
Sequence analysis

SA-SSR: a suffix array-based algorithm for

exhaustive and efficient SSR discovery in large

genetic sequences

B. D. Pickett, S. M. Karlinsey, C. E. Penrod, M. J. Cormier,

M. T. W. Ebbert, D. K. Shiozawa, C. J. Whipple and P. G. Ridge*

Department of Biology, Brigham Young University, Provo, UT 84602, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on February 10, 2016; revised on April 21, 2016; accepted on May 4, 2016

Abstract

Summary: Simple Sequence Repeats (SSRs) are used to address a variety of research questions in

a variety of fields (e.g. population genetics, phylogenetics, forensics, etc.), due to their high mut-

ability within and between species. Here, we present an innovative algorithm, SA-SSR, based on

suffix and longest common prefix arrays for efficiently detecting SSRs in large sets of sequences.

Existing SSR detection applications are hampered by one or more limitations (i.e. speed, accuracy,

ease-of-use, etc.). Our algorithm addresses these challenges while being the most comprehensive

and correct SSR detection software available. SA-SSR is 100% accurate and detected >1000 more

SSRs than the second best algorithm, while offering greater control to the user than any existing

software.

Availability and implementation: SA-SSR is freely available at http://github.com/ridgelab/SA-SSR

Contact: perry.ridge@byu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Simple Sequence Repeats (SSRs), microsatellites, or short tandem re-

peats (STRs), are tandem repeats of short (often 2–5 bp) nucleotide

strings (Madesis et al., 2013). There are generally 10–100 such re-

peats at each SSR locus resulting in a DNA segment that is amenable

to rapid molecular characterization. Given their repetitive nature,

the lengths of SSR loci tend to increase or decrease due to polymer-

ase slippage during DNA replication (Schlotterer and Tautz, 1992).

As a consequence, SSR loci have high mutation rates and frequently

generate multiple polymorphic alleles. SSR loci are common in both

nuclear and organellar genomes, and when flanked by unique se-

quence, PCR primers can be readily designed to amplify simple se-

quence length polymorphisms. SSRs have proven highly useful for a

variety of molecular genetic, population genetic and phylogenetic

applications because it is simple to genotype them using PCR, and

because they are highly polymorphic.

While SSRs have been extensively characterized in many model

species, the expense and effort traditionally required to develop

SSRs has limited their use in non-model species. Fortunately, next-

generation sequencing has enabled researchers to quickly produce

large quantities of genomic and/or transcriptomic data for nearly

any species. While a high quality genome is still difficult to assemble,

there is usually adequate sequence information to identify thousands

of unique SSR loci with minimal sequencing. Thus, researchers

working in non-model systems need user friendly and customizable

bioinformatics algorithms to identify SSR loci.

A complete, accurate, characterization of SSRs in non-model sys-

tems increases the likelihood researchers are able to identify SSRs

where flanking genotyping primers can be designed. SSR differences

can be used to differentiate between related species or provide in-

sights into specific phenotypes/adaptations. Finally, since the major-

ity of researchers do not have formal computational training, a

VC The Author 2016. Published by Oxford University Press. 2707
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32(17), 2016, 2707–2709

doi: 10.1093/bioinformatics/btw298

Advance Access Publication Date: 11 May 2016

Applications Note

http://github.com/ridgelab/SA-SSR
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1
Deleted Text: -
Deleted Text: -
http://www.oxfordjournals.org/


straightforward, intuitive application is likely to enable traditional

bench/field scientists to use SSRs in their research.

Many tools exist to find SSRs with varying degrees of utility, but

few tools have both a useful command line interface for scripting

and meaningful, parseable output. Identifying SSRs in a sequence is

challenging because the search is prohibitive in time and memory re-

quirements. Most existing tools use either an exhaustive, combina-

torial search approach or a heuristic approach (Lim et al., 2013).

Exhaustive searches have time complexity that grows exponentially,

while heuristic approaches trade comprehensiveness for run time.

We developed an algorithm that is both efficient and complete.

Conceptually, finding SSRs in a nucleotide sequence is relatively

straightforward, but the size of current datasets makes it a sub-

stantial challenge. SSR detection in sequence data is a substring

operation—a large class of problems common in computer science.

Many algorithms and data structures have been developed to reduce

the time and space requirements for string operations. The suffix

tree boasts linear time and space requirements for generating its rep-

resentation of the string and can be used to perform many important

substring operations in O(n log n) time. After Weiner discovered suf-

fix trees (Weiner, 1973), McCreight (McCreight, 1976) and

Ukkonen (Ukkonen, 1995) each simplified it, paving the way for the

development of the suffix array (Abouelhoda et al., 2004; Kurtz,

1999; Manber and Myers, 1993). Suffix arrays have the same prop-

erties as suffix trees, but are as many as five times more memory effi-

cient (Kurtz, 1999; Manber and Myers, 1993).

2 Algorithm

A suffix array is an array of character positions representing a list of

all possible suffixes of a string, ordered lexicographically, and lon-

gest common prefix arrays are arrays of the lengths of the longest

common prefix of each adjacent suffix in the suffix array. Using suf-

fix and longest common prefix arrays, we designed and imple-

mented a novel algorithm for finding SSRs in a nucleotide sequence

in linear (O(n)) time and space. The algorithm makes no distinction

between microsatellites or minisatellites—it can find tandem repeats

of any length or period size.

SSRs are identified by calculating three different parameters, k, r

and p from the suffix and longest common prefix arrays, where k

equals the length of an SSR repeating unit or period size, r equals

the number of times it repeats after the original occurrence, and p

equals the position of the first nucleotide of the first period of the

SSR (see Supplementary Texts 1 and 2, and Supplementary Figure

S1 for a more detailed explanation). SSRs are identified by calculat-

ing k, p and r from the suffix and longest common prefix arrays

(Supplementary Fig. S1C). Let i equal the index of any entry in the

suffix array (except the first position), where SA and LCPA are the

suffix and longest common prefix arrays, respectively:

ki ¼ jSAi � SAi�1j (1)

ri ¼
jLCPAi

ki

k
(2)

pi ¼MINðSAi�1; SAiÞ (3)

If r>0, an SSR of length k * (rþ1) exists at position p in the ori-

ginal sequence, otherwise if r¼0 there is no SSR at position p. The

base unit (e.g. AG in the SSR AGAGAG) of the SSR starts at pos-

ition p and ends at position pþ (k�1). Thus, by comparing each ad-

jacent element in the suffix array we can find SSRs in a sequence.

3 Results

Our algorithm requires at most 9n bytes of memory, where n is the

length of the entire query sequence. For each nucleotide in the se-

quence, we generously assume one byte in the original sequence

(using 8-bit characters), four bytes in the suffix array (using 32-bit

integers) and four bytes in the longest common prefix array (using

32-bit integers). The time complexity for building a suffix array and

its longest common prefix array is O(n). Our algorithm then re-

quires 3 * (n�1) constant time computations to find SSRs, thus

keeping the total time and space complexities at O(n).

We evaluated the performance of our algorithm compared to

seven existing applications (see Supplementary Table S1 for a list of

algorithms) on the Arabidopsis thaliana (chromosome 4),

Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli

and Zaire ebolavirus genomes (GenBank Accessions: NC_003075.7,

GCA_001483305.1, GCA_001014345.1, GCA_001432175.2 and

NC_002549.1, respectively), comprised of 13 121 sequences total-

ing 248 846 830 nucleotides. Sequences ranged in length from 516

to 18 590 000 nucleotides with a median size of 4 662

(Supplementary Figures S2–S6 show a distribution of sequence

lengths). Dozens of applications exist for SSR detection. We selected

algorithms for comparison that: (i) were capable of processing the

Arabidopsis thaliana chromosome (the longest of the sequences), (ii)

had a non-interactive, Linux, command-line interface, (iii) were

freely available for immediate download and (iv) had 10 or more cit-

ations per year or were published in the last three years. Several add-

itional algorithms met our requirements, but used antiquated shared

libraries, or had compile/run-time errors. All comparisons were run

on a 6-core Intel Haswell Westmere (2.67 GHz) processor with

24 GB of memory (1066 MHz DDR3).

SA-SSR, like other algorithms, calls any detected sequence repeat

an SSR. Reported numbers and accuracy reflect the assumption that

all sequence repeats are SSRs. SA-SSR maximized the number of

SSRs identified, while maintaining low memory requirements and

runtime, and providing higher flexibility to the user to control

desired output (results summarized in Table 1 with more detailed re-

sults in Supplementary Table S2). We counted the total number of

SSRs identified by SA-SSR and each of the algorithms with period

sizes one to seven and minimum total length of 16 nucleotides

(period sizes and lengths likely to be of most interest in common ap-

plications). Next, we determined the accuracy of each of the tested

algorithms, including SA-SSR, by writing a script to scan the entire

sequence to verify whether or not a reported SSR was present. Most

of the tested algorithms, including SA-SSR, were 100% accurate.

However, compared to other algorithms, SA-SSR, found the highest

number of correct (38 088 SSRs) and unique SSRs (on aver-

age>18 000 SSRs more than the other algorithms). MREPS, SSR-

Pipeline and TRF only missed 1340, 3047 and 7423 correct SSRs de-

tected by SA-SSR, respectively. However, TRF was only 23% accur-

ate. Results of algorithm comparisons and software features are

summarized in Supplementary Tables S2–S31.

Finally, we designed SA-SSR with intuitive features and format-

ting requirements. Like other SSR detection applications, SA-SSR

takes FASTA files as input. However, some of the other applica-

tions, including some of those with high performance, are difficult

to use. For example, MREPS displays an error message if any char-

acters are not A, C, G, T or N, or if too many N’s are present. Even

if a user has the skills to remove all the characters that are not A, C,

G or T, this makes the output positions of SSRs incorrect because

those characters are not accounted for. Additionally, MREPS output

is in a relatively un-structured text document that is not trivial to

2708 B.D.Pickett et al.

Deleted Text: -
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: ,
Deleted Text: 4
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1
Deleted Text: ,
Deleted Text: ,


parse. As another example, SSR-Pipeline can only look for one

period size at a time, requiring the user to manually re-run the soft-

ware repeatedly for each period size of interest. Finally, SA-SSR pro-

vides greater flexibility to the user. For example, the user can choose

whether to perform an exhaustive or faster (still nearly complete)

search, change output filters to report (or not) overlapping SSRs, or

report only user-specified SSRs.

SA-SSR is freely available at: http://github.com/ridgelab/SA-SSR.

Acknowledgements

We thank the Fulton Supercomputing Laboratory (https://marylou.byu.edu)

at Brigham Young University for their consistent efforts to support our

research.

Funding

This work was supported by start-up funds from Brigham Young University

to PGR and a mentoring environment grant from Brigham Young University

to CJW.

Conflict of Interest: none declared.

References

Abouelhoda,M.I. et al. (2004) Replacing suffix trees with enhanced suffix

arrays. J. Discrete Algorithms, 2, 53–86.

Kurtz,S. (1999) Reducing the space requirement of suffix trees. Softw. Pract.

Exp., 29, 1149–1171.

Lim,K.G. et al. (2013) Review of tandem repeat search tools: a systematic ap-

proach to evaluating algorithmic performance. Brief. Bioinf., 14, 67–81.

Madesis,P. et al. (2013) Microsatellites: Evolution and contribution. In:

Microsatellites. Springer, pp. 1–13.

Manber,U. and Myers,G. (1993) Suffix arrays: a new method for on-line string

searches. SIAM J. Comput., 22, 935–948.

McCreight,E.M. (1976) A space-economical suffix tree construction algo-

rithm. J. ACM (JACM), 23, 262–272.

Schlotterer,C. and Tautz,D. (1992) Slippage synthesis of simple sequence

DNA. Nucleic Acids Res., 20, 211–215.

Ukkonen,E. (1995) On-line construction of suffix trees. Algorithmica, 14,

249–260.

Weiner,P. (1973) Linear pattern matching algorithms. Switching and

Automata Theory, 1973. SWAT’08. In: IEEE Conference Record of 14th

Annual Symposium on IEEE, pp. 1–11.

Table 1. Summary of results from comparisons of SA-SSR with other SSR detection algorithms

Comparison with SA-SSR

CPU timea

(mm:ss)

Real timea

(mm:ss)

SSRs

reported

SSRs

In rangeb

Number

correctc

Percent

correct

SSRs unique

to softwared

SSRs unique

to SA-SSR

Shared

SSRs

GMATo 329:18 329:18 72 713 858 15 284 6617 43.29 20 34 237 3851

MREPS 393:02 393:02 75 552 37 076 37 076 100 71 1340 36 748

PRoGeRF 3194:18 3194:18 5 457 129 2278 2268 99.56 2 35 864 2224

QDD 24:17 24:17 53 248 17 418 17 418 100 10 20 759 17 329

SA-SSR 28 820:12 2416:32 38 088 38 088 38 088 100 NA NA NA

SSR-Pipeline 1411:21 1411:21 60 344 067 36 398 36 398 100 68 3047 35 041

SSRIT 2:12 2:12 13 217 13 217 13 217 100 5 24 951 13 137

TRF 12:14 12:14 2 035 715 1 47 284 33 876 23.00 12 7423 30 665

This is a combination of results across each of the genomes included in the comparison. For more detailed results see Supplementary Tables S2, S4–S31.
aMREPS timing includes the pre- and post-processing time for each genome necessary to adjust positions to account for removing ‘incorrect symbols’ and Ns.

The additional times are an average of multiple approaches.
bWe only considered SSRs with period sizes 1–7 (inclusive) and lengths of at least 16 nucleotides (nt). The difference between the number of SSRs in range and

reported is due exclusively to SSR length (less than 16 nt) and period size (greater than 7).
cWhenever possible, we salvaged correct SSRs that were inside incorrect SSRs reported by other software packages. For example, in Drosophila melanogaster,

we recovered three for PRoGeRF and 8408 for TRF. To illustrate, in sequence JXOZ01000043.1, TRF reports a CT repeated 36 times at position 2171. While

TRF does correctly identify a low-complexity region with many CT repeats, there are not 36 perfect repeats in a row. In this case, we salvaged two perfect CT re-

gions, each repeating 8 times.
dDetailed pairwise comparisons can be found in Supplementary Tables S4–S31.

SA-SSR 2709

http://github.com/ridgelab/SA-SSR
https://marylou.byu.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw298/-/DC1

	btw298-TF1
	btw298-TF2
	btw298-TF3
	btw298-TF4
	btw298-TF5

