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ABSTRACT

Introduction: Fatty acid content in plasma and
red blood cells (RBCs) may provide insight into
potential physiologic benefits of omega-3 fatty
acids. Icosapent ethyl is a pure prescription
form of eicosapentaenoic acid (EPA) ethyl ester
approved by the US Food and Drug Adminis-
tration at a dose of 4 g/day as an adjunct to diet
to reduce triglyceride levels in adults with sev-
ere (C 500 mg/dl) hypertriglyceridemia.
Methods: This was a prespecified exploratory
subset analysis of the ANCHOR study, which

randomized 702 statin-treated patients at
increased cardiovascular risk with triglycerides
200–499 mg/dl and controlled low-density
lipoprotein cholesterol (40–99 mg/dl). This
analysis examined effects of icosapent ethyl
4 g/day versus placebo on fatty acid levels in
plasma and RBCs using a gas chromatograph
assay method with flame ionization detector.
Results: In plasma, treatment with icosapent
ethyl 4 g/day resulted in significant increases
versus placebo in the mean concentrations of
EPA (? 635%; P\0.0001) and its metabolite,
docosapentaenoic acid n-3 (? 143%;
P\ 0.0001) with no significant change in
docosahexaenoic acid. Treatment with icos-
apent ethyl 4 g/day versus placebo also resulted
in significant decreases in the omega-6 fatty
acids linoleic acid (- 25%) and arachidonic acid
(AA; - 31%), as well as the AA/EPA ratio
(- 91%). Icosapent ethyl 4 g/day also decreased
the omega-9 fatty acid oleic acid (- 29%) and
the saturated fatty acids palmitic acid (- 23%)
and stearic acid (- 16%) (all P\0.0001). Results
were similar for RBCs.
Conclusions: Icosapent ethyl 4 g/day signifi-
cantly increased EPA and produced other
potentially beneficial shifts in fatty acids in
plasma and RBCs versus placebo.
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PLAIN LANGUAGE SUMMARY

Fatty acids are an important energy substrate,
but specific fatty acids also play consequential
and distinct roles in cellular function and in the
development and progression of cardiovascular
disease. Intake of omega-3 fatty (n-3) acids such
as eicosapentaenoic acid (EPA) and docosahex-
aenoic acid (DHA) may differentially affect car-
diovascular risk. Therefore, understanding the
effects of specific fatty acid therapies on fatty
acid profiles in plasma and red blood cells
(RBCs) may provide insight into how given
therapies may affect cardiovascular disease. We
examined the effects of icosapent ethyl 4 g/day,
a high-purity prescription form of EPA, versus a
placebo on fatty acid levels in blood. Patients
were treated with statins to control low-density
lipoprotein cholesterol, but still had high
triglycerides. Gas chromatography was used to
measure omega-3, omega-6, saturated, and
other fatty acid levels in plasma and RBCs. In
plasma, icosapent ethyl 4 g/day increased EPA
concentrations 635% and EPA’s omega-3
metabolite docosapentaenoic acid (DPA) 143%,
and decreased levels of the omega-6 fatty acid
arachidonic acid (AA) 31%, the AA to EPA ratio
91%, and saturated fatty acid levels (stearic and
palmitic acids) 16 and 23%, respectively (all
comparisons statistically significant versus pla-
cebo), while DHA levels did not change. Trends
were similar for RBCs, except DHA was reduced
6% and there were no changes in stearic or
palmitic acids. Results provide insight into the
potential cardiovascular benefits of icosapent
ethyl 4 g/day and how they might be related to,
or distinct from, changes in other fatty acid
levels.

INTRODUCTION

Fatty acid classes include saturated, monoun-
saturated, and polyunsaturated, such as omega-

9, omega-6, and omega-3. Fatty acids are not
only sources of energy but are also important
physiologic modulators. The proportions and
concentrations of various fatty acids in plasma
and red blood cell (RBC) membranes are asso-
ciated with cardiovascular risk and the produc-
tion of inflammatory mediators [1–7], and
substantial intake of omega-3 fatty acids may
affect the fatty acid composition of plasma and
RBC membranes [1, 4]. Studies of intervention
with the omega-3 fatty acids eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA)
suggest a variety of potential cardiovascular-re-
lated physiological benefits: they lower plasma
triglyceride (TG) levels, improve other athero-
genic lipid levels, and may have beneficial
effects on inflammation, vascular function,
resting heart rate, blood pressure, myocardial
filling and efficiency, arrhythmia, plaque stabi-
lization, and platelet aggregation [7–9]. Despite
some similarities, there are also differences in
EPA and DHA, such as an observed increase in
low-density lipoprotein cholesterol (Ldl-C) in
some patients administered DHA-containing
omega-3 mixtures that is not observed with
EPA-only therapy [10–12]. Analysis of fatty acid
levels in plasma and RBCs may provide greater
understanding of the potential physiologic
effects of omega-3 fatty acid treatment on lipid
levels [13] and effects beyond lipids.

Icosapent ethyl (Vascepa; Amarin Pharma
Inc, Bedminster, NJ, USA) is a high-purity pre-
scription form of EPA ethyl ester approved by
the US Food and Drug Administration at a dose
of 4 g/day as an adjunct to diet to reduce TG
levels in adults with severe (C 500 mg/dl)
hypertriglyceridemia [14]. Compared with pla-
cebo in the 12-week, randomized, double-blind,
placebo-controlled MARINE study (very high
TG levels of 500–2000 mg/dl) and ANCHOR
study (TG levels 200–499 mg/dl despite statin
stabilization), icosapent ethyl significantly
improved levels of TGs and other atherogenic
lipid, lipoprotein, and inflammatory parameters
without raising the levels of Ldl-C [12, 15–19].
In these studies, icosapent ethyl was safe and
generally well tolerated, with a safety profile
similar to that of placebo [12, 14, 17].

This analysis evaluated data from the
ANCHOR study to determine the effects of
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icosapent ethyl at the approved dose of 4 g/day
on fatty acid levels in plasma and RBCs in sta-
tin-treated patients with persistently high TGs.

METHODS

This prespecified exploratory analysis evaluated
fatty acid levels in plasma and RBC membranes
in a subset of patients from the ANCHOR study.
Details of the ANCHOR study were previously
published [17]. In brief, ANCHOR was a phase 3,
multicenter, 12-week, double-blind, random-
ized, placebo-controlled study in patients at
high risk for cardiovascular disease who had
high TG levels while on stable statin therapy
(with or without ezetimibe) to control Ldl-C
levels. Patients aged[18 years entered a 4- to
6-week lead-in period of diet, lifestyle, and sta-
tin stabilization during which nonstatin lipid
treatments were washed out. This lead-in period
was followed by a 2- to 3-week lipid-qualifying
period (fasting TGs: 200–499 mg/dl; fasting Ldl-
C: 40–99 mg/dl). Eligible patients were ran-
domized (1:1:1) to a 12-week double-blind
treatment period with either icosapent ethyl
4 g/day, 2 g/day, or placebo; this report focuses
on the FDA-approved dose of 4 g/day versus
placebo. The protocol was approved by the
appropriate institutional review boards and
patients provided informed written consent
prior to enrollment. All procedures performed
in this study were in accordance with duly
constituted Institutional Review Boards for each
study center and with the 1964 Declaration of
Helsinki and its later amendments. Informed
consent was obtained from all individual par-
ticipants included in the study.

As prespecified in the study protocol as
exploratory efficacy parameters, the method
used to measure and analyze fatty acid levels in
plasma and RBCs from patients in the ANCHOR
study is similar to that previously published
[13]. The method involved a validated gas
chromatograph assay method with flame ion-
ization detector (GC/FID; performed by Mylne-
field Research Services Ltd, Scottish Crop
Research Institute, Dundee, Scotland, UK).
Briefly, fasting blood samples were collected
prior to the administration of study drug at

baseline and week 12. After centrifugation of
the fasting blood samples, the plasma layer was
removed for analysis. The buffy coat was
removed from the remaining fraction and the
RBCs were then washed with an equal volume
of 0.9% saline or phosphate buffered saline.
Following centrifugation, the saline wash was
removed and the remaining RBC samples and
the previously removed plasma samples were
stored frozen at - 80 �C. Lipids were extracted
from plasma and RBC suspensions and con-
verted into fatty acid methyl esters for GC/FID
analysis and determination of the fatty acid
profile. The GC/FID assay measures total fatty
acid concentrations including unesterified fatty
acids and esterified fatty acids that are incor-
porated in circulating phospholipids, triacyl-
glycerols, and cholesteryl esters. The lipid
fraction was isolated by centrifugation after
adding acid/methanol/chloroform. Lipid
hydrolysis and transmethylation were accom-
plished with acid/methanol overnight at 50 �C,
followed by extraction with chloroform/
methanol and an acidified salt wash to remove
non-lipid contaminants. Fatty acids were
quantified with FID and the lower limit of
quantitation was 3 lg/g in plasma and RBCs.
Concentrations were expressed as micrograms
of each fatty acid per gram of sample (lg/g) or as
a proportion in mole percent (mol%), which is
the molar concentration of each fatty acid
expressed as a percentage of the total molar
fatty acid concentration of four classes (satu-
rated, monounsaturated, omega-3, and omega-
6 fatty acids). Per study protocol, the prespeci-
fied exploratory fatty acid analysis was con-
ducted in the first 72 patients with available
complete sample sets. Samples from the other
patients in the study were banked for later
analysis per protocol. Of the banked samples, 85
were assayed subsequently, of which 83 had
complete sample sets for a total of 155 patients
included in the analysis (4 g/day, n = 50;
2 g/day, n = 52; placebo, n = 53). Outliers were
identified and excluded for each fatty acid
parameter for each treatment group. Outliers
were defined as percent change val-
ues\Q1 - 1.5 � IQR or[Q3 ? 1.5 � IQR,
where Q1 and Q3 are first and third quartiles of
the percent change values for the treatment
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group and IQR is the interquartile range
(Q3–Q1). Because outliers were defined sepa-
rately for each fatty acid measure, the numbers
of subjects included for some parameters were
different.

Statistical analyses were performed as previ-
ously defined [13]. An analysis of covariance
(ANCOVA) model with treatment, gender, type
of statin therapy, and presence of diabetes at
randomization as factors and the associated
baseline value as a covariate for each fatty acid
parameter was used for comparisons between
icosapent ethyl and placebo groups. Summary
statistics [n, mean, and standard deviation (SD)]
were provided. For each treatment group and
each comparison between icosapent ethyl and
placebo groups, the least squares (LS) means
and standard errors (SEs) were calculated. Linear
contrasts of the ANCOVA model were used to
obtain the LS estimates and P values for the
comparisons of icosapent ethyl with placebo,
with a significance level of P = 0.05. The statis-
tical analyses for all fatty acids were considered
as exploratory endpoints in the formal study
statistical analysis plan.

RESULTS

The ANCHOR trial randomized 702 statin-trea-
ted patients to icosapent ethyl 4 g/day, 2 g/day,
or placebo. Reported here are fatty acid findings
in patients receiving icosapent ethyl 4 g/day
(n = 50) or placebo (n = 52) in the ANCHOR
study with available fatty acid data. Baseline
characteristics were similar between the two
treatment groups in the randomized population
[17].

Key omega-3 fatty acids of interest included
EPA (C20:5n-3), DHA (C22:6n-3), and docos-
apentaenoic acid (DPA, C22:5n-3; an EPA
metabolite and precursor to DHA), the omega-6
fatty acid, arachidonic acid (AA, C20:4n-6), and
the proportion of total omega-3, omega-6,
monounsaturated, and saturated fatty acids to
the total fatty acid pool measured.

Respective mean molar EPA plasma concen-
trations (mol% ± SD) in the icosapent ethyl and
placebo groups were 0.4 ± 0.1% and
0.5 ± 0.6% at baseline and 3.6 ± 1.4% and

0.5 ± 0.5% at week 12, respectively. Icosapent
ethyl 4 g/day produced significant mean per-
cent increases in the plasma and RBC concen-
trations of EPA and its DPA metabolite and
significant decreases in AA concentrations and
the AA/EPA ratio (all P\0.0001; Tables 1, 2)
versus placebo. DHA concentrations did not
change significantly in plasma, but showed a
small significant (P\0.02) mean percent
decrease with icosapent ethyl 4 g/day versus
placebo in RBCs (Tables 1 and 2).

Compared with placebo, icosapent ethyl
4 g/day resulted in substantial and statistically
significant mean percent increases in total
omega-3 fatty acid concentrations in plasma
(142.22%) and RBCs (89.38%; all P\ 0.0001;
Table 3), and smaller, but significant decreases
in total omega-6 fatty acid and monounsatu-
rated fatty acid concentrations (all P\0.05). A
slight increase in saturated fatty acids was
observed in RBCs (3.13%; P = 0.0011) in the
icosapent ethyl 4 g/day group versus placebo,
with no significant change in plasma (Table 3).

These fatty acids described above, together
with four additional fatty acids found in
Tables 1 and 2 (palmitic, C16:0; stearic, C18:0;
oleic, C18:1n-9; and linoleic acids, C18:2n-6),
are either the most abundant in terms of mass
contribution to the total lipid concentration
(and thus major sources of energy) or they are
less abundant but have important physiological
characteristics, even at low concentrations rel-
ative to the abundant fatty acids. In plasma,
significant reductions were observed in palmi-
tic, stearic, oleic, and linoleic acids compared
with placebo (Table 1; all P\0.001); in RBCs,
reductions were observed in all four of these
fatty acids compared with placebo, but were
only significant for linoleic acid (Table 2).

DISCUSSION

In this prespecified exploratory subset analysis
of data from the 12-week, double-blind
ANCHOR study, icosapent ethyl 4 g/day, a high-
purity prescription form of the ethyl ester of
EPA, significantly increased concentrations of
EPA and DPA (a metabolite of EPA) in plasma
and RBCs compared with placebo in patients
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with high cardiovascular risk and high TG
concentrations while receiving statin therapy to
control Ldl-C. Studies suggest that these two
omega-3 fatty acids confer distinct and com-
plementary cardiovascular benefits [20]. An
increase in plasma EPA concentrations with
icosapent ethyl is dose-dependent, as is its TG-
lowering effect [21]. Compared with placebo,
icosapent ethyl significantly decreased the
concentration of AA, the AA/EPA ratio, and

total omega-6 fatty acid concentrations and
significantly increased the total omega-3 fatty
acid concentrations in plasma and RBCs
accordingly. As with previous investigations of
EPA-only treatment, icosapent ethyl did not
significantly increase DHA concentrations in
plasma in the current analysis, indicating that
previously reported TG lowering and changes in
fatty acids were due to increases in EPA levels
but not DHA levels [1, 13, 21–23].

Table 1 Change from baseline to week 12 in plasma concentrations of key fatty acids

Plasma fatty acida IPE 4 g/day Placebo Change from
baseline, IPE
4 g/day vs placebo,
%, P

Concentration, lg/g Baseline
(SD)

Week 12
(SD)

Change
(SE)

Baseline
(SD)

Week 12
(SD)

Change
(SE)

EPA (C20:5n-3) 19.57 144.68 135.98 24.29 24.39 10.43 634.50

n = 43, 51 (6.410) (56.464) (5.998) (29.025) (25.073) (5.457) \ 0.0001

DHA (C22:6n-3) 51.80 54.02 2.84 58.54 61.59 4.44 - 1.12

n = 48, 52 (15.369) (13.842) (1.852) (34.274) (32.907) (1.743) 0.7820

DPA (C22:5n-3) 20.19 50.45 31.79 21.41 23.83 3.91 143.27

n = 49, 52 (5.573) (14.172) (1.794) (7.999) (9.403) (1.714) \ 0.0001

Palmitic (C16:0) 974.49 846.22 - 162.1 1038.7 1100.2 56.28 - 22.87

n = 48, 51 (223.707) (213.932) (44.906) (299.038) (352.507) (42.832) \0.0001

Stearic (C18:0) 278.90 254.07 - 30.83 291.88 304.54 13.52 - 16.16

n = 50, 50 (55.757) (48.217) (8.149) (61.887) (62.494) (7.995) \0.0001

Oleic (C18:1n-9) 979.09 784.41 - 220.0 1011.0 1091.5 66.70 - 29.48

n = 47, 51 (261.606) (208.940) (49.146) (296.705) (403.343) (46.802) \ 0.0001

Linoleic (C18:2n-6) 1069.4 922.28 - 152.5 1093.0 1221.8 127.42 - 24.75

n = 50, 52 (262.259) (200.324) (38.151) (258.966) (350.910) (36.433) \ 0.0001

AA (C20:4n-6) 282.84 223.26 - 60.69 306.96 328.17 26.25 - 30.87

n = 50, 52 (71.080) (65.530) (6.295) (74.556) (67.119) (6.124) \ 0.0001

AA/EPA 16.23 1.61 - 14.17 16.97 16.63 0.60 - 90.64

n = 47, 50 (6.665) (0.795) (0.556) (6.785) (6.638) (0.532) \ 0.0001

a Patient numbers (n) are reported for IPE 4 g/day and placebo, respectively
Mean and SD are reported for baseline and end-of-treatment values; least squares means and SEs are reported for changes
from baseline; least squares means are reported for percent changes from baseline vs. placebo
AA arachidonic acid, DHA docosahexaenoic acid, DPA docosapentaenoic acid, EPA eicosapentaenoic acid, IPE icosapent
ethyl, SD standard deviation, SE standard error
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Icosapent ethyl had similar effects on plasma
and RBC fatty acid levels in an analogous pre-
specified exploratory subset analysis of the
MARINE study, indicating consistency across
two patient populations. In the MARINE study,
icosapent ethyl 4 g/day increased plasma con-
centrations of EPA by 792%, DPA by 151%, and
the ratio of omega-3/omega-6 fatty acids by
146% while decreasing AA by 27% and the AA/
EPA ratio by 99% compared with placebo (all

P\ 0.0001) [13]. In RBCs, icosapent ethyl
4 g/day increased EPA by 490%, DPA by 106%,
and the omega-3/omega-6 fatty acid ratio by
107% and decreased AA by 16% and the AA/EPA
ratio by 102% (all P\ 0.0001) compared with
placebo. No significant changes in DHA con-
centrations were observed in plasma or RBCs.

Similar results were found in relative changes
in plasma EPA levels in ANCHOR using liquid
chromatography-tandem mass spectrometry

Table 2 Change from baseline to week 12 in red blood cell membrane concentrations of key fatty acids

RBC membrane
fatty acida

IPE 4 g/day Placebo Change from
baseline, IPE
4 g/day vs placebo,
%, P

Concentration, lg/g Baseline
(SD)

Week 12
(SD)

Change
(SE)

Baseline
(SD)

Week 12
(SD)

Change
(SE)

EPA (C20:5n-3) 6.09 43.28 39.38 7.09 6.40 0.84 618.46

n = 49, 48 (2.248) (17.957) (1.791) (3.320) (3.313) (1.730) \ 0.0001

DHA (C22:6n-3) 44.10 39.14 - 6.29 47.35 45.12 - 2.70 - 6.12

n = 44, 47 (11.708) (8.328) (0.983) (11.696) (11.861) (0.919) 0.0178

DPA (C22:5n-3) 28.54 62.14 33.67 29.69 28.60 - 0.85 123.56

n = 46, 46 (5.757) (12.564) (1.417) (5.496) (5.146) (1.380) \ 0.0001

Palmitic (C16:0) 304.13 301.24 - 5.77 313.71 313.52 0.04 - 2.24

n = 46, 50 (36.930) (36.607) (4.438) (39.421) (32.643) (4.151) 0.1895

Stearic (C18:0) 170.95 170.73 - 1.15 173.93 174.73 0.74 - 0.71

n = 45, 46 (18.926) (18.752) (2.550) (15.024) (18.323) (2.466) 0.7048

Oleic (C18:1n-9) 194.52 188.77 - 7.74 198.70 198.42 - 1.00 - 3.15

n = 45, 45 (27.259) (23.798) (3.060) (24.650) (24.609) (2.997) 0.0943

Linoleic (C18:2n-6) 146.81 132.49 - 15.77 151.38 153.50 1.53 - 10.65

n = 48, 48 (31.853) (26.003) (3.752) (24.241) (32.521) (3.612) 0.0004

AA (C20:4n-6) 185.38 153.50 - 37.08 189.44 193.57 0.98 - 19.48

n = 44, 47 (37.044) (28.599) (3.596) (25.769) (27.707) (3.417) \ 0.0001

AA/EPA 31.86 3.61 - 26.95 31.44 33.26 3.10 - 98.64

n = 46, 50 (10.373) (1.700) (0.801) (11.465) (9.955) (0.767) \0.0001

a Patient numbers (n) are reported for IPE 4 g/day and placebo, respectively
Mean and SD are reported for baseline and end-of-treatment values; least squares mean and SE are reported for changes
from baseline; least squares mean is reported for percent changes from baseline vs. placebo
AA arachidonic acid, DHA docosahexaenoic acid, DPA docosapentaenoic acid, EPA eicosapentaenoic acid, IPE icosapent
ethyl, RBC red blood cell, SD standard deviation, SE standard error
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(LC–MS/MS), another established fatty acid
analysis method [21]. By LC–MS/MS, after
12 weeks of treatment with icosapent ethyl
4 g/day, EPA increased from a mean (SD)

baseline level of 28.1 (18.8) lg/ml to 182.6
(71.7) lg/ml in plasma and from 11.6 (5.6) lg/ml
to 72.7 (31.5) lg/ml in RBCs.

Table 3 Percent change in the proportion of fatty acid classes to total fatty acids

Fatty acid classa IPE 4 g/day Placebo Change from
baseline, IPE
4 g/day vs placebo,
%, P

Proportion of
total, %b

Baseline
(SD)

Week 12
(SD)

Change
(SE)

Baseline
(SD)

Week 12
(SD)

Change
(SE)

Plasma

Saturated 33.79 33.59 - 0.54 34.20 33.63 - 0.69 0.48

n = 50, 53 (2.543) (2.389) (0.312) (2.488) (2.357) (0.297) 0.6611

Monounsaturated 28.63 26.72 - 2.04 28.67 28.40 - 0.38 - 5.58

n = 50, 53 (2.770) (2.976) (0.442) (2.586) (3.301) (0.421) 0.0038

Total n-3 2.95 7.16 4.45 3.11 3.12 0.25 142.22

n = 50, 53 (0.479) (1.978) (0.194) (1.297) (1.136) (0.185) \ 0.0001

Total n-6 34.63 32.54 - 1.85 34.02 34.85 0.79 - 7.66

n = 50, 53 (3.910) (3.429) (0.520) (3.350) (3.840) (0.494) \ 0.0001

RBC membranes

Saturated 43.35 44.15 0.47 43.82 42.98 - 0.88 3.13

n = 50, 53 (2.165) (3.010) (0.342) (2.594) (1.724) (0.326) 0.0011

Monounsaturated 20.43 19.79 - 0.46 19.89 20.03 0.05 - 2.65

n = 50, 53 (2.199) (1.688) (0.227) (1.587) (1.848) (0.215) 0.0401

Total n-3 5.46 10.22 4.93 5.72 5.52 - 0.01 89.38

n = 50, 53 (1.130) (2.484) (0.242) (1.185) (1.116) (0.231) \ 0.0001

Total n-6 30.75 25.84 - 4.91 30.58 31.47 0.81 - 19.60

n = 50, 53 (1.967) (3.165) (0.365) (3.051) (2.178) (0.348) \ 0.0001

a Patient numbers (n) are reported for icosapent ethyl 4 g/day and placebo, respectively
b Proportion of total where total = sum of omega-3, omega-6, monounsaturated, and saturated fatty acids
Mean and SD are reported for baseline and end-of-treatment values; least squares mean and SE are reported for changes
from baseline; least squares mean is reported for percent changes from baseline vs. placebo
Saturated fatty acids: sum of myristic, palmitic, stearic, arachidic, behenic, and lignoceric acids
Monounsaturated fatty acids: myristoleic, palmitoleic, cis-vaccenic, oleic, gondoic/gadoleic, erucic, and nervonic acids
n-6 fatty acids: sum of linoleic, c-linolenic, eicosadienoic, dihomo-c-linolenic, n-6 arachidonic, adrenic, and n-6 docos-
apentaenoic acids
n-3 fatty acids: sum of a-linolenic, stearidonic, eicosatrienoic, n-3 arachidonic, eicosapentaenoic, n-3 docosapentaenoic, and
docosahexaenoic acids
IPE icosapent ethyl, RBC red blood cell, SD standard deviation, SE standard error
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Using bioanalytical methods similar to those
used in the current analysis, a supplemental
analysis of data from 15,534 patients from the
Japan EPA Lipid Intervention Study (JELIS) also
found significant increases in plasma levels of
EPA and DPA, significant decreases in plasma
levels of AA, and no increase in plasma levels of
DHA with EPA ethyl ester 1.8 g/day [1]. The
main finding of JELIS, conducted in Japanese
patients receiving guideline-driven statin ther-
apy (N = 18,645), was a 19% reduction in a
composite endpoint of major coronary events
with EPA treatment versus statin therapy alone
[24]. The analysis of fatty acid plasma levels in
the JELIS patients demonstrated that in the EPA
group, a high plasma EPA concentration was
significantly associated with a lower risk of a
major coronary event but no significant associ-
ation was found for the other plasma fatty acid
levels investigated [1].

The potential cardiovascular benefits of
icosapent ethyl 4 g/day have recently been
evaluated in the Reduction of Cardiovascular
Events with Icosapent Ethyl–Intervention Trial
(REDUCE-IT; NCT01492361), which was
focused on a multinational, high-risk, statin-
treated patient population similar in back-
ground risk and statin therapy to that in the
ANCHOR study [25]. Patients (N = 8179) on
stable statin therapy had Ldl-C controlled to
between 41 and 100 mg/dl, elevated TG
between 135 and 499 mg/dl, and either estab-
lished cardiovascular disease (secondary pre-
vention cohort) or diabetes and at least one
other cardiovascular risk factor (primary pre-
vention cohort) [25]. The primary composite
endpoint was time to first occurrence of a major
adverse cardiovascular event (MACE) that
included cardiovascular death, nonfatal
myocardial infarction, nonfatal stroke, coro-
nary revascularization, or unstable angina
requiring hospitalization. The key secondary
endpoint was the first occurrence of three-point
MACE consisting of cardiovascular death, non-
fatal myocardial infarction, or non-fatal stroke.
REDUCE-IT demonstrated a statistically signifi-
cant relative risk reduction of 25% [hazard ratio
(HR), 0.75; 95% confidence interval (CI),
0.68–0.83; P\0.001] for icosapent ethyl versus
placebo in the primary composite endpoint and

a relative risk reduction of 26% (HR, 0.74; 95%
CI, 0.65–0.83; P\ 0.001) in the key secondary
composite endpoint over a median follow-up of
4.9 years [25]. In REDUCE-IT, EPA was measured
in serum using an LC–MS/MS method similar to
that used in ANCHOR [21], with large increases
in EPA, as observed in the ANCHOR plasma
results presented herein [25]. Plasma EPA levels
achieved in the JELIS trial were also substan-
tially high, and JELIS also demonstrated a sta-
tistically significant reduction in cardiovascular
events as discussed earlier.

The findings in this study are limited to an
FDA-approved prescription formulation of EPA
(icosapent ethyl) and cannot be extrapolated to
other prescription omega-3 formulations con-
taining different concentrations of DHA or
other omega-3 fatty acids, or to dietary supple-
ments, which are unregulated and contain
much lower concentrations of EPA, DHA, or
other fatty acids [26]. DHA may increase Ldl-C
levels in some patients [27], and outcomes
studies of low-dose omega-3 fatty acid dietary
supplements have not found any cardiovascular
benefit [28].

Icosapent ethyl is not currently FDA
approved to reduce the risk of MACE, but fur-
ther assessment of REDUCE-IT data will help to
provide a greater understanding of the
REDUCE-IT results, their place in clinical treat-
ment, and the potential implications for fatty
acid profiles and cardiovascular outcomes fol-
lowing icosapent ethyl treatment.

Physiologically, potential beneficial effects of
omega-3 fatty acids include reducing inflam-
matory processes, such as those associated with
cardiovascular disease, whereas omega-6 fatty
acids are associated with proinflammatory
effects [6, 7, 29, 30]. EPA competitively inhibits
AA as a substrate in the production of eicosa-
noids and produces molecules that exert anti-
inflammatory and/or antithrombotic effects
[6, 7, 29]. The EPA/AA ratio is correlated to the
progression of arteriosclerotic disease and car-
diovascular outcomes [1, 7, 31, 32]. In the cur-
rent analysis, icosapent ethyl significantly
increased total omega-3 fatty acid concentra-
tions and reduced the content of AA in both
plasma and RBCs, significantly decreasing the
AA/EPA ratio.
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These potentially beneficial anti-inflamma-
tory effects of icosapent ethyl versus placebo on
plasma and RBC fatty acids are consistent with
the previously reported reductions in markers of
inflammation and oxidation in patients in the
ANCHOR study, including high sensitivity
C-reactive protein, lipoprotein-associated
phospholipase A2, and oxidized LDL [16].

Limitations of the current analysis of plasma
fatty acid levels include small sample size relative
to the entire ANCHOR population, within-subject
variability [33], and that changes in plasma lipid
levels affect plasma fatty acid levels; thus, lipid-
lowering agents such as icosapent ethyl are
expected to affect fatty acid levels. The analysis of
RBC fatty acid levels in this study, however, offers
additional understanding of the effects of icos-
apent ethyl, as RBCs are more reflective of the
levels of EPA and other fatty acids in tissues
compared with levels in plasma, and the con-
centrations of both EPA and DHA are known to
be less variable in RBCs than in plasma [33].
Furthermore, the levels of EPA, DPA, and DHA in
RBCs have been linked with cardiovascular risk,
and thus analyses of RBC fatty acid levels offer
additional insight into potential beneficial effects
of omega-3 therapies. RBC levels of EPA and DPA
help predict risk of 2-year mortality in myocardial
infarction patients, and in an observational study,
dietary intake and RBC levels of EPA and DHA
were inversely related to the risk of primary car-
diac arrest [2, 34]. However, it should be noted
that in the current analysis, RBC fatty acid levels
may have been limited by the 12-week study
duration. While EPA concentration in RBC
membranes may double as early as 3 days after
supplementation, the lifespan of RBCs is approx-
imately 120 days in adult humans [35]. Finally, as
current guidelines favor as-high-as-tolerable statin
intensity, it may be worth noting that in the
overall ANCHOR population, approximately 90%
of patients were on moderate- to high-intensity
statin regimens.

CONCLUSIONS

Icosapent ethyl 4 g/day significantly increased
plasma and RBC EPA concentrations and caused
other potentially beneficial shifts in fatty acid

plasma and RBC membrane content versus
placebo.
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