within the genome of A. fumigatus. As shown in Fig. 1B, two

genes, AFUA_2G04262 and AFUA_2G04210, are part of the

cluster, whereas their function has not been analyzed before.

AFUA_2G04262 encodes a putative C6 zinc finger transcription

factor and is in the following named hmgR. The predicted

transcript of 2247 bp is composed of four exons and the deduced

protein has a size of 748 amino acids. AFUA_2G04210, in the

following designated hmgX, has a transcript length of 771 bp, and

does not contain any intron. No conserved domains and no

similarities to any proteins with known function can be attributed

to HmgX.

To investigate whether HmgX is also present in other

organisms, BLAST analysis with the A. fumigatus HmgX amino

acid sequence was performed using the tblastn algorithm (www.

ncbi.nlm.nih.gov/BLAST). Highest identities were found within

Ascomycota, all predicted as hypothetical proteins. In most

ascomycetes that were sequenced up to date, the hppD gene is

located adjacent to hmgX. In many cases, as it is found in A.

fumigatus, both genes appear to be under control of a bi-directional

promoter. In other organisms, such as Homo sapiens, the nematode

Caenorhabditis elegans and the slime mold Dictyostelium discoideum, no

homologs of hmgX were found.

Alignment of the A. fumigatus HppD amino acid sequence to the

sequence of three ascomycetes that encode an HmgX homolog

(Coccidioides immitis, Neurospora crassa, Magnaporthe grisea) and three

species without any apparent HmgX homolog (H. sapiens, C.

elegans, D. discoideum) (www.ebi.ac.uk/Tools/clustalw2) revealed

strong conservation of the HppD sequence among all organisms,

especially with regard to the C-terminus. However, at the N-

terminus a 13 amino acid sequence is specific for ascomycete fungi

and missing in other organisms which do not have an HmgX

homolog (Fig. S1).

Transcriptional analysis of hmgR and hmgX and
phenotypic characterization of hmgX and hmgR mutant
strains

By Northern blot analysis we were able to show that

transcription of all genes of the cluster is induced in the presence

of tyrosine (Fig. 2A and Fig. 3). By contrast, transcription of the

adjacent genes AFUA_2G04270 and AFUA_2G04190 was not

influenced by tyrosine (Fig. S2). To further analyze conditions

resulting in transcriptional activation of genes of the tyrosine

degradation cluster, the mRNA steady state level of hmgR and

hmgX was determined after addition of phenylalanine, tyrosine,

pHPP, and HGA, as well as under glucose or nitrogen starvation

conditions. Both, phenylalanine and pHPP induced transcription

of hmgR and hmgX to a slightly lesser extent compared to induction

by tyrosine. Interestingly, for hmgR two transcripts of different

length were detected. It remains to be elucidated, whether these

two transcripts are the result of alternative splicing events or

indicate the use of alternative transcription start points. Glucose

and nitrogen starvation also weakly induced transcription of hmgX

and hmgR (Fig. 2A).

To functionally characterize HmgX and HmgR, the mutant

strains DhmgX and DhmgR, as well as the corresponding

reconstituted strains hmgXc and hmgRc were generated (Fig. S3,

S4). Phenotypical analysis of DhmgX and DhmgR confirmed a key

role for HmgX and HmgR in pyomelanin formation and tyrosine

degradation: When cultivated in AMM in the presence of tyrosine,

DhmgX was unable to produce pyomelanin, similar to the DhppD

mutant, and DhmgR exhibited a drastically reduced pigment

Figure 3. Northern blot analysis of genes of the tyrosine degradation cluster in DhmgR and DhmgX mutants. mRNA steady state levels
of genes of the tyrosine degradation cluster in the wild type and in strain DhmgX (A) and strain DhmgR (B) were determined in cultures with (+) or
without (-) addition of tyrosine. 28S rRNA bands are shown as loading control.
doi:10.1371/journal.pone.0026604.g003
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production in comparison to the wild type (Fig. 2B). A. fumigatus is

able to use tyrosine as carbon and nitrogen source. Therefore, the

DhmgX and DhmgR mutants were analyzed with regard to their

ability to use tyrosine as sole carbon or nitrogen source. Both

mutants grew normally with glucose and nitrate as sole carbon and

nitrogen sources (Fig. 2C). However, DhmgX and DhmgR were

unable to grow on solid media with tyrosine as sole carbon or

nitrogen source in contrast to the wild type and the complemented

strains hmgXc and hmgRc. On agar plates containing tyrosine, the

wild type and reconstituted strains cleared the tyrosine crystals in

the medium and produced pyomelanin, visible as a halo

surrounding the colonies. This is in contrast to DhmgX and DhmgR

in which neither tyrosine degradation nor pyomelanin formation

occurred.

To test whether HmgX or HmgR act as transcriptional

regulator of tyrosine catabolism, the mRNA steady state level of

all genes within the cluster was determined in the wild type and the

DhmgX and DhmgR mutants (Fig. 3). While transcript levels of

hmgR, hmgA, fahA, hppD, and maiA were not affected in the hmgX

mutant, transcription of all cluster genes was nearly abolished in

the DhmgR mutant.

Localization of HmgR-eGFP and HmgX-eGFP fusion
proteins

To determine the localization of HmgR within A. fumigatus cells,

a mutant strain expressing an HmgR-eGFP fusion protein in the

DhmgR background was generated (Fig. S5). Transcription of

hmgR-egfp was controlled by the native hmgR promoter. Transfor-

mants regained the ability to produce pyomelanin and to use

tyrosine as sole carbon and nitrogen source, confirming function-

ality of the HmgR-eGFP-fusion protein. Using fluorescence

microscopy, localization of HmgR-eGFP was determined (Fig. 4,

left panel). Conidia were cultivated on coverslips in AMM with or

without addition of tyrosine. Without tyrosine, no fluorescence in

the fungal cells was visible. However, in the presence of tyrosine,

HmgR-eGFP was apparent in the nuclei. Fluorescence analysis of

an A. fumigatus mutant constitutively producing HmgR-eGFP (otefp-

hmgR-egfp, data not shown) revealed perpetual nuclear localization

Figure 4. Localization of HmgR-eGFP and HmgX-eGFP fusion proteins. For localization of HmgR and HmgX, conidia of strains hmgR-egfp
and hmgX-egfp were grown on coverslips in AMM with (+) or without (-) addition of tyrosine. Transcription of both egfp-fusion constructs is under
control of the native hmgR or hmgX promoter. Nuclei were stained with Hoechst 33342. Bright field, nuclei staining, eGFP-fluorescence and the
resulting overlay of the fluorescence images are shown for both strains in dependency of tyrosine. Scale bar = 10 mm.
doi:10.1371/journal.pone.0026604.g004
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of HmgR, suggesting that transport of HmgR to the nucleus

occurs independently from the presence of tyrosine. In contrast to

nuclear HmgR, an HmgX-eGFP fusion protein was found to be

present exclusively in the cytoplasm (Fig. 4, right panel).

Transcriptional control of hmgX-egfp was mediated by the native

hmgX promoter and consequently fluorescence beyond the

background level only occurred in the presence of tyrosine.

Determination of Tat and HmgA enzyme activities in the
DhmgX mutant and analysis of pHPP and HGA
production

The role of HmgX in tyrosine degradation was further

investigated by enzyme assays. Specific activity of tyrosine

aminotransferase (Tat) and homogentisate dioxygenase (HmgA)

was determined in protein crude extracts of the DhmgX mutant, the

wild type and the complemented strain hmgXc cultivated with or

without tyrosine (Fig. 5). Without tyrosine, only basal Tat activity

and no HmgA activity was detected in all strains. Remarkably,

after addition of tyrosine a strong increase in Tat and HmgA

activity occurred, which was always slightly stronger in the DhmgX

mutant. Heat inactivated crude extracts showed neither Tat nor

HmgA activity (data not shown).

Due to the fact that HppD activity can not be determined in a

spectrophotometric assay, the formation of the HppD substrate

pHPP and the product HGA was monitored by HPLC analyses in

culture supernatants of the wild type and the DhmgX mutant grown

in the presence of tyrosine (Fig. 6A). In a control experiment in

which the wild type was cultivated without addition of tyrosine,

neither pHPP nor HGA were detected. In the wild-type culture

supplemented with tyrosine, the concentration of pHPP only

increased slightly. However, in the DhmgX culture the pHPP

concentration significantly increased with a maximum at 56 h.

HGA was only detected in wild-type but not in DhmgX cultures

after addition of tyrosine.

To further analyze the role of HmgX, the conversion of pHPP

to HGA was monitored by HPLC in tyrosine-induced protein

crude extracts of strain DhmgA and a DhmgX/DhmgA double mutant

(Fig. 6B; Fig. S6). Using the crude extract from DhmgA, pHPP was

converted to HGA which accumulated due to the lack of HmgA

activity. By contrast, in the crude extract from the double deletion

strain DhmgX/DhmgA no HGA was detected, indicating that

HmgX is essential to convert pHPP to HGA.

Transcription of genes of the tyrosine degradation
cluster during infection and analysis of the role of
pyomelanin formation in pathogenicity

Finally, the potential role of tyrosine degradation and

pyomelanin formation for pathogenicity of A. fumigatus was

examined. First, transcription of hppD and hmgA was determined

in lungs of immunocompromised mice intranasally infected with A.

fumigatus wild-type conidia. The mice were sacrificed seven days

post infection and cDNA was synthesized from isolated lung tissue.

By reverse transcription PCR analysis, fungal mRNA steady-state

levels of hmgA and hppD were compared to A. fumigatus citA

transcripts (Fig. 7A) that served as control [34]. Additionally,

cDNA synthesized from non-infected mice lungs was tested with

the same oligonucleotides to ensure that the amplification products

of hppD and hmgA did not derive from murine cDNA. As control

for murine cDNA, the constitutively transcribed gene sftpD,

encoding murine surfactant protein D, was used [35]. In the

non-infected control lung, transcripts of sftpD were detected,

whereas no amplification of the A. fumigatus specific genes citA,

hppD and hmgA occurred. Similar mRNA steady-state levels for

hmgA, hppD and citA were found in cDNA samples obtained from

infected lungs. The ratios of hmgA and hppD compared to citA

indicated the induction of the tyrosine degradation cluster in vivo.

Therefore, tyrosine seems to be available in the lung and is

metabolized to HGA by A. fumigatus during invasive growth.

Next, the virulence of the DhppD mutant, deficient for

pyomelanin production due to deletion of the p-hydroxyphenyl-

pyruvate dioxygenase encoding gene, was compared to the

corresponding hppD reconstituted strain hppDc, that regained the

full ability to degrade tyrosine and to produce pyomelanin. Both

strains caused the same absolute mortality and similar survival

kinetics after infection of corticosteroid treated mice (Fig. 7B). Due

to immune suppression by cortisone acetate recruitment of

neutrophils and monocytes to the site of infection still occurs. In

accordance to the results obtained with the DhppD mutant,

virulence studies with hmgR mutant strains revealed as well no

differences in mortality (Fig. S7A). The presence of invasive

mycelia in the lungs of leucopenic mice infected with DhmgR or

hmgRc was confirmed by histopathology (Fig. S7B). The lungs of

PBS-infected mice are shown as control. In the infected lungs,

invasive hyphae are visible, surrounded by immune cells. The

presence of the immune cells prevents rapid fungal dissemination

and the mice die due to bronchopneumonia and not by hyphal

growth per se.

Taken together, although genes responsible for tyrosine

degradation and pyomelanin formation were expressed during

Figure 5. Determination of specific enzyme activity. The wild
type and strains DhmgX and hmgXc were cultivated in AMM with or
without addition of tyrosine. Protein crude extracts were used in
enzyme assays to determine specific activity of tyrosine aminotransfer-
ase (A) and homogentisate dioxygenase (B). Mean values and standard
deviations were calculated from three independent experiments.
Significance was calculated by a Student’s t-test and an asterisk
indicates P values,0.05.
doi:10.1371/journal.pone.0026604.g005
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infection, they are dispensable for virulence in corticosteroid-

treated mice.

Discussion

In A. fumigatus, tyrosine degradation occurs via HGA as the

central intermediate. HGA either can be degraded enzymatically

to acetoacetate and fumarate or can polymerize to the brownish

pigment pyomelanin [13]. The products acetoacetate and

fumarate can be used as carbon source. Additionally, tyrosine

can be used as nitrogen source by transferring the amino residue of

tyrosine via tyrosine aminotransferase activity to a-ketoglutarate

resulting in the formation of glutamate that can be further used for

synthesis of amino acids.

The genes involved in tyrosine catabolism are organized in a

cluster within the genome of A. fumigatus. This cluster is also

present in all other Aspergillus species for which full genome

sequences are available, e.g., A. clavatus, N. fischeri, A. niger, A. flavus,

A. oryzae, A. nidulans, and A. terreus (http://www.cadre-genomes.org.

uk). Clustered organization of genes that are involved in the same

metabolic process is not uncommon in filamentous fungi. For

example, the genes for ethanol, proline, and nitrate catabolism are

clustered, as are the genes for biosynthesis of secondary

metabolites [36,37,38].

HmgR is a transcriptional regulator of genes of the
tyrosine degradation cluster

Tyrosine catabolism via HGA was investigated in detail in A.

nidulans [19,39,40]. However, nothing was known about the

transcriptional regulation of the relevant genes in fungi. In

bacteria, regulation of tyrosine degradation has been studied for

Pseudomonas putida. In this organism, the HGA degrading enzymes

HmgA, MaiA and FahA are encoded by genes organized in a

cluster. In P. putida, a gene designated hmgR is also part of the

cluster. The corresponding gene product HmgR functions as

repressor of genes for HGA degradation [41]. In A. fumigatus, the

clustered organization of genes involved in tyrosine degradation as

well as their concerted transcription in the presence of tyrosine

imply the existence of a common regulator. Within the cluster,

hmgR encodes a putative transcription factor with a Zn(II)2Cys6-

Figure 6. Formation of p-hydroxyphenylpyruvate and homogentisate. (A) The wild type (WT) and the DhmgX mutant were cultivated with
(+) or without (-) addition of tyrosine. At the time points indicated, samples of the culture supernatant were taken and analyzed by HPLC to quantify
formation of p-hydroxyphenylpyruvate (pHPP) and homogentisate (HGA). (B) Strains DhmgA and DhmgX/DhmgA were cultivated in presence of
tyrosine. Conversion of pHPP to HGA by protein crude extracts was monitored by HPLC.
doi:10.1371/journal.pone.0026604.g006
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DNA-binding domain, which is exclusively found in fungi [42].

This type of transcription factors often harbors activation- and

dimerization domains, enabling them to bind to DNA as homo- or

heterodimers and act as activators or repressors [43]. HmgR

exhibits 40%identity to the transcriptional regulator Aro80p of

Saccharomyces cerevisiae. Aro80p was shown to be involved in

regulation of tyrosine degradation in yeast by binding to the aro9

promoter and subsequent activation of aro9 transcription in the

presence of aromatic amino acids. Aro9p is the responsible

enzyme for transamination of tyrosine to pHPP [44,45]. Here, we

could show that HmgR plays an important role in mediating

tyrosine-induced transcription of all genes of the tyrosine

degradation cluster. An HmgR-eGFP fusion protein was found

to be localized in the nucleus, furthermore corroborating the

hypothesis that HmgR functions as a transcriptional regulator.

Consistently, in the DhmgR mutant transcription of the tyrosine

degradation cluster genes was nearly completely abolished.

HmgR and HmgX play key roles in tyrosine degradation
and pyomelanin formation in A. fumigatus

As shown here, transcription of all genes was induced in the

presence of tyrosine or phenylalanine, indicating that hmgR and

hmgX are involved in tyrosine degradation. Furthermore, we

demonstrated that the tyrosine degradation cluster only consists of

six genes, as exclusively transcription of these genes and not the

adjacent genes (AFUA_2G04270 and AFUA_2G04190) was

influenced by the presence of tyrosine. In contrast to the wild

type and complemented strains, neither DhmgX nor DhmgR were

able to use tyrosine as sole carbon or nitrogen source, indicating

that these genes are essential for tyrosine catabolism. The inability

to catabolize tyrosine is also illustrated by the finding that tyrosine

crystals were not degraded by the mutants, but by the wild type. A

similar finding was previously described for the bacterium

Sinorhizobium meliloti [46]. Furthermore, deletion of either hmgR or

hmgX significantly impaired pyomelanin formation in tyrosine-

containing medium. However, only DhmgX completely failed to

produce the pigment, as it was previously shown for the DhppD

mutant [13]. Remarkably, inhibition of pyomelanin production

was less pronounced in the DhmgR mutant compared to DhmgX

and residual pyomelanin was formed in DhmgR. This is consistent

with the finding that some residual transcription still occurred in

the DhmgR mutant, implying that HmgR is the main, but not the

only transcription factor involved in tyrosine catabolism.

Interestingly, although HppD is generally conserved between a

wide range of organisms, HppD in ascomycetes which also harbor

an HmgX homolog is distinguished by a 13 aa sequence at the N-

terminal region to organisms without an HmgX homolog. Thus,

this sequence might represent a protein interaction domain,

important for defined HppD activity depending on HmgX. This is

supported by the complete lack of HGA formation in a DhmgX/

DhmgA double mutant. In this mutant, any HGA that is produced

should accumulate. However, no HGA was detected by HPLC in

protein crude extracts of strain DhmgX/DhmgA revealing that the

conversion of pHPP to HGA by enzymatic activity of HppD

depends on the presence of HmgX. In the control strain DhmgA,

HGA accumulated as expected. These data suggest that HmgX

might function as an accessory factor mediating specific activity of

HppD by a yet unidentified mechanism.

Pyomelanin formation is dispensable for virulence in a
murine infection model for pulmonary aspergillosis

A. fumigatus secretes a wide variety of proteases during invasive

growth in lung tissue [47,48,49]. Thus, phenylalanine and tyrosine

are likely available as substrates for pyomelanin synthesis during

infection. Supporting this hypothesis, we observed that transcrip-

tion of the tyrosine degradation genes was induced in lungs of

infected mice. Pyomelanin protects the fungus against ROI [13]

and, additionally, pyomelanin synthesis was found to be increased

by cell wall stress, implying a function of pyomelanin in rescuing

cell wall integrity [50]. However, neither the ability of A. fumigatus

to detoxify host-produced ROI nor the sensing of impaired cell

wall integrity contributes to virulence [51,52,53]. In accordance

with these findings, we clearly showed that despite induction of

transcription of genes involved in tyrosine degradation during

infection, tyrosine catabolism and pyomelanin formation do not

play an essential role in A. fumigatus induced mortality at least in a

murine infection model for pulmonary aspergillosis. Nevertheless,

a possible impact on fungal pathogenesis remains unclear. It

Figure 7. Role of tyrosine degradation and pyomelanin
formation in pathogenicity. (A) Transcription of hmgA and hppD in
lungs of infected mice. Genomic DNA (gDNA) from A. fumigatus wild type
was used as control. Two lungs isolated from immunosuppressed mice,
which were intranasally infected with A. fumigatus conidia, provided
material for cDNA synthesis. A noninfected (PBS) lung was used as
control. Transcription of fungal genes was analyzed by reverse
transcription-PCR. Transcription of A. fumigatus citA (citrate synthase)
was used as control and transcripts of murine surfactant protein D (sftpD)
ensured the quality of mouse cDNA. M denotes a 100 bp DNA ladder. (B)
Virulence of strain DhppD in a murine infection model for invasive
aspergillosis. Survival of corticosteroid-treated mice after intranasal
infection with the DhppD mutant and the corresponding complemented
strain hppDc was monitored over a period of 14 days. Infections were
performed with a group of 10 mice for each strain tested.
doi:10.1371/journal.pone.0026604.g007
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cannot be ruled out that in a different infection model and in other

host organisms the ability to degrade tyrosine and to synthesize

pyomelanin might contribute to virulence and have an impact on

pathogenicity of A. fumigatus.

Supporting Information

Figure S1 Alignment of HppD protein sequences. Protein

sequences of HppD of Homo sapiens, Caenorhabditis elegans, and

Dictyostelium discoideum were aligned to HppD sequences from the

ascomycetes A. fumigatus, Coccidioides immitis, Neurospora crassa und

Magnaporthe grisea. "*" depicts identical aa in that column in all

sequences in the alignment; ":" indicates conserved substitutions in

the respective column; "." means that semi-conserved substitutions

are observed. The variable region in the N-terminus is boxed.

(TIF)

Figure S2 Northern blot analysis of genes adjacent to
the tyrosine degradation cluster. To determine cluster

borders A. fumigatus wild type was cultivated for 12 h in AMM

with (+) or without (-) L-tyrosine after a pre-cultivation for 16 h.

The mRNA steady state levels were monitored for

AFUA_2G04190 and AFUA_2G04270 by Northern blot analysis.

(TIF)

Figure S3 Generation of hmgX disruption and comple-
mented strains. Schematic drawing of the genomic situation in

the wild type (A) and DhmgX (B) as well as the plasmid pCR2.1 hmgXc

(C) that was used for generation of the complemented strain hmgXc.

For Southern blot analysis (D) chromosomal DNA was digested with

restriction endonuclease NcoI yielding a 5.0 kb band for the wild type

(WT). This band disappeared in DhmgX (DX). Instead a 2.7 kb band

was visible indicating the insertion of the pyrithiamine resistance

cassette and therefore disruption of the hmgX gene. The comple-

mented strain hmgXc (Xc) showed the same 2.7 kb band and an

additional one representing an ectopic integration of hmgX in the

DhmgX mutant. The probe used for Southern blot hybridizes with the

hmgX gene and the 39 intergenic region.

(TIF)

Figure S4 Generation of hmgR null mutant and com-
plemented strains. Schematic representation of the chromo-

somal hmgR locus in the wild type (A) and the hmgR deletion

mutant (B) is shown. Generation of the complemented strain

hmgRc was performed with plasmid pUCGH-hmgR (C), which

harbors an hmgR-egfp fusion gene under the control of the native

hmgR promoter. For Southern blot analysis (D) genomic DNA of

the wild type (WT), DhmgR (DR) and the reconstituted strain hmgRc

(Rc) was digested with EcoNI. In the hmgR deletion strain, the

5.1 kb wild-type signal was absent and a 9.5 kb DNA fragment

appeared, indicating the replacement of hmgR with the ptrA

sequence. In the hmgRc strain, two additional bands appeared,

indicating double integration of plasmid pUCGH-hmgR. Restric-

tion endonuclease sites of EcoNI and the position to which the

probe for Southern blot analysis hybridizes, are indicated.

(TIF)

Figure S5 Generation of strain hmgX-egfp. Schematic

drawing of the genomic situation in the wild type (A) and the

plasmid pUCGH hmgXp-hmgX (B) that was used for generation of

an hmgX-egfp fusion gene under control of the native hmgX

promoter region. For Southern blot analysis (C) genomic DNA of

the wild type (WT) and strain hmgXp-hmgX-egfp (hmgX-egfp) was

digested with restriction endonuclease SalI. The resulting 10.3 kb

wild-type band was also present in strain hmgXp-hmgX-egfp. In this

case,four additional signals were detectable representing four

ectopic integrations of the plasmid. The probe used for Southern

blot analysis binds to the hmgX gene.

(TIF)

Figure S6 Generation of strain DhmgX/DhmgA. Sche-

matic drawing of the genomic situation in the wild type (A) and

DhmgX/DhmgA (B). For Southern blot analysis (C) chromosomal

DNA was digested with restriction endonucleases Acc65I and NotI.

The 3.3 kb band characteristic for the wild type (WT) disappeared

in the double mutant DhmgX/DhmgA (DXDA) where instead a

6.0 kb signal was detected. This indicates that both hmgX and hmgA

were partially replaced by the pyrithiamine resistance cassette.

The probe used for Southern blot binds to the hppD gene.

(TIF)

Figure S7 Virulence of strain DhmgR in a murine
infection model. (A) Survival of leucopenic CD-1 mice after

infection with strains DhmgR and hmgRc. Infections were performed

with a group of 10 mice for each tested strain. (B) Histopathology

of representative sections of lungs 4 days post infection, using

Periodic acid-Schiff (PAS, hyphae stain pink). The presence of

invasive mycelia was confirmed in lungs of mice infected with

DhmgR or hmgRc. The lung section of a PBS-infected mice is shown

as control. Different sections of lungs of infected mice are shown,

monitoring slight variations at the sites of infection within the same

lung. However, no obvious qualitative differences can be detected

between infections with DhmgR and hmgRc strains. In both, DhmgR

and hmgRc infected lungs invasive hyphae are visible, surrounded

by immune cells.

(TIF)

Table S1 A. fumigatus strains used in this study.

(DOC)

Table S2 Oligonucleotides used in this study.

(DOC)
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