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A B S T R A C T   

Background: Globally, lung carcinoma remains the leading cause of death, with its associated 
morbidity and mortality rates remaining elevated. Despite the slow advancement of treatment, 
the outlook remains bleak. Cellular senescence represents a halt in the cell cycle, encompassing a 
range of physiological and pathological activities, along with diverse phenotypic alterations, 
including variations in secretory phenotype, macromolecular harm, and metabolic disturbances. 
Research has revealed its vital function in the formation and growth of tumors. This study aimed 
to examine cellular senescence-related mRNAs linked to the outlook of non-small cell lung cancer 
(NSCLC) and to formulate a predictive risk framework for NSCLC. 
Methods: We acquired the NSCLC expression data from The Cancer Genome Atlas (TCGA) to 
examine mRNAs linked to cellular senescence. Both single-variable and multiple-variable cox 
proportion risk assessments were utilized to determine the traits of cellular senescence-related 
mRNAs linked to NSCLC prognosis. Subsequently, the prognostic model for cellular senescence- 
related mRNAs was integrated with clinical-pathological characteristics to create a prognostic 
nomogram. Furthermore, the study delved into the risk-oriented predictive model, examining 
immune infiltration and responses to immunotherapy among both high and low-risk categories. 
Results: Utilizing both univariate and multivariate Cox proportion risk assessments, a risk model 
comprising 12 mRNAs associated with cellular aging was ultimately developed: IGFBP1, TLR3, 
WT1, ID1, PTTG1, ERRFI1, HEPACAM, MAP2K3, RAD21, NANOG, PRKCD, SOX5. Univariate 
analysis and multivariate analysis illustrated that the risk score served as a standalone indicator 
for prognosis, and the hazard ratio (HR) of the risk score were 1.182 (1.139–1.226) (p < 0.001) 
and 1.162 (1.119 − 1.206) (p < 0.001), respectively. Individual prognoses were forecasted using 
nomogram, c-index, and principal component analysis (PCA). Furthermore, the risk-oriented 
model revealed notable statistical variances in immune infiltration and response to immuno-
therapy among the high and low risk categories. 
Conclusions: This study shows that mRNAs related to cell senescence associated with prognosis are 
reliable predictors of NSCLC immunotherapy reaction and prognosis.  
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1. Introduction 

Lung carcinoma is a malignant tumor originating from lung gland or bronchial mucosa. Considering the worldwide cancer data 
from 2020, it’s estimated that there are 2.3 million new instances and 1.8 million fatalities due to lung cancer [1]. Lung cancer is the 
leading cause of morbidity and mortality in China, and this situation may deteriorate with socio-economic transformation and pop-
ulation aging [2–4]. The predominant pathological form of lung cancer is non-small cell lung cancer, constituting 85% of all lung 
cancer cases, predominantly adenocarcinoma and squamous cell carcinoma. The predicted 5-year relative survival rates of newly 
diagnosed squamous cell carcinoma and adenocarcinoma histological cases are only 32.2% and 24.2%, respectively [5]. NSCLC is 
closely related to different risk factors, including gene mutation, tobacco consumption, chronic or dysfunctional inflammation, im-
mune dysfunction and so on, which may increase the incidence of lung cancer [6]. NSCLC has no specific clinical symptoms in the early 
stage, mostly diagnosed in the middle and late stages, and is prone to invasion or metastasis. Although there are single or combined 
therapies such as chemotherapy, radiotherapy, and targeted therapy, with the emergence of immunotherapy in recent years, this 
treatment model has been broken and has become a promising choice. However, the efficacy of immunotherapy is affected by tumor 
mutation load (PD-L1 expression) [7], infection [8], drugs [9–13], gender [14], diet [15] and other factors. While the solitary or 
combined use of targeted therapy or immunotherapy has advanced significantly in clinical settings, the five-year survival rate for 
advanced NSCLC remains alarmingly low, not exceeding 15% [16]. Therefore, there is an immediate necessity to investigate novel 
biomarkers for forecasting the advancement, future outlook, and reaction to NSCLC treatment. 

Cellular senescence refers to a halt in the cell cycle, encompassing numerous physiological and pathological mechanisms. Hayflick 
and Moorhead initially noted in 1961 the restricted division propensity of mammalian cells, termed the ’Hayflick limit’ [17]. A range 
of stress factors can lead to cellular aging, such as contact with genotoxic agents, DNA impairment, lack of nutrition, oxygen depri-
vation, mitochondrial malfunction, and activation of oncogenes [18–23]. The process of cellular aging can occur during any stage of 
life. Beyond halting the cell cycle, numerous phenotypic alterations exist, including changes in secretory phenotypes, macromolecular 
harm, and metabolic irregularities [24]. The aging of cells could serve as a mechanism for the body’s self-defense. Intricate mecha-
nisms like the reduction of telomere length or clashes in growth signals compel atypical cells to transition into the irreversible G0 
phase, thereby halting their growth and preventing endless multiplication of cancer cells [25–27]. The process of cellular aging ex-
hibits various alterations, including increased levels of cell cycle inhibitors, modifications in cellular architecture, and shifts in protein 
production. Aging cells proliferate to nearby healthy and cancerous cells through the emission of senescence-related secretory phe-
notypes (SASP) or by releasing various pro-inflammatory agents, chemokines, growth factors, proteases, and additional paracrine 
processes [28]. This factor influences tumor blood vessel formation, cell growth, resistance to chemotherapy, the shift from epithelial 
to mesenchymal cells, stem cell regeneration/differentiation, and tissue healing [18,29]. As one ages, there’s a gradual decline in lung 
capacity, marked by structural alterations that hinder gas exchange and immune responses, increasing vulnerability to infections. 
Aging is indicated by cellular aging, marked by a diminished capacity to react to environmental pressures. For many years, it has been 
believed that malignant tumors are caused by the accumulation of multiple mutations in somatic cells. The increase of resident se-
nescent cells in the senescent lung leads to a decrease in immune surveillance function, which may enhance the inherent mitotic 
changes of other cells and eventually lead to lung cancer [30]. However, how cellular senescence manipulates innate and acquired 
immune responses to influence the development of end-organ lung cancer and lung cancer remains unclear. For decades, some re-
searchers have tried to find new targeted therapy strategies and tumor prognosis through the study of cellular senescence. 

This research developed a gene profile, risk score, and prognosis model for cellular senescence-related mRNAs to methodically 
assess the relationship between these mRNAs and the prognosis of NSCLC patients, including their clinicopathological traits. Subse-
quently, we created a nomogram that merges features of cellular aging-related mRNAs with clinical elements to predict the duration of 
survival, immune status, and response to immunotherapy in these patients. The findings of our study offer crucial understanding of 
how cells age in NSCLC, potentially enhancing the efficacy of personalized treatments and prognostic analysis. 

2. Materials and methods 

2.1. Data set extraction 

Lung cancer RNA-sequencing (RNA-seq) data was sourced from The Cancer Genome Atlas (TCGA) database (https://portal.gdc. 
cancer.gov/). Based on the set criteria for inclusion, the study encompassed a total of 941 patients diagnosed with NSCLC. Criteria 
for inclusion included: (1) NSCLC (encompassing adenocarcinoma and squamous cell carcinoma); (2) comprehensive transcriptome 
data and clinical details, excluding samples with a follow-up period not exceeding 30 days during clinical evaluations. The genes 
exhibiting the greatest expression were chosen as gene symbols and annotated using the human.gtf. Annotation package. 

Genes linked to cellular aging were sourced from the CellAge database (https://genomics.Sene-scence.info/cells/). The ’limma’ 
software package in R was employed to isolate the expression patterns of intersecting genes for the purpose of differential analysis. 
Criteria for the filter included: p < 0.05 and | log2FC | > 1. Genes responsible for varying cellular aging in NSCLC were identified, and 
the differential analysis outcomes were depicted as a heatmap using R software’s ‘pheatmap’ package. Given that this study en-
compasses all information from the TCGA database and adheres rigidly to the guidelines provided by TCGA (http://cancergenome.nih. 
gov/abouttcga/policies/publicationguidelines), it proceeds without the consent of the ethics committee. 
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2.2. Functional enrichment analysis 

Gene function analysis employed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis 
to further verify the possible roles of the target genes. With the purpose of better comprehend the carcinogenic effects of target genes, 
we used the Cluster Profiler package in ‘R’ to analyze the role of potential mRNAs in GO and the enrichment of the KEGG pathway. 

2.3. Construct a prognostic model 

Initially, the predictive value of mRNAs linked to cellular aging was assessed using univariate Cox regression analysis. Subse-
quently, through univariate analysis, notable mRNAs linked to prognostic cellular aging were pinpointed, meeting a significance level 
of p < 0.05. Subsequently, key genes underwent additional screening through the least absolute shrinkage selection operator (LASSO) 
regression analysis, a technique enhancing the predictive precision and clarity of statistical models via variable selection and regu-
larization [31]. The confidence interval for each lambda was calculated using a 10-fold cross-validation method and then we deter-
mined the best lambda with the lowest average error [32,33]. Following this, stepwise multivariate Cox regression analysis was 
employed to pinpoint crucial genes linked to prognosis and develop an optimal prognostic risk model. Our assumption was that genes 
chosen by p were fed into a predictive model for prognosis, denoted as (x1, …, x p). The risk score constituted a weighted aggregate of 
genes, with its weight indicating the level of association, termed as the risk score = β1 × x1+ … +βp × x p (β is the coefficient value, and 
x represents the expression level of chosen mRNAs). Patients were categorized into two segments, high-risk and low-risk, based on 
their median risk scores. Survival variances between the two groups were analyzed using the log-rank test. An independent prognostic 
model was created using Cox regression, and a nomogram was employed to forecast patient survival rates, verifying if the risk score 
served as an independent prognostic marker. 

2.4. Prognostic valuation of mRNAs model associated with cellular senescence 

Out of the 941 samples, they were randomly split into two segments: a training set comprising 472 cases and a validation set with 
469 cases. Utilizing the prognostic risk model, each patient’s risk score was recorded, categorizing them into high-risk and low-risk 
groups. The Kaplan-Meier method for survival analysis was employed to evaluate the variance in survival rates between groups 
with high and low risk. The predictive capacity of gene markers and diverse clinicopathological characteristics was assessed using 
time-based ROC curve analysis. To forecast overall survival (OS) in NSCLC patients, a nomogram was developed, incorporating 
clinicopathological characteristics such as age, gender, stage, TMN stage and risk assessments based on prognostic elements. The C- 
index and the calibration curve served as tools to assess the nomogram’s forecasting capacity. 

2.5. Principal component analysis 

Principal component analysis (PCA) was employed to evaluate how patients varied in risk scores. Every gene, along with mRNAs 
linked to cell aging and model mRNAs, were rendered visible, simplifying the gene count into three distinct dimensions: PC1, PC2, and 
PC3. Samples categorized as high-risk and low-risk were denoted in yellow and blue, in that order. The R software package ’limma’ 
along with scatterplot3D were employed for PCA generation. 

2.6. GSEA functional analysis 

The function of gene expression data was investigated using gene set enrichment analysis (GSEA, http://www.broadinstitute.org/ 
gsea/index.jsp). Our investigation delved into the enhanced functionality of mRNAs linked to cellular aging, which hold predictive 
significance, and identified the leading 10 GO and KEGG pathways. 

2.7. Immune infiltration analysis 

CIBERSORT was employed for analyze immune cell infiltration, refined using the Perl programming language, to derive the im-
mune cell infiltration matrix. Adjustments were made to the P-value below 0.05 based on the cutoff standard, utilizing the ’barplot’, 
’corrplot’, and ’gplot2′ tools in R language version 4.1.0 for sample visualization. The ’corrplot’ software was utilized to determine the 
correlation between the gene expression matrix and immune cells. 

2.8. Analysis of immune function and immune cells in high and low risk groups 

The ssGSEA technique, a single sample Gene Set Enrichment Analysis, was employed to measure various tumor-infiltrating immune 
cell subsets and assess their immune roles across both groups. The source of the immune.gmt file is http://www.gsea-msigdb.org/gsea/ 
index.jsp, which houses genes related to immune cells and functions. Data on gene expression were transformed into information on 
immune function and cell scores using gene acquisition files. 
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2.9. Differences of immune checkpoint expression in high-risk and low-risk populations 

Genes linked to immune checkpoints were sourced from the cited references. The analysis of immune checkpoints utilized the R 
software’s ’limma’ package, ’shape2′ package, ’ggplot2′ package, ’gpubr’ package, and ’beeswarm’ package. Genes exhibiting notable 
variances were isolated, and upon reaching p < 0.05, an analysis was conducted on the disparities in immune checkpoint levels be-
tween high-risk and low-risk samples. 

Fig. 1. Analysis of DEGs and functional enrichment linked to cellular aging. (A) A heatmap representation of 82 genes linked to cell senes-
cence in NSCLC. (B) A volcanic chart depicting 82 genes linked to cell senescence in NSCLC. Genes that are upregulated are indicated by red dots, 
while those downregulated are shown by blue dots. (C) Examination of DEGs linked to cellular aging through KEGG. (D) Gene Ontology exami-
nation of DEGs linked to cellular aging. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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2.10. Statistical analysis 

The research employed R (4.1.0) for analyzing data. A p-value less than 0.05 was deemed to indicate statistically significant 
variances. 

3. Results 

3.1. Detecting genes with differential expression linked to cellular senescence in NSCLC and conducting an analysis of functional enrichment 

The CellAge database yielded 279 genes associated with cellular aging. Expression levels of 274 genes were extracted from the 
NSCLC dataset (Table S1), followed by an analysis of the DEGs against RNA-seq data from both NSCLC samples and normal tissues (| 
log2FC | > 1.0 and p < 0.05). Screening was conducted on 82 differentially expressed genes (Fig. 1A, Table S2), encompassing 58 genes 
with increased expression and 24 with decreased expression (Fig. 1B). 

KEGG and GO analyses were conducted on differentially expressed genes associated with cell aging. In KEGG analysis, a total of 15 
pathways were significantly enriched. Analysis of the KEGG pathway revealed a predominant presence of DEGs associated with 

Fig. 2. Depicts the development of a model predicting cell senescence. (A) Detecting mRNAs linked to cell aging that hold substantial pre-
dictive importance in NSCLC. A forest graph displays the hazard ratios (95% confidence interval) and probability values for chosen mRNAs, 
ascertained through univariate Cox proportional hazards analysis (all p ＜ 0.05). The red marker indicates the hazard ratio (HR) for mRNAs 
exceeding 1, while the green marker denotes HR below 1. (B–C) The LASSO Cox regression model was employed to develop the risk score system. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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cellular senescence, cell cycle, human T-cell leukemia virus 1 infection, p53 signaling pathway, etc. The findings imply that these 
communication routes could be crucial in the emergence and advancement of NSCLC, and these DEGs may be potential therapeutic 
targets or biomarkers. Further study of the function and interaction of these signaling pathways and genes will aid in comprehending 
the molecular workings of NSCLC and offer fresh perspectives for diagnosing and treating patients. (Fig. 1C–Table S3). 

GO analysis in the realm of biological processes revealed a predominant enrichment of DEGs in areas such as muscle cell growth, 
control of cell cycle phase changes, and cellular aging. Within the category of cellular components, DEGs predominantly showed 
enrichment in areas like heterochromatin, chromosomal regions, and the PcG protein complex, among others. Within the realm of 
molecular functions, DEGs predominantly showed an increase in activities like protein serine/threonine kinase, DNA-binding tran-
scription activator, transcription coregulator binding, and more. (Fig. 1D–Table S4). Consequently, these routes are crucial in the 
progression of lung cancer. Delving deeper into the crucial genes within these pathways and their interplay methods will enhance our 
comprehension of lung cancer’s development. 

3.2. Development of a prognostic model related to cellular senescence 

First, through univariate Cox regression analysis, we pinpointed 36 mRNAs linked to cellular senescence and cancer risk (p < 0.05). 
Among them, 9 cellular senescence-related mRNAs served as protective elements (HR < 1), while 27 were identified as high-risk 
factors (HR > 1) (Fig. 2A). 

Then, through LASSO regression analysis, 24 mRNAs were further screened and listed in the following analysis. Multivariate Cox 
regression analysis obtained 1 mRNA and established a prognostic model. A total of ten mRNAs were deemed as unfavorable prog-
nostic indicators, while two mRNAs were recognized as positive prognostic factors. These mRNAs were used to establish cellular 
senescence-associated mRNA models. The method to compute the risk score is outlined below: (PRKCD × − 1.05654918) + (SOX5 ×
− 0.381873764) + (IGFBP1 × 0.337423173) + (TLR3 × 0.442640427) + (WT1 × 0.548856678) + (ID1 × 0.674047922) + (PTTG1 ×
0.695511779) + (ERRFI1 × 0.740068853) + (HEPACAM × 1.369239984) + (MAP2K3 × 1.40456484) + (RAD21 × 1.466722664) +
(NANOG × 1.887767634) (Fig. 2B and 2C; Table 1). 

3.3. Effect of the established model on prognosis 

To showcase the foreseeability of the cellular senescence-related mRNAs model, patient risk scores were recorded in both the 
training and validation datasets (Figs. 3A and 4A). Within the training and validation datasets, NSCLC patients in the high-risk 
category exhibited greater mortality rates compared to those in the low-risk category (training set 110/236 vs 57/236; validation 
set 89/211 vs 82/258) (Figs. 3Band 4B). Across both groups, the overall survival rate for patients at high risk was less compared to 
those at low risk (Figs. 3C and 4C). Furthermore, the ROC curve’s area under the curve (AUC) for 1-, 3-, and 5-year survival rates stood 
at 0.683, 0.709, and 0.672 in the training group, and 0.619, 0.676, and 0.637 in the validation group, respectively, indicating that this 
feature has good predictive performance (Figs. 3Dand 4D). 

3.4. Correlation between differential expression of cellular senescence-related genes and clinicopathological variables 

We performed a univariate analysis of 12 cellular senescence-related mRNAs and divided patients into high and low expression 
group based on the expression of individual genes. We also observed a significant difference in OS (p ＜ 0.05). According to the 
heatmap, there was a significant difference in age (＞ 65), sex, T stage and survival status (p ＜ 0.05) (Fig. 5A- 5C). However, we did 
not find any significant differences in age (≤65), N stage, and M stage (Fig. 5B). 

Table 1 
Multivariate Cox regression construct a prognostic model.  

id coef HR HR.95L HR.95H pvalue 

ERRFI1 0.74 2.10 1.24 3.54 0.0057 
HEPACAM 1.37 3.93 0.98 15.70 0.0526 
ID1 0.67 1.96 1.18 3.27 0.0098 
IGFBP1 0.34 1.40 1.04 1.89 0.0271 
MAP2K3 1.40 4.07 1.50 11.10 0.0060 
NANOG 1.89 6.60 1.70 25.63 0.0064 
PRKCD − 1.06 0.35 0.12 0.98 0.0452 
PTTG1 0.70 2.00 1.05 3.81 0.0340 
RAD21 1.47 4.34 1.09 17.19 0.0369 
SOX5 − 0.38 0.68 0.42 1.12 0.1297 
TLR3 0.44 1.56 1.06 2.30 0.0257 
WT1 0.55 1.73 1.19 2.52 0.0042 

Coef: refers to the coefficient of mRNAs that is associated with survival rates. HR: stands for hazard ratio. HR. 95L: low 95% confidence interval for 
hazard ratio. HR. 95H: high 95% confidence interval for hazard ratio. 
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3.5. Confirming the predictive model and developing a nomogram focused on mRNAs associated with cellular senescence 

Results from the univariate Cox regression analysis indicated that outcomes were independently predicted by both the risk score 
and stage, with a hazard ratio (HR) of 1.182 (95% CI 1.139–1.226) for these scores (Fig. 6A). Within the range of multivariate clinical 
features, the risk score stood out as a standalone predictor in the multivariate analysis (1.162 (95% CI 1.119–1.206), P < 0.001) 
(Fig. 6B). Subsequently, the nomogram incorporated risk score, age, and TNM stage. With an AUC score of 0.657, surpassing other 
clinical pathological characteristics (Fig. 6C), it’s deduced that 12 mRNAs linked to cellular senescence are reliably reliable for pre-
dicting NSCLC risk. As shown in the nomogram, the prognosis of NSCLC patients is most significantly influenced by the risk score 
(Fig. 6D). As the stage progressed, the risk score escalated, indicating the potential role of mRNAs signals linked to cellular aging in the 
advancement of NSCLC. Furthermore, the risk score was employed to develop a nomogram, utilizing the expression of 12 risk- 
associated mRNAs as variables, to forecast each patient’s overall survival rate. The calibration graph revealed the nomogram’s 
strong predictive capacity, with the risk score nomogram’s c-index surpassing that of other clinical variables (Fig. 6E–G). Collectively, 
these findings suggest that the risk score accurately forecasts the prognosis of NSCLC. Such information could assist medical pro-
fessionals in making informed clinical choices for individuals with NSCLC, offering crucial perspectives for tailoring treatment to each 

Fig. 3. Evaluation of signature within the training dataset. (A) Allocation of risk ratings between high and low risk categories. High-risk and 
low-risk were indicated by orange and blue points, in that order. (B) Allocation of survival rates among NSCLC patients categorized into high/low 
risk groups. A blue dot signified life and an orange dot denoted death. (C) Curve depicting survival. The survival rates of the high and low risk 
groups were depicted by the red and blue lines, in that order. (D) ROC Curve. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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patient. 

3.6. Variations in cellular senescence status among groups with low and high risk 

Subsequently, PCA was conducted to evaluate the low versus high-risk categories based on the entire genome, cellular aging-related 
mRNAs, and the risk model. mRNAs, whether encompassing the entire genome or linked to aging, fail to effectively differentiate 
between populations at high and low risk (Fig. 7A and B). Nonetheless, employing cellular senescence-related mRNAs distinctly 
differentiates between patients at high and low risk, thereby reinforcing the model’s precision (Fig. 7C). The findings suggest that 
mRNAs linked to cellular aging independently predict the risk for NSCLC patients. 

3.7. GSEA functional analysis 

The GSEA technique was employed for additional functional annotation. Altogether, 5569 GO (Table S5) terms and 178 KEGG 
pathways were gathered (Table S6). GO results indicated GOBP_EXPORT_ACROSS_PLASMA_MEMBRANE: This pathway involves the 
efflux and excretion of substances by cells through the plasma membrane. In NSCLC, the ability of cells to efflux drugs may affect the 
effectiveness of treatment and drug resistance, thereby affecting tumor cell survival and proliferation. 

Fig. 4. Evaluation of signature within the validation dataset. (A) Allocation of risk ratings between high and low-risk categories. High-risk and 
low-risk were indicated by orange and blue points, in that order. (B) Allocation of survival rates among NSCLC patients categorized into high/low 
risk groups. A blue dot signified life and an orange dot denoted death. (C) Curve depicting survival. The survival rates of the high and low risk 
groups were depicted by the red and blue lines, in that order. (D) ROC Curve. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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GOBP_NEGATIVE_REGULATION_OF_TORC1_SIGNALING: This pathway involves the negative regulation of TORC1 signaling. TORC1 
plays a crucial role as a cellular signaling route in controlling cell growth, metabolism, and proliferation. In NSCLC, aberrant TORC1 
signaling may lead to cell proliferation and tumor development. GOBP_PEPTIDYL_GLUTAMIC_ACID_MODIFICATION: This pathway 
involves the modification of glutamic acid residues. Modification of glutamate residues can regulate protein function and stability. In 
NSCLC, aberrant glutamate modification may lead to abnormal function and expression of tumor-related proteins, thereby affecting 
cell proliferation and viability. GOBP_POSITIVE_REGULATION_OF_EXTRINSIC_APOPTOTIC_SIGNALING_PATHWAY: This pathway 
involves the positive regulation of exogenous apoptotic signaling pathways. Apoptosis is an important cell death mechanism that is 
essential for maintaining normal cell life cycle and inhibiting tumor growth. In NSCLC, aberrant apoptotic signaling may lead to tumor 
cell escape and drug resistance. GOBP_REGULATION_OF_TORC1_SIGNALING: This pathway is involved in the regulation of TORC1 
signaling. As mentioned earlier, the process of TORC1 signaling plays a role in controlling cellular growth, metabolic activities, and 
proliferation. In NSCLC, abnormalities in the regulation of TORC1 signaling may lead to abnormalities in cell proliferation and tumor 
development (Fig. 8A). 

KEGG results indicated that KEGG_ABC_TRANSPORTERS: The pathway encompasses a group of ABC transporters crucial in con-
trolling the movement and elimination of substances within cells at the membrane. Within NSCLC, the role of ABC transporters could 
extend to drug transportation and the development of drug resistance, significantly contributing to the chemosensitivity of cancer 
cells. KEGG_ADHERENS_JUNCTION: The pathway plays a role in forming and sustaining adherens junctions among cells. In NSCLC, 
abnormal intercellular adhesion junctions may lead to abnormal cell separation and enhanced metastatic ability, thereby promoting 
tumor invasion and metastasis. KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION: the pathways involved in regulation 
of aldosterone sodium reabsorption process. Although it is more common in non-lung tissues, in NSCLC, some research indicates that 
aldosterone and its associated mechanisms might contribute to the development and spread of tumors. However, the specific mech-
anisms of this need to be further investigated. KEGG_ALPHA_LINOLENIC_ACID_METABOLISM: This pathway is involved in α-linolenic 
acid metabolism. As a polyunsaturated fatty acid, linolenic acid has significant anti-inflammatory and antioxidant properties. For 
NSCLC, irregular lipid metabolism can impact the growth and longevity of cancer cells, encompassing linolenic acid and its metabolic 
routes. KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM: This route plays a role in the metabolism of amino and 
nucleotide sugars. Amino and nucleotide sugars are important carbon and energy sources in cells, and also participate in the synthesis 
of glycoproteins and glycans. Abnormal amino sugar and nucleotide sugar metabolism may play a role in cell growth and proliferation 
in NSCLC (Fig. 8B). 

3.8. Correlation of prognostic prediction models and immunoassays 

We want to know whether the expression of cellular senescence-associated risk model mRNAs are related to the immune infiltration 
of NSCLC. Subsequently, the collected samples were split into two segments based on the expression levels of mRNAs within the risk 
model. Utilizing the CIBERSOFT algorithm and ssGSEA, the gene expression patterns of the acquired samples were examined, leading 
to the deduction of scores for 22 immune infiltrations. In Fig. 9A, the spread of 22 varieties of immune cells within the sample is 
depicted (Fig. 9A–Table S7). Immunocyte infiltration was higher in the low-risk group but reduced in the high-risk group. Subse-
quently, a violin map was developed, revealing variances in B cell naivety, plasma cells, T cell CD4 memory activated and macrophage 
M0 in groups categorized by high and low risk (Fig. 9B). The low-risk group exhibited significant immunocyte infiltration, indicating a 
decrease in malignant tumors and treatment efficacy, implying that our marker is indicative of both the prognosis and the degree of 
immunocyte infiltration. 

For a deeper investigation into the link between risk scores and immune cells and their roles, ssGSEA R software was employed to 
measure the enrichment scores and associated functions across 16 subsets of immune cells. Findings revealed a notable disparity in 
immune cell types (like aDCs, B_cells, Mast_cells, Th2_cells) between the high-risk and low-risk groups (Fig. 10A). Furthermore, 
regarding immune performance, there was a notable rise in the scores of HLA, MHC _ I, parainflammation, and other immune activities 
among the high-risk group (Fig. 10B). 

To delve deeper into the link between the risk score and 47 immune checkpoint inhibitor (ICI) genes, we conducted an in-depth 
analysis of the ICI gene expression patterns across these two risk categories (Fig. 11). Findings showed a tendency for low-risk pa-
tients to exhibit genes with elevated immune checkpoint functions. The findings suggest that mRNAs linked to cell aging could act as 
immune checkpoints and/or as indicators of ligand expression and predictive markers for ICIs treatment outcomes. 

3.9. Visual examination of TIDE score of immune escape 

The TIDE technique was employed to evaluate the prospective clinical effectiveness of immunotherapy across various models. As 
the TIDE prediction score increases, so does the likelihood of immune evasion, suggesting a reduced probability of patients gaining 
from ICIs therapy. Findings indicate the high-risk group’s TIDE score surpassed that of the low-risk group, implying that ICIs treatment 
offered lesser advantages to patients in the high-risk category compared to those in the low-risk segment. Consequently, the outlook for 

Fig. 5. Correlation between differential expression of cellular senescence-associated genes and clinicopathological variables. (A)The 
heatmap depicted 12 predictive cellular senescence-related mRNAs and clinicopathological factors were distributed among the high and low-risk 
categories. (B) The Kaplan-Meier survival rates for patients in the high/low-risk category were categorized based on various clinicopathological 
factors. (C) Cellular senescence-related mRNAs in the cohorts stratifified by stage, T stage and fustat. 
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the low-risk segment in the model having a reduced TIDE score could be more favorable compared to the high-risk segment (Fig. 12). 

4. Discussion 

The issue of aging captivates global attention, and the pursuit of anti-aging remains a perpetual endeavor. Concurrently, tumors are 
an ailment intimately linked to the aging process. The anti-tumor effect of aging and the pro-tumor effect of a certain process are 
controversial. Based on the age-related accumulation of somatic mutation load and the increase of tumor incidence, Podolskiy et al. 
proposed that the aging of cells significantly increases the risk of developing tumors [34]. Findings from epidemiological studies 
indicate that the highest incidence of new cancer cases and fatalities occurs in individuals aged 60 to 74. Within this group, lung cancer 
ranks as the predominant cancer-related fatality. As one ages, the death rate from lung cancer steadily escalates, anticipated to climax 
at 80 years old, with the rate continuing to climb. By 2022, cellular aging emerged as a recent indicator of cancer [35–37]. Nonetheless, 
the process of cellular senescence stands apart from aging, which is possible at any life phase. Aging is indicated by cell senescence, a 
continual cessation of the cell cycle in response to diverse injury triggers [38]. Certain aging mechanisms might lead to the emergence 
and progression of cancer, making it crucial to focus on its role as a potent anti-cancer agent. It is anticipated that curbing the un-
checked proliferation of impaired cells and impeding cancer progression will emerge as a potent approach in cancer therapy [39,40]. 

This research primarily aims to examine genes linked to cellular aging in NSCLC, assess how cellular aging correlates with clini-
copathological characteristics, prognosis, and treatment outcomes, and to develop a predictive model. This study’s examination of 
genes with varied expressions linked to cell aging encompasses a variety of biological mechanisms and communication routes, mainly 
involving abnormal gene expression regulation of cell mitosis, cell cycle regulation, cell senescence and other functions and pathways. 
Consequently, this could play a crucial role in the expansion, multiplication, and spread of lung cancer cells. Therefore, these 
differentially expressed genes may become potential therapeutic targets or biomarkers. Continued research into the roles and in-
terplays of these signaling routes and genes will enhance comprehension of NSCLC’s molecular workings and offer fresh perspectives 
for diagnosing and treating patients. 

Following this, we developed a predictive model for cellular aging-related mRNAs, pinpointed 12 such mRNAs through Lasso and 
multivariate regression analysis, and computed the risk score. Whether univariate or multivariate analysis, these mRNAs were 
independently associated with NSCLC prognosis. Subsequently, NSCLC specimens were categorized into groups of low and high risk 
based on their risk scores, with the penetration of immune cells being a predictor of the effectiveness of immune checkpoint inhibitors. 
The results suggest that there is a significant degree of immune infiltration in the low-risk group, which partly reflects the reduction 
and treatment effect of malignant tumors, while the low-risk group tends to express higher immune checkpoint genes. Therefore, the 
expression characteristics of mRNAs related to cell senescence are not only prognostic markers, but also reflect the ability to predict 
treatment response and prognosis. 

At present, the role and mechanism of cellular senescence in different cancers are still unclear. Althubiti M and colleagues 
discovered a connection between elevated levels of cell aging markers and the higher survival rates in conditions like glioma, lip-
osarcoma, chronic lymphocytic leukemia, colon cancer, breast cancer and lung cancer through the study of the existing GEO data set 
[41]. Based on the anti-tumor effect of cell senescence, some scientists have proposed ’combination boxing’ therapy, that is, the former 
drug induces the weakness of tumor cells, and the latter drug attacks this weakness. The physiology of senescent cells is unique in 
metabolism, secretion, transcriptome and epigenetics. Therefore, the exposed weaknesses are more selective and are therefore 

Fig. 6. Evaluating risk elements and developing a predictive nomogram. (A) To identify risk factors, both univariate and (B) multivariate 
analyses were employed. (C) Graphs depicting the AUC and ROC for the risk score alongside clinical variables. Factors in clinical practice include: 
age, gender, stage, T, N, and M. (D) The prognosis of NSCLC patients is forecasted by a nomogram that considers factors like age, gender, stage, T/N/ 
M stage, and risk score. (E–F) Nomogram’s calibration curve. Adjustment graphs used to forecast the total survival rate in NSCLC patients at in-
tervals of 5 years (E) and 10 years (F). As the red solid line approaches the grey solid line, the likelihood of a nomogram’s prediction aligns more 
closely with the real probability. (G) The accuracy of the risk model is assessed by the c-index. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. PCA principal component analysis. (A) Across the genome; (B) The mRNAs associated with cellular senescence; (C) The mRNAs linked to 
risk models. 
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expected to be part of a sequential treatment regimen [42–44]. Domen A et al. also support such a treatment strategy-assisted 
anti-aging treatment, anticipated to enhance the survival rates of NSCLC patients exhibiting cellular senescence traits [45]. Howev-
er, the accumulation of cell senescence in the tumor site, despite cell cycle arrest, senescent cells are in a metabolically active state [44, 
46,47]. However, the accumulation of cellular senescence in the tumor site, although the cell cycle is stagnant, senescent cells are in an 
active metabolic state, and they exert anti-tumor immunosuppressive effects by continuously secreting a variety of cytokines and 
chemokines, namely the senescence-associated secretory phenotype SASP [48]. This is a very complex process. Therefore, how to make 
full use of the positive and negative effects of cell senescence in cancer treatment is worthy of further exploration of its mechanism and 
functional changes. 

Up to this point, precision genomic medicine has concentrated on identifying precise and precise predictors of survival and 
prognosis using extensive medical data and clinical findings. Utilizing both univariate and multivariate Cox proportional hazard 
analysis, we determined and calculated the predictive significance of 12 mRNAs risk models linked to cell aging. Additionally, the 
assessment of the risk scoring approach was conducted using both exploratory and confirmatory techniques. The precision of the 
predictive model was assessed using the c-index. Findings from this research suggest that a risk model relying on 12 mRNAs associated 
with cell aging holds more predictive significance compared to other clinicopathological elements. So far, most of the therapeutic 
drugs for the elderly have been discovered by bioinformatics methods and/or centralized library screening [49]. Therefore, this study 
has certain clinical transformation value. However, there are no specific markers to detect and quantify aging and senescent cells. In 

Fig. 8. Gene set enrichment analysis. (A) GO: A notable disparity was observed in the enrichment of 5 GO items between the high and low 
expression phenotypes, respectively. (B) KEGG: In terms of KEGG items, there was a notable disparity in enrichment between high and low- 
expression phenotypes, as indicated by the normalized enrichment score, nominal p value, and FDR value, respectively. 
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addition, cellular senescence is highly heterogeneous and complex in terms of cell types, cues, activated signaling pathways, and tissue 
distribution. Therefore, in the future, we need to consider using some new detection methods, such as AI and neural network models, to 
further explore the mechanism of cell senescence in diseases (lung cancer), and provide strong support for drug screening and 
development [50]. In the future, we need to consider the use of some new detection methods, such as AI and neural network models, to 
further explore the mechanism of cell senescence in diseases, including lung cancer, and provide strong support for drug screening and 
development. 

Present studies are subject to certain constraints. Initially, our focus is on a sole data source (the TCGA database), characterized by 
its retrospective nature. Additionally, our results were not corroborated by any experimental data conducted in vitro or in vivo. As a 
third point, standard prognostic indicators like treatment records and tumor biomarkers are excluded from the nomogram due to the 
incompleteness of the data pertaining to these parameters. Consequently, additional forward-looking research is required to confirm 
the predictive significance of mRNAs linked to cell aging and to investigate their molecular workings. 

5. Conclusion 

To conclude, we developed a profile of cellular mRNAs linked to senescence and NSCLC as a predictive tool for prognosis. 
Concurrently, it’s important to acknowledge that the mRNAs linked to cellular aging generated in our research could be connected to 
the degree of immune penetration and the impact of cancer immunotherapy. 

Ethics approval and consent to participate 

Not applicable. 

Fig. 9. Immunocyte infiltration analysis. (A) The heatmap displays the penetration of 22 immune cells across various risk samples. (B) Variations 
in the infiltration fractions of 22 immune cells across diverse risk categories. 
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Fig. 10. The relationship between risk scores and the performance of immune cells. (A) Assessment of immune cells across various risk 
groups. (B) The role of immune cells. Red symbolizes a high risk level, while blue indicates a low risk. (*: p < 0.05, **: p < 0.01, ***: p < 0.001). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 11. Correlation of immune checkpoints with mRNA risk models associated with cellular senescence. (*: p < 0.05, **: p < 0.01, ***: p 
< 0.001). 
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