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ABSTRACT
Oligodendrocyte lineage transcription factor 2 (OLIG2) plays a pivotal role in 

glioma development. Here we conducted a comprehensive study of the critical gene 
regulatory networks involving OLIG2. These include the networks responsible for 
OLIG2 expression, its translocation to nucleus, cell cycle, epigenetic regulation, and 
Rho-pathway interactions. We described positive feedback loops including OLIG2: 
loops of epigenetic regulation and loops involving receptor tyrosine kinases. These 
loops may be responsible for the prolonged oncogenic activity of OLIG2. The proposed 
schemes for epigenetic regulation of the gene networks involving OLIG2 are confirmed 
by patient survival (Kaplan–Meier) curves based on the cancer genome atlas (TCGA) 
datasets. Finally, we elucidate the Coherent-Gene Modules (CGMs) networks—
framework of OLIG2 involvement in cancer. We showed that genes interacting with 
OLIG2 formed eight CGMs having a set of intermodular connections. We showed also 
that among the genes involved in these modules the most connected hub is EGFR, 
then, on lower level, HSP90 and CALM1, followed by three lower levels including 
epigenetic genes KDM1A and NCOR1. The genes on the six upper levels of the 
hierarchy are involved in interconnections of all eight CGMs and organize functionally 
defined gene-signaling subnetworks having specific functions. For example, CGM1 
is involved in epigenetic control. CGM2 is significantly related to cell proliferation 
and differentiation. CGM3 includes a number of interconnected helix–loop–helix 
transcription factors (bHLH) including OLIG2. Many of these TFs are partially 
controlled by OLIG2. The CGM4 is involved in PDGF-related: angiogenesis, tumor cell 
proliferation and differentiation. These analyses provide testable hypotheses and 
approaches to inhibit OLIG2 pathway and relevant feed-forward and feedback loops 
to be interrogated. This broad approach can be applied to other TFs.

INTRODUCTION

Oligodendrocyte lineage transcription factor 2 
(OLIG2) is a member of a family of basic helix–loop–helix 
(bHLH) transcription factors (TFs) including two other 
members: OLIG1 and OLIG3. OLIG2 is expressed only in 
the central nervous system (CNS) and plays an important 

role in the development of brain cancers. As usual, its role 
in tumorigenesis is an extension of its “normal” function, 
such as promoting neural differentiation at specific 
stages of neural development. Early in oligodendrocyte 
specification, two signaling pathways (BMP—bone 
morphogenetic protein—and SHH—sonic hedgehog) 
converge on OLIG1 and OLIG2 and play a significant role 
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in the formation of multipotential neural progenitor cells 
(NPC) including their development to oligodendrocyte 
precursor cells (OPCs) [1]. OLIG2 is also involved in 
chromatin remodeling by directing the histone-acetylating 
molecule BRG1 to genes needed for differentiation [1]. 

There is also significant evidence for the role of 
OLIG2 in cancer. Exposure to glioma-related mitogens 
EGF and PDGF leads to proliferation of OLIG2+ rapidly 
dividing cells (type C) [2–4]. All malignant gliomas 
express OLIG2, and inhibiting the OLIG2 pathway 
inhibits glioma growth and sensitizes to radiation [5–11]. 
Given this evidence, we used a systems biology approach 
involving hierarchical gene network analysis to identify 
OLIG2-related pathways and genes that may influence 
cancer development and that inform drug development 
approaches for this pathway.

Recently researchers increased their interest 
in regulatory role of TFs and their networks in brain 
development [12–15]. 

Interesting attempt to elucidate the regulatory 
module network for basic helix–loop–helix TFs was 
undertaken by Li and coauthors [12]. They created a 
28-module network using a probabilistic method for 
identifying regulatory modules from gene expression 
data introduced by Segal and colleagues [16] and found 
26 cooperative bHLH TF pairs. Tsigelny with coauthors 
created and investigated the hierarchical gene networks 
including transcription factors involved in brain 
development [13]. Recently a profile of OLIG2-target 
genes that are involved in progenitors of motor neurons 
and oligodendrites was studied using KEGG networks 
[14]. Significant role of OLIG2 as a multifunctional 
regulator of neurons is underlined using network analysis 
by Mateo and coauthors [15] who showed that this TF 
activates 616 genes and represses 760 genes. They also 
showed that TFs interact between each-other in creation 
of the network-driven regulation action.

Our goal was to develop a set of networks that 
allowed to find a hierarchy of TFs regulating processes 
that lead to glioma development. 

RESULTS AND DISCUSSION

OLIG2 expression regulation

OLIG2 expression is induced by sonic hedgehog 
(SHH) and fibroblast growth factor (FGF) during 
development. A simplified diagram of SHH, FGF, and 
OLIG2 interactions is shown in Figure 1A [6, 17–21]. 
FGF and SHH signaling pathways cooperate to induce 
OLIG2 [22]. When SHH signaling establishes a progenitor 
domain that expresses OLIG2, FGFR signaling promotes 
OLIG2 transcription. Another hypothesis proposed by 
Kessaris and colleagues suggest the FGFR signaling 
leads to necessary level of MAPK phosphorylation 

that leads to OLIG2 expression [20]. This hypothesis is 
supported by experiments by Furusho and coauthors [22]. 
In general, FGFs (around 23 known by now) are very 
important for CNS development. They are involved in 
migration, proliferation, differentiation, and survival of 
neural cells [22, 23]. FGF3 expression is consistent with 
oligodendrocyte progenitors (OLPs,) driven by OLIG2. In 
comparison FGF2 is related to differentiated OLPs and 
less related to OLIG2. FGF2 promotes oligodendrocyte 
precursor cells (OPCs) production and inhibits the 
transition from pre-OPCs to OPCs repressing SHH-
dependent coexpression of OLIG2 and NKX2-2 [17]. 

OLIG2 translocation to nucleus and neural stem 
cells 

Notch signaling upregulates OLIG2 expression and 
promotes OLIG2 localization in nucleus (Figure 1A) [24].  
OLIG2 translocates from the nucleus of neural stem cells 
(NSCs) to cytosol, where it is subsequently degraded 
during formation of astrocytes. This is simulated by 
AKT via phosphorylation of the residue S30 of OLIG2 
[25, 26]. More phosphorylation sites are found in OLIG2 
by mass spectroscopy S10, S13, S14, and T43 [26]. 
Phosphorylation at the triple-serine site correlated with 
oncogenic potential [26].

OLIG2 and cell cycle including epigenetic style 
regulation 

p21 (WAF1/CLIP1) is a known cell cycle inhibitor 
and effector of p53 (Figure 1B). It is directly involved 
in fulfillment of p53 inhibiting regulation of NSC [27]. 
p21 locus is directly affected by OLIG2 transcriptional 
repression. Disruption of p21 enhances proliferation rates 
of NSC in mammalian forebrain [28]. p21 is involved 
in Cyclin D and CDK4/6 inhibition and, by inhibiting 
p21, OLIG2 indirectly increases expression of these 
two tumorigenic proteins. It is interesting to note that 
attenuation of p53 function resulted by mutations in 
genes interacting with it—p14ARF (CDKN2A), MDM2, or 
ATM—still does not prevent fully p53-driven response in 
genotoxic damage, but OLIG2 completely abolishes p53 
function [9].

Complete transcriptional activity of p53 requires 
the coactivators—CREB binding protein (CBP)/p300 
and PCAF [29]. Later additional coactivators were 
found. p53 acetylation is mediated by the p300 and CBP 
acetyltransferase domains. Overexpression of either p300 
or CBP induces p53 acetylation. MDM2, a negative 
regulator of p53, actively suppresses p300/CBP-mediated 
TP53 acetylation in vivo and in vitro. This inhibitory 
activity of MDM2 on p53 acetylation is in turn abrogated 
by tumor suppressor p19ARF (mouse equivalent of p14ARF 
(CDKN2A), indicating that regulation of acetylation is a 
central target of the p53–MDM2–p19ARF function [30].
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TP53 was the first non-histone protein shown 
to be acetylated by histone acetyltransferase (HAT) 
[31]. The most important acetylation sites on TP53 are: 
K164, K120, and six lysines at C-terminus (Figure 2B)  
[31]. OLIG2 suppresses TP53 acetylation. Mehta and 
colleagues showed that by suppressing acetylation 
on specific site OLIG2 suppresses both basal and 
radioinduced interactions of TP53 with p21 (CDKN1A), 
WIG1, BAX, and MDM2 [9]. OLIG2 acts as an important 
posttranslational modifier of p53. 

Positive feedback loop with KDM1A (LSD1) 

It is possible that OLIG2 “triggers” the positive 
feedback loop (Figure 2A, thick yellow arrows) including 
EGFR and PDGFR (and possible additional tyrosine 
kinase receptors), activating them. PDGFR and EGFR 
then activate Catenin delta-1 (p120, CTNND1) protein, 
which activates a set of RCOR (CoREST) proteins and 
as a result the demethylase KDM1A (LSD1). KDM1A is 
involved in demethylation of p300 HAT that through TCF3 
(E47) activates OLIG2, which is a member of heterodimer 
with TCF3. Downing and Reynolds showed that PDGF, 
EGF, and CSF-1 induce tyrosine phosphorylation of p120. 
KDM1A demethylates K-370 of p53/TP53 that prevents 
interaction of p53/TP53 with TP53BP1 and represses  
p53-mediated transcriptional deactivation [32].

Activation of KDM1A is coregulated by RCOR 
group of genes. There are three isoforms of RCOR 
proteins. RCOR1 and RCOR2 activate KDMA1—
nucleosomal demethylation, while RCOR3 inhibits this 
function [33]. p120-catenin directly binds the REST–
CoREST complex, displacing it from established gene 
targets to permit their transcriptional activation [34]. 
p300/CBP coactivator complex contains two coactivators: 
p300 (E1A binding protein 300) and CBP (CREB-binding 
protein, CREBBP). Each of coactivators contains histone 
acetyltransferase (HAT) domain [35]. Ito and colleagues 
showed that p300/CBP-mediated acetylation is a universal 
and critical modification for p53 function [30] (Figure 2B).  
Ligon and colleagues showed that OLIG2 function is 
necessary for primary glioma development related to 
activation of EGFR and PDGFR [4]. 

Complex TFAP2C–MYC–KDM5B demethylates 
histone 3 (H3K4me3) that leads to direct p21 repression 
[36]. Similar role most probably plays KDM1A (LSD1). 
Downregulation of LSD1 in vitro with both siRNA 
and monoamine oxidase (MAO) inhibitors (pargyline, 
clorgyline, or tranylcypromine) led to growth inhibition and 
differentiation with an increase of H3K4 methylation [37].

Kaplan–Meier curves (Figure 3) show increase in 
survival with the lower expression of KDM1A (AOF2), 
RCOR, and OLIG2, and some increase of survival with 
increased expression of CDKN1A. All that is consistent 
with our scheme of gene interactions related to epigenetic 
control. These results above here are in whole or part 
based upon data generated by the TCGA Research 
Network: http://cancergenome.nih.gov/ (Figure 2A).

Another point of view is presented by Kozono 
and coauthors. They showed that KDM1A promotes 
loss of H3K4me3 (responsible for activation of cancer-
related genes) and proposed that KDM1A does it through 
regulation of H3K4me3 homeostasis at the MYC locus 
[38]. They showed that decreased KDM1A expression 
increases MYC H3Kme3 and MYC expression [38]. The 
authors acknowledged that their findings are contradictory 
to a number of results [39, 40] showing that the KDM1A 
inhibitors actually inhibit growth of a number of cancers 
and stated that the mechanism of such “dichotomy” is an 
important area of investigation. So KDM1A decreases 
H3K lysine 4 methylation and activates the related genes; 
in the same time causes loss of H3K4me expression [38]. 
The summary result depends on the ratio of these two 
activities of demethylase.

Positive feedback loops with TK (tyrosine 
kinase) receptors 

This loop also contains a number of tyrosine 
kinase receptors including EGFR, PDGFR, FLT1, etc. 
(see Figure 4, thick pink and yellow arrows) that OLIG2 
activates. These receptors activate the well-known 
oncogenic pathways: PI3K–AKT–mTOR and RAS–
RAF–MEK–ERK. It was interesting to find the link that 
can elucidate the possible positive feedback loops that 
would generate the constant activation of these pathways 
triggered by OLIG2 or other genes. OLIG2 mediates its 
functions through a number of proteins. One of them 
is BAD. When it is not phosphorylated, BAD protein 
binds and inhibits BCL2 and other members of this 
family [41, 42]. Once phosphorylated by AKT kinase (or 
other kinases) the phosphoserine residues of BAD form 
affinity-binding sites for 14-3-3 protein, thus localizing 
phosphorylated BAD to the cytosol and effectively 
neutralizing its proapoptotic activity [42, 43].

AKT promotes translocation of OLIG2 to nucleus to 
NSC [20, 21] and in this way promotes its function. Jahn 
and coauthors reported that impact of GRB10 increased 
AKT activity levels without increasing PI3K activity levels 
[44]. This fact can be evidence that GRB10 is a positive 
regulator of the AKT pathway downstream of PI3K. 
GRB10 acts as an adaptor involved in the relocalization of 
AKT to the cell membrane, which results in its activation 
[44]. OLIG2 expression causes upregulation of GRB10 
and GRB14 [4, Suppl. Data]. Some positive feedback 
GRB10/14–OLIG2–AKT can function, causing OLIG2 
activation and BAD protein activity preventing apoptosis. 
Another positive feedback includes OLIG2–EGFR  
(or other TK receptor)—PI3K–AKT.

RHO pathway 

RHO expression is increased in human cancer, 
alongside with increased RHOA expression in high-grade 
astrocytomas. As shown in Figure 1C, OLIG2 activates 
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RHOA, which in its turn activates ERK1/2 [45, 46]. The 
authors showed that RHO/ROCK is involved in GBM cell 
migration and proliferation via ERK1/2 activation. 

Coherent-gene modules networks—framework 
of OLIG2 involvement in cancer

Initial network of OLIG2 interaction (Figure 5) 
was obtained using IPA program (Ingenuity Inc., Santa  
Clara, CA) on the basis of our gene sets presented 
in Figures 1, 2, and 4 and then analyzed by VisANT 
program (Center for Advanced Genomic Technology, 
Bioinformatics Program, Boston University, MA) with 
its Predictome database of gene–gene interactions 
[47], which is updated every month. VisANT added 
a number of genes that participate in various aspects 
of OLIG2 function and separated them to eight 
modules (Figure 6A). The lists of genes in each 
modules are present in Supplementary Table S1. 
The following exploration of these modules genes with the 
IPA program had shown that all the selected by VisANT 
modules contain functionally connected groups of genes 
responsible for the specific functions of the cell related to 
cancer. Some of the involved genes participate in different 
IPA networks. 

Most populated module is Module 8 having 273 
genes and the highest connectivity (Figure 6B) and the 
smallest module is Module 6 (with 33 genes). OLIG2 
along with OLIG1 and OLIG3 and other 49 genes  
(total 52 genes) is located in Module 3. Analyzing the 
intensity of connections between the modules revealed 
that the greatest numbers of connections are in the pairs 
Module 1 and Module 5, Module 1 and Module 2, Module 
2 and Module 5, and Module 3 and Module 5 (Figure 6C). 

Module 3 containing OLIG2 controls the largest 
module of the network—Module 8—through controlling 
EGFR and other genes from its network. Module 1 
contains a number of epigenetic-related genes like 
RCOR1, KDM5B, etc., and is controlled partially by 
ERK1/2. Module 2 includes a number of MAP kinase 
family members and HIF1A, important hypoxia-related 
transcription factor. Module 3 contains a network 
controlled significantly by OLIG2, OLIG1, and connected 
genes.

The top (having maximum numbers of connections) 
gene in the entire multimodal network is shown in Figure 7:  
EGFR (Module 8), the next level includes CALM1 
(Module 7) and HSP90AA1 (Module 5). The next levels 
of hierarchy contain MAPK1, CDKN1A, KDM1A on level 
3, PAK1, NCOR1, MAPK3 on level 4, HDAC9, RCOR1, 
PDGFRA on level 5, and on the last level—ATP5C1, 
EGF, and MTA3. 

Each of the abovementioned coherent gene modules 
contains the main signaling networks related to specific cell 
functions. We analyze each of them in the following section.

Gene signaling networks inside the coherent-
gene modules

The selection of genes in the modules is not random. 
In majority of cases they are connected in specific gene 
networks that fulfill specific functions. The possible 
therapeutic options have to be addressed not to a single 
gene but to the entire networks of the modules. Here we 
elucidate some of the signaling networks that are found 
in modules. 

Network 3 in the Module 1 is related to 
epigenetic regulations 

This network (Figure 8A) contains a number of 
nuclear genes related to epigenetic regulation: histone 
deacetylase 7 (HDAC7)—an epigenetic repressor 
that plays role in transcriptional regulation, cell cycle 
progression, and developmental events [48], lysine-
specific demethylase 5B (KDM5B)—a repressor of 
tumor suppressor genes, promotes glioma cell growth by 
down regulating p21 [49], methyl CpG-binding domain 
protein 3 (MBD3)—a transcriptional repressor and 
gene silencer that has a preference for methylated CpG 
dinucleotide containing sites [50], methyl-CpG binding 
domain protein 2 (MBD2), which is involved in silencing 
methylated tumor suppressor genes and activating 
prometastatic genes [51], chromodomain helicase DNA-
binding protein 4 (CHD4 or Mi-2), which participates 
in epigenetic transcriptional repression and mutations in 
this gene are often associated with serious endometrial 
tumors [52], nuclear receptor corepressor 2 (NCOR2)—a 
transcriptional corepressor causing silencing and 
aberrant expression associated with cancer by promoting 
chromatin condensation [53, 54], transducin (Beta)-
like X-linked receptor 1 (TBL1XR1)—a transcriptional 
corepressor whose loss causes glucocorticoid resistance in 
leukemia [55], nuclear receptor corepressor 1 (NCOR1), 
which mediates transcriptional repression, particularly 
BCL6 transcriptional repressor activity [56], metastasis 
associated 1 family, member 3 (MTA3)—a transcriptional 
repressor of SNAI1 by means of transcriptional repressor 
BCL6 [57]. This gene encodes p53 partner genes that 
are involved in histone regulation and leads to SIRT3 
overexpression, which prevents apoptosis [58]. High 
mobility group 20B (HMG20B), which is required for 
progression through G2 into mitosis and for RCOR1/
CoREST-mediated repression (UniProtKB Q9P0W2); 
REST Corepressor 1 (RCOR1)—a member of BHC highly 
expressed in most cancers that serves as a corepressor 
of neuron-specific genes by modifying chromatin and 
acting as a silencer at the chromosomal level [59], SIN3 
transcription regulator family member A (SIN3A)—a 
transcriptional corepressor with REST that antagonizes 
MYC oncogenic activities [60], nuclear receptor  
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Figure 1: OLIG2-related gene networks. (A) Expression of OLIG2 is inducted by SHH and FGF proteins. (B) OLIG2 cell cycle 
impact. (C) OLIG2 interacting with RHO pathway [41].

Figure 2: Positive feedback loops including OLIG2. (A) Network including receptor tyrosine kinases, p300, KDM1A, and p53 . 
Connections: red arrows—activating, blue—inhibiting, and green—epigenetic. Yellow thick arrows show a positive feedback loop. (B) p53 
acetylation sites. Yellow sites are necessary for TP53 activation. Modified from ref. 28.
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subfamily 2, group C, Member 1 (NR2C1)—a transcription 
regulator/repressor, involved in stem cell proliferation 
and differentiation [61]) with low expression in ER+ and 
ER− breast cancer [62], retinoblastoma binding protein 7 
(RBBP7)—a regulator of cell proliferation through SIN3 
corepressor complex [63] and repressor of homeotic genes 
during development through interactions with BRCA 
tumor suppressors [64], retinoblastoma binding protein 
4 (RBBP4)—a transcriptional repressor and silencer 
regulating cell proliferation of retinoblastoma [65]. 
ERK1/2 interacts with this network.

Network 1 in the module 2 is related to cell 
proliferation and differentiation 

This network (Figure 8B) is related mostly to cell 
proliferation and differentiation. It spreads from the 
plasma membrane through cytoplasm to the nucleus.  
In the plasma membrane: the network contains; ret proto-
oncogene (RET)), which is involved in cell proliferation 

in glial cells, regulates cell death/survival, and triggers 
apoptosis [66], hyaluronan-mediated motility receptor 
RHAMM (HMMR), which is involved in metastasis 
and regulating of ERK (UniProtKB 075330). It is also 
responsible for cell motility and invasion and forms 
complex with BRCA genes (OMIM 113705; OMIM 
600185). Vascular endothelial growth factor (VEGF) and 
its receptor is involved in regulation of RET and HMMR. 
In the cytoplasm it contains: intestinal cell (MAK-Like) 
kinase (ICK), which is responsible for cell proliferation 
and differentiation [67], mitogen activated protein kinase 
3 (MAPK3), which plays important role in MAPK/ERK 
cascade and in regulation of cell proliferation, survival, 
growth, and differentiation [68], mitogen-activated 
protein kinase kinase kinase 3 (MAP3K3)—a mediator 
of NF-kappa-B transcription regulator activation and 
signal transduction cascade [68], valocin containing 
protein (VCP)—an inducer of anti-apoptosis and muscle, 
bone, and brain damage, and preventer of DNA repair 
[70], sequestosome 1 (SQSTM1), which is involved 

Figure 3: Kaplan–Meier curves show increase of survival with the lower expression of KDM1A (AOF2), RCOR, and 
OLIG2, and some increase of survival with increased expression of CDKN1A. All that is consistent with our scheme of gene 
interactions related to epigenetic control (Figure 2A).
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in apoptosis, and the body’s immune responses and 
inflammatory reactions, promotes osteoclast formation 
[71], mitogen activated protein kinase kinase 1 (MAP2K1), 
which controls cell proliferation, differentiation, 
movement, and apoptosis primarily through transcription 
regulation [72], mitogen activated protein kinase kinase 
kinase 14 (MAP3K14), which stimulates NF-kappa-B  
transcriptional activation and regulation via noncanonical 
pathways [73], mitogen activated protein kinase 
kinase kinase 1 (MAP3K1), which is activated by 
autophosphorylation, and phosphorylates other proteins 
with a magnesium cofactor [74]. Its increased expression 
in vivo promotes breast cancer survival and increases 
resistance of squamous cell carcinoma to photodynamic 
therapy [75, 76]. In the nucleus this network contains: 
histone deacetylase 6 (HDAC6), which is involved in 
transcriptional regulation, cell cycle progression, and 
development [77] and participates in neuroblastoma 
dissemination [78], hypoxia inducible factor 1, alpha 
subunit (HiF1A), which is involved in cancer progression, 
cell proliferation, and tumorigenesis [79], HIS1H4A, 
which may have some significance in melanoma and 
other cancers [80], signal transducer and activator of 
transcription 3 (STAT3)—a transcription factor that 
is involved in anti-apoptosis and tumorigenesis [81], 
SMAD Family Member 4 (SMAD4), which increases 
risk of cancer by increasing chances of cell proliferation 
[82], breast cancer 1, early onset (BRCA1)—aberrations 

in this gene causes out-of-control cell growth and 
division and impairs ability to repair damaged DNA 
[83], general transcription factor III (GTF2i), which is 
involved in normal immune function and B-cell response 
to invaders [84], estrogen receptor 2 (ER Beta) (ESR2), 
which activates transcription, but does not affect patient 
susceptibility to various cancers [85, 86], cyclin D1 
(CCND1), which contributes to tumorigenesis when 
overexpressed, amplified, or mutated [87], splicing factor 
proline/glutamine-rich (SFPQ)—a tumor suppressor gene 
[88], poly (ADP Ribose) polymerase 1 (PARP1), which 
is involved in cancer progression and tumor ulceration 
[89, 90]. It is very interesting that PARP1 and BRCA1 are 
actually members of the same local gene network with 
a number of connecting links. Sp1 Transcription Factor 
(SP1)—an activator and repressor of transcription is 
involved in cell growth, apoptosis, differentiation, and 
immune responses, in addition to maintaining telomere 
activity in cancer cells [91].

Network 2 in the Module 2 participates in 
negative regulation of cancer-inducing genes

This network (Figure 8C) is primarily involved 
with phosphatases and negative regulation of key cancer-
inducing genes and signaling pathways. In the plasma 
membrane it contains: protein tyrosine phosphatases 
(PTPRB and PTPRC), which impair humoral- and cell-

Figure 4: AKT-stimulated export of OLIG2 from the nucleus of NSCs is essential for the astrocyte differentiation. 
Red arrows—activating connections, light-blue arrows—inhibiting. Thick arrows present two positive feedback loops (1—pink and 2—
yellow); both of them activating AKT.
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mediated-immunity and play a role in cell adhesion, neurite 
growth, and neuronal differentiation [92], ATPase, Na+/K+  
transporting, alpha 1 polypeptide (ATP1A1), which plays 
an important role in establishing the electrochemical 
gradients for Na and K across the plasma membrane for 
electrical excitability of nerve and muscle (NCBI Entrez 
Gene 476); sprouty homolog 2 (SPRY2)—an inhibitor of 
FGF signaling pathways and regulator of EGFR/MAPK 
signaling [93], protein tyrosine phosphatase, receptor type 
J, (PTPRJ)—a negative regulator of PDGF-stimulated cell 
migration and EGFR and T-cell receptor signaling and 
positive regulator of platelet activation and endothelial 

cell survival [94, 95]. In the cytoplasm it contains: son of 
sevenless homolog 1 (SOS1), which regulates RAS proteins 
and participates in signal transduction pathways [96], 
spleen tyrosine kinase (SYK)—a modulator of epithelial 
cell growth and tumor suppressor breast carcinomas [97], 
mitogen activated protein kinase kinase 2 (MAP2K2), 
which is involved in cell proliferation, differentiation, 
movement, and apoptosis [98], insulin receptor substrate 
1 (IRS1), which mediates insulin dependent cellular 
processes [99], protein-tyrosine phosphatase, nonreceptor 
type 1 (PTPN1), which negatively regulates insulin 
signaling and promotes oncogenic transformation by 

Figure 5: Simplified OLIG2 gene signaling network. Red lines—activating by OLIG2 connectors, blue—inhibiting.
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dephosphorylating EGFR, JAK2, and TYK2 kinases 
[100], dual specificity phosphatase 3 (DUSP3)—a negative 
regulator of mitogen activated protein kinase superfamily 
[101]. In the nucleus is located cell division cycle 25C 
(CDC25C), which plays a key role in regulating cell 
division by triggering entry into mitosis and suppressing 
p53-induced growth arrest [102]. 

Network 1 in the Module 3 is involved in 
compromising anticancer defense

This network is shown in Figure 8D. In plasma 
membrane this network contains: erb-B2 receptor 
tyrosine kinase 2 (ERBB2)—an oncogene associated 
with increased invasion, metastasis of the disease 
and resistance to therapy [103], adrenoreceptor Beta 
family gene (ADRB), which mediates physiological 
effects of epinephrine and norepinephrine [104, 105]. 
In the cytoplasm this network contains genes in the 
mitochondria, specifically those regulating mitochondrial 

function and cellular communication: solute carrier family 
25 member 3 (SLC25A3), which regulates mitochondrial 
permeability transportation pore [106], innermembrane 
protein, mitochondrial (IMMT) that is crucial for 
maintenance of cristae and inner- and outermembrane 
architecture to allow for cellular communication 
[107], F-box protein 6 (FBXO6), which is involved in 
endoplasmic reticulum associated degradation pathway 
and DNA damage response [108], single stranded 
DNA binding protein 1, mitochondrial (SSBP1), which 
is involved in genome stability and mitochondrial 
biogenesis [109, 110], GABA(A) receptor-associated 
protein like 1 (GABARAPL1)—an autophagy-related 
gene [111], Calmodulin 1 (CALM1)—a common target 
for immunotherapy and biomarker development with 
high expression in prostate and pancreatic cancer [112], 
argonaute RISC catalytic components (AGO1, AGO2, 
and AGO4), which play a role in RNA interference [113] 
and RNA directed transcription [114]. In the nucleus 
this network contains genes responsible for ubiquitin-

Figure 6: Gene modules involved in the comprehensive OLIG2 signaling network. (A) General network diagram. (B) Quantity 
of genes in the modules (i) and connectivity of each module (ii). (C) Number of connections between modules are presented as the relative 
thickness of the connecting lines. Thicker lines indicate a greater number of connected genes between two modules, while thinner lines 
indicate a smaller number of connected genes between two modules.
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dependent regulation: HECT, UBA, and WWE domain 
containing 1, E3 ubiquitin protein ligase (HUWE1), 
which ubiquitinates the anti-apoptotic gene MCL6 and 
tumor suppressor p53, and regulates ubiquitination and 
degradation of MYCN and CDC6 [115–117], cullin 
3 (CUL3), which degrades specific protein substrates 
through polyubiquitination [118], interleukin enhancer 
binding factor 3, 90kDa (ILF3), which facilitates 
posttranscriptional double-stranded RNA-regulated 
gene expression and T-cell expression of interleukin 2 
[119], Y-box binding protein 1 (YBX1) which acts as 
extracellular mitogen, promotes MYC mRNA stability, and 
stimulates cell migration and proliferation when secreted 
(UniProtKB P62960).

Network 2 in the Module 3 is directly related 
to OLIG1/2 expression and function along with 
regulation of other bHLH TFs

This network (Figure 8E) is affected by four 
extracellular signaling genes: serpin peptidase inhibitor 
(SERPINF1)—a regulator of neuronal differentiation in 
retinoblastoma cells and inhibitor of angiogenesis [120], 
ciliary neutotrophic factor (CNTF), which promotes 
neurotransmitter synthesis and reduces tissue destruction 
during inflammatory attacks [121], leukemia inhibitory 
factor (LIF), which induces hematopoietic differentiation 

in myeloid leukemia cells [122], sonic hedgehog 
(SHH), which plays a significant role in cell growth and 
specialization, specifically for CNS development, and 
directly affects OLIG2 expression [123]. In the plasma 
membrane a very important gene, NOTCH1, plays a 
significant role in cell proliferation, differentiation, and 
apoptosis. It is both an oncogene and tumor suppressor, 
so mutations in NOTCH1 are frequently found in head 
and neck carcinomas, leukemia, and lung cancer, which 
all affect its tumor suppressor function [124–126]. In the 
cytoplasm is located mitogen activated protein kinase 
kinase 2 (MAP2K2), which is involved in cell proliferation, 
differentiation, movement, and apoptosis [94].

A distinguishing feature of this network is a 
located in the nucleus subnetwork of basic helix–loop–
helix transcription factors (bHLH) described in detail 
by Tsigelny and colleagues [127]. It includes a set of 
inhibitors of DNA binding TFs (IDs). ID1 and ID4 
inhibit DNA binding and transcriptional activation 
as negative transcriptional regulators of other bHLH 
transcription factors [128]. Oligodendrite lineage 
transcription factors (OLIG1 and OLIG2) are regulators 
of ventral neuroectodermal progenitor cell fate and 
are responsible for many oligodendroglial tumors [5]. 
Neurogenins (NEUROG1, NEUROG2, and NEUROG3) 
are key transcriptional regulators of neurogenesis and 
are associated with neuroblastoma [129]. Achaete-scute 

Figure 7: (A) Genes having the greatest number of connections in the general OLIG2-related signaling network start with (1) EGFR 
(module 8); then include (2) CALM1 (module 7) and HRP90AA1 (module 5); (3–6) show the further connection expansion. (B) Hierarchical 
involvement of the genes with the greatest number of connections.
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family bHLH transcription factor 1 (ASCL1) encodes a 
member of the bHLH family of transcription factors and 
is involved in neuronal commitment and differentiation 
of olfactory and autonomic neurons [130]. Hes family 
bHLH transcription factor 1 (HES1) is a repressor of 
genes that require bHLH for transcription [131]. It is a 
negative regulator of myogenesis [132]. NK2 homeobox 
2 (NKX2-2) is a TF involved in morphogenesis of CNS 
and neuroendocrine tumor development [133]. Deltex 1, 
E3 ubiquitin Ligase (DTX1) is a positive and negative 
regulator of NOTCH that promotes B-cell development 
at the expense of T-cell development and is involved in 
neurogenesis and myogenesis [134].

Network 2 in the Module 4 is involved in cancer 
inflammation response

This network is shown in Figure 8F. In the cytoplasm 
it contains: V-Crk avian sarcoma virus CT10 oncogene 
homolog-like (CRKL), which plays a role in fibroblast 
formation [135], phospholipase c, gamma 1 (PLCG1)—a 
regulator of intracellular signaling cascades that plays 
a role in actin reorganization and cell migration [136], 
phosphoinositide-3-kinase, regulatory subunit 1 alpha 
(PIK3R1), which plays an important role in metabolic 
actions of insulin and in signaling responses to FGFR and 
PDGFR family genes [137, 138], src homology 2 domain 
containing adaptor protein B (SHB), which plays a role 
in angiogenesis, T-cell antigen receptor signaling [139], 
interleukin-2 signaling, apoptosis [140], and neuronal 
cell differentiation [141], signal transducing adaptor 
family member 2 (STAP2), which modulates STAT3 
activity [142],  which in its turn promotes pro-oncogenic 
inflammation and suppresses anti-tumor immunity [143], 
protein tyrosine phosphatase (PTPase), which regulates 
insulin signaling and cell-cell adhesion [144], janus 
kinase 1 (JAK1), which is heavily involved with STATs 
[145] and kinase-partner to interleukin-2 receptor [146]. 
In the nucleus this network contains: cbl proto-oncogene 
E3 ubiquitin protein ligase (CBL)—a negative regulator 
of many signal transduction pathways activated by cell 
surface receptors and regulator of osteoblast differentiation 
and apoptosis [147], signal transducer and activator of 
transcription 5B (STAT5B), which is responsible for cell 
transduction, transcription activation, and apoptosis [148].

Network 3 in the Module 4 is related to PDGRF 
regulation

This network (Figure 8G) is primarily related to 
cellular regulation by the platelet derived growth factor 
receptor and bone morphogenetic protein receptor 
superfamilies. In the extracellular space this network 
contains: bone morphogenetic protein 4 (BMP4), which 
plays an important role in endochondral bone formation 
[149], platelet derived growth factor superfamily genes 

(PDGFA, PDGFB, and PDGFC), which play important 
roles in angiogenesis, cell proliferation and differentiation, 
and pathophysiology of cancer [150], collagen, type IV, 
alpha 1 (COL4A1), which inhibits angiogenesis and tumor 
formation [151] and activation of HIF1A, ERK1/2, and p38 
MAPK. In the plasma membrane this network contains: 
bone morphogenetic protein receptor, type II (BMPR2)—
an activator of SMAD4 transcriptional regulators 
(UniProtKB Q13873); platelet derived growth factor 
receptor superfamily genes (PDGFRA and PDGFRB)—a 
regulator of embryonic development, cell proliferation, 
survival, chemotaxis, and tumor progression [152, 153], 
growth factor receptor-bound protein 14 (GRB14)—an 
inhibitor of insulin receptor signaling and regulator of 
growth and metabolism [154], bone morphogenetic protein 
receptor, type A (BMPR1A)—an activator of SMAD4 
transcriptional regulators (UniProtKB P36894).

Network 1 in the Module 6 is partially related to 
neuron growth and promotes cell proliferation, 
regulates apoptosis, and accelerates mitotic 
abnormalities 

This network is shown in Figure 8H. In the 
plasma membrane it contains: BAI-associated protein 
2 (BAIAP2)—a brain-specific angiogenesis inhibitor 
associated with neurodegenerative disease [155], 
Sorbina and SH3 domain containing 2 (SORBS2)—an 
adapter protein repressed in oncogenic transformation 
of the pancreas, causing progression of the cancer 
[156], synapsin 1 (SYN1)—a regulator of axonogenesis, 
synaptogenesis, and neurotransmitter release causing 
neuronal degeneration (NCBI Entrez Gene 6853); 
contactin (CTTN), which is overexpressed in breast cancer 
and squamous cell carcinoma as aberrant regulation causes 
tumor cell invasion and metastasis [157]. In the cytoplasm 
this network contains: NCK Adaptor Protein 1 (NCK1), 
which plays a role in cell adhesion and migration through 
ephrin receptors [158, 159], NCK Adaptor Protein 2 
(NCK2), which regulates receptor protein tyrosine kinases 
[160], Rho guanine nucleotide exchange factor (GEF) 7 
(ARHGEF7)—a positive regulator of apoptosis that also 
functions in cell migration, attachment, and spreading 
[161, 162], myosin light chain kinase (MYLK), which 
is involved in inflammatory response, tumor motility 
and metastasis [163, 164], and anti-apoptosis [165], p21 
protein (Cdc42/Rac)-activated kinase 1 (PAK1), which is 
involved in cell proliferation and apoptosis and is amplified 
in human cancers [166, 167], leucine-rich repeat kinase 2 
(LRRK2), which regulates neuronal process morphology 
in CNS [168] and phosphorylation of proteins central to 
Parkinson’s disease [169], myosin VI (MYO6), which 
is responsible for cell migration and organelle transport 
and is required for the structural integrity of the Golgi 
apparatus via the p53 -dependent pro-survival pathway 
[170], 3-phosphoinsitide dependent protein kinase 1 
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(PDPK1), which regulates cell proliferation, survival, 
motility and Notch-induced cell growth [171, 172],  
LIM domain kinase 1 (LIMK1), which stimulates axon 
growth and plays a role in brain development and cellular 
processes associated with cytoskeletal structure [173], 
Filamin A, Alpha (FLNA), which allows neuroblast 
migration to cortical plates [174]. In the nucleus this 
network contains cyclin-dependent kinase 11B (CDK11B) 
that plays a role in cell cycle progression, cytokinesis, and 
apoptosis [175]. In neuroblastoma, CDK11B is frequently 
deleted or altered [176].

Network 2 in the Module 7 is involved in neuron 
differentiation and apoptosis inhibition

This network is shown in Figure 8I. In the plasma 
membrane it contains: gap junction protein, beta 1, 
32kDA (GJB1) that facilitates ion and small molecule 
transfer between cells [177]. In the cytoplasm this network 
contains: dimethylarginine dimethylaminohydolase 
1 (DDAH1), which regulates nitric oxide generation 
[178], casein kinase 2, beta polypeptide (CSNK2B), 
which regulates metabolic pathways, signal transduction, 
transcription, translation, replication, tumor suppression, 
and tumorigenesis [179], regulator of G-protein signaling 
10 (RGS10), which drives G proteins into inactive GDP-
bound states [180], calpolin 1, basic, smooth muscle 
(CNN1), which regulates and modulates smooth muscle 
contraction [181], DEAD (Asp-Glu-Ala-Asp) box helicase 
3, X-linked (DDX3X) – involved in translation, cellular 
signaling, and viral replication, with misregulation 
resulting in tumorigenesis [182], ribosomal protein 
L13a (RPL13A), which represses inflammatory genes as 
part of the GAIT complex (NCBI Entrez Gene 32521). 
In the nucleus this network contains: transcription 
factor 4 (TCF4)—a bHLH TF that initiates neuronal 
differentiation (UniProtKB P15884); BMI1 proto-
oncogene, polycomb ring finger (BMI1), which maintains 
transcriptionally repressive state of Hox genes [183], 
neuronal differentiation 1 (NEUROD1)—a bHLH TF 
that activates transcription of E-box containing genes 
and insulin [184], RAN binding protein 2 (RANBP2), 
which regulates transcriptional repression mediated by 
class I and II HDACs [185], cullin 4B (CUL4B),which 
is important for DNA repair and replication [186, 187], 
normal G1 progression, and cell growth, size, and 
metabolism control through mTOR pathway regulation 
[188], SET nuclear proto-oncogene (SET), which inhibits 
apoptosis by cytotoxic T lymphocytes and simulates DNA 
replication of adenovirus genome [189], von Hippel-
Lindau tumor suppressor, E3 ubiquitin protein ligase 
(VHL)—dominantly inherited familial cancer syndrome 
predisposing to malignant and benign tumors [190], lysine 
(K)-specific demethylase 5C (KDM5C)—a transcriptional 
repressor of neuronal gene [191] and regulator of 
chromatin remodeling [192], aurora kinase B (AURKB), 

which regulates microtubule based chromosome 
segregation during mitosis and meiosis [193]. Its depletion 
leads to p53-dependent apoptosis due to p21 upregulation 
[194]. DCN1, defective in cullin neddylation 1, domain 
containing 1 (DCUN1D1), which facilitates malignant 
transformation and carcinogenic progression [195], 
HNF1 homeobox A (HNF1A), which regulates tissue 
specific expression of various genes [196], EWS RNA-
binding protein 1 (EWSR1)—a transcriptional repressor 
that plays a role in tumorigenesis and in development 
of neuroectodermal and other tumors [197], polymerase 
(RNA) II (DNA directed) polypeptide B, 140kDa 
(POLR2B), which catalyzes transcription of DNA into 
RNA [198].

Network 1 in the Module 8 partially related to 
EGFR regulation that is affected by OLIG2

This network is shown in Figure 8J. In the plasma 
membrane it contains: trans-2,3-enoyl-CoA reductase 
(TECR), which catalyzes final step in metabolism and 
produces membrane lipid precursors [199], exocyst 
complex component family genes (EXOC3, EXOC6, 
and EXOC8), which mediate cell communication by 
targeting exocytic vesicles to fusion sites on plasma 
membrane (UniProtKB O60645; UnirProtKB Q8TAG9; 
UniProtKB Q8IYI6); epidermal growth factor receptor 
(EGFR), which amplified in low grade gliomas and 
primary glioblastomas [200] due to anti-apoptosis 
qualities. In the cytoplasm this network contains many 
under-researched genes with uncited information in all 
referenced databases. These genes are primarily involved 
with protein processing and other posttranscriptional 
regulations. However, the following are all still significant 
to OLIG2 transcription factor action and warrant further 
analysis as OLIG2 directly regulates Module 8 genes 
(Figure 6): uroporphyrinogen decarboxylase (UROD), 
which catalyzes conversion of uroporphyrinogen to 
coproporphyrinogen (UniProtKB P06132); secretory 
carrier membrane protein 3 (SCAMP3), which is involved 
in post-Golgi recycling pathways and protein trafficking 
[201], nonsyndromic hearing impairment protein 5 
(DFNA5)—an apoptosis inducer [202] and tumor 
suppressor regulated by p53 [203], acyl-CoA synthetase 
long-chain family member 3 (ACSL3), which plays key 
role in lipid biosynthesis and fatty acid degradation [204], 
fumarylacetoacetate hydrolase (fumarylacetoacetase, 
FAH)—the last enzyme in tyrosine catabolism pathway 
[205], IlvB (bacterial acetolactate synthase)-like 
(ILVBL)—a homologous to pyrophosphate-binding 
proteins in bacteria, yeast, and plants (NCBI Entrez 
Gene 10994); dopey family member 2 (DOPEY2), which 
is involved in protein traffic between late Golgi and 
early endosomes (UniProtKB Q9Y3R5); mitochondria-
localized glutamic acid-rich protein (MGARP), which 
is responsible for mitochondria trafficking along 
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microtubules (UniProtKB Q8TDB4); pantothenate kinase 
4 (PANK4)—a key regulator of coenzyme A biosynthesis 
(UniProtKB Q9NVE7); sphingosine-1-phosphate lyase 
1 (SGPL1), which elevates stress-induced ceramide 
production and apoptosis [206], protein phosphatase 6, 
regulatory subunit 1 (PPP6R1)—a regulatory subunit 
of protein phosphatase 6 [207], amyloid beta (A4) 
precursor protein-binding, family B, member 3 (APBB3), 
which modulates internalization of Alzheimer’s disease 
beta-amyloid precursor protein (NCBI Entrez Gene 
10307); component of oligomeric Golgi complex 4 
(COG4), which is required for normal Golgi function 
[208], microtubule associated serine/threonine kinase 1 
(MAST1), which links dystrophin/utrophin network with 
microtubule filaments through syntrophins [209], Golgi 
localized complexes (COG1, COG6, COG7, and COG8), 
which is required for normal Golgi morphology and 
function [208], thyroid adenoma associated (THADA)—a 
protein encoding gene [210], NLR family, pyrin domain 
containing 10 (NLRP10)—a negative regulator of 
inflammation and apoptosis [211, 212]. NLRP10 also 
plays a role in adaptive and innate immunity [213]. 
In nucleus this network contains genes that are heavily 
involved in cell progression and development, particularly 
during mitosis: protein phosphatase 6, catalytic subunit 
(PPP6C), which restricts G1 to S phase progression in 

cancer cells [214], non-SMC condensing II complexes 
(NCAPG2 and NCAPH2), which plays a role in mitotic 
chromosome assembly and segregation [215], structural 
maintenance of chromosomes 2 (SMC2)—a critical 
for mitotic chromosome condensation and DNA repair 
[216], ZPR1 zinc finger (ZPR1), which communicates 
proliferative growth signals from cytoplasm to nucleus 
[217], induces neuron differentiation with cell arrest in G1 
and G2 phases [218], and is involved in H(2)O(2) induced 
neuronal cell death.

MATERIALS AND METHODS

VisANT program, version 4.0 [219] was used for 
biological pathway analysis and for the querying and 
visualization of gene-regulation and gene networks for 
glioblastoma. VisANT is a web-based tool for data mining; 
visualizing gene data in the context of sequence, pathway, 
structure, and associated annotations; and analyzing 
different types of networks for biological interactions 
and associations [219]. In addition to simple networks, 
interactions in VisANT can also be defined as higher-
level connections between groups of proteins, complexes, 
pathways, or subnetworks. These “modular” connections 
can be viewed simultaneously with connections between 
subcomponents, such as individual protein interactions 

Figure 8: Gene networks found in coherent-gene modules confirm the functional importance. See network explanations in 
the text (Section “Coherent-gene modules networks—framework of OLIG2 involvement in cancer”). (A) Network 3 of the Module 1. (B) 
Network 1 of the Module 2. (C) Network 2 of the Module 2. (D) Network 1 of the Module 3. (E) Network 2 of the Module 3. (F) Network 
2 of the Module 4. (G) Network 3 of the Module 4. (H) Network 1 of the Module 6. (I) Network 2 of the Module 7. (J) Network 1 of the 
Module 8. (K) Shape and color schemes for signaling networks derived by IPA program. 
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[219], thus creating a hierarchical clustering. Constructed 
networks include (1) simple interactions: links defined 
as protein–protein, protein–DNA, gene–gene, etc.; (2) 
modules, groups, and clusters: genes, proteins, pathways, 
and subnetworks; (3) modular interactions: complex 
interactions, colocalization data, shared components, and 
pathway interactions [219]. Once a gene data set has been 
loaded into VisANT, the genes or proteins within it can 
be queried for other known and predicted interactions 
from published data sets, using well-known databases as 
Munich Information Center for Protein Sequences (MIPS) 
database, Biomolecular Interaction Network Database 
(BIND), Human Protein Reference Database (HPRD), 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database, to name a few.

VisANT creates gene modules based on 
relationships. Because genes in these modules are working 
together and the modules are hierarchically integrated in 
biological networks, we call them coherent-gene modules 
(CGMs). Essentially, VisANT analyzes the interactions 
between all the available genes in the gene network and 
groups them based on connectivity with surrounding 
genes. VisANT specifically emphasizes CGMs (the most 
heavily connected genes within each module) than it does 
each individual gene. With that being said, modules are 
created within VisANT first due to connectivity within 
CGMs and then to connectivity with surrounding genes. 
The CGMs are separately analyzed through literature 
checks in order to extrapolate important information about 
their function in cancers, in this case gliomas. VisANT 
primarily takes the global clustering coefficient and the 
local clustering coefficient into account when generating 
weighted networks. After forming CGMs of all genes 
within the gene network, genes were filtered out based on 
connectivity.

After obtaining modules in VisANT, we uploaded 
genes of each module individually into IPA® program 
(Ingenuity Inc., Santa Clara, CA), starting with the two 
CGMs linked to OLIG2. Ingenuity IPA further elucidated 
the signaling networks including the genes from the 
VisANT-defined modules lists; so that a more simple and 
comprehensive network may be analyzed. Unlike VisANT, 
IPA specifies interactions between genes, which allow us 
to extrapolate important information from the uploaded 
genes and related genes identified through IPA Knowledge 
Base. Because multiple networks are created for every 
given module, we analyzed in more detail the networks 
with the maximum score for the genes selected from 
VisANT modules. The score is a measure of the number 
of input genes in a network.

KEGG database and KEGG software [220] were 
used to confirm obtained module networks, mapping them 
into KEGG pathways and looking for high-frequency 
cancer genes such as EGFR (linked to 522 genes in 
VisANT), Calmodulin (linked to 261 genes in VisANT), 
etc. After networks were confirmed, we used KEGG to 

extrapolate information about different pathways and to 
visualize key networks.

CONCLUSIONS

1.  OLIG2 transcription factor is involved in a set 
of signaling gene networks including inhibition 
of p53 by suppressing its acetylation and 
consequently its interactions with p21. 

2.  We elucidated a set of positive feedback loops in 
signaling pathway including OLIG2. Such loops 
may cause constant activation of the involved 
proteins and consequently oncogenesis. 

3.  Two of these loops include EGFR and PDGFR 
and most probably some of the other tyrosine 
kinase receptors (Figures 2, thick yellow arrows, 
and 4, thick pink arrows). One of these loops 
(Figure 2A) comprising KDM1A, p300/CBP, and 
RCOR is involved keeping activated epigenetic 
regulation circuit and tyrosine kinase receptors. 
Two other loops (Figure 4) can lead for an 
extended activation of AKT pathway and again 
tyrosine kinase receptors.

4.  Kaplan–Meier survival curves based on TCGA 
data support an OLIG2 and KDM1A (AOF2) 
concerted involvement in cancer development.

5.  We showed that genes interacting with OLIG2 
formed eight coherent-gene modules (CGMs) 
having a set of intermodular connections.

6.  We showed that among the genes involved in 
these CGMs the most connected hub is EGFR, 
then on a lower level HSP90 and CALM1, 
followed by three lower levels including 
epigenetic genes KDM1A, NCOR1, and RCOR. 
The genes on the six upper levels of the hierarchy 
are involved in interconnections of all eight 
CGMs.

7.  Genes in the elucidated CGMs organized 
functionally defined gene-signaling subnetworks 
having specific functions. For example, CGM1 
is significantly involved in epigenetic control. 
CGM2 is significantly related to cell proliferation 
and differentiation. CGM3 includes a number of 
interconnected basic helix–loop–helix (bHLH) 
transcription factors including OLIG2.

8.  The OLIG2 pathway is complex and needs to be 
taken into account when developing inhibitors 
of OLIG2. Small molecule inhibitors of protein-
protein interfaces to disrupt dimerization 
are showing promising results in preclinical 
models and are being developed by academic 
and biotechnology companies for clinical use 
([11] and http://www.curtanapharma.com). 
Mechanisms of resistance and combination 
strategies based on OLIG2 pathways will also 
need to be incorporated in the future.
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