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Recently, an important topic of breast cancer had been published in 2013. In this report, estrogen receptor (ESR1) had defined the
relation of hormone-cause breast cancer. The screening of traditional Chinese medicine (TCM) database has found the molecular
compounds by simulating molecular docking and molecular dynamics to regulate ESR1. S-Allylmercaptocysteine and 5-hydroxy-
L-tryptophan are selected according to the highest docking score than that of other TCM compounds and Raloxifene (control).The
simulation from molecular dynamics is helpful in analyzing and detecting the protein-ligand interactions. After a comparing the
control and the Apo form, then based on the docking poses, hydrophobic interactions, hydrogen bond and structure variations, this
research postulates that S-allylmercaptocysteine may be more appropriate than other compounds for protein-ligand interaction.

1. Introduction

There is an important topic of breast cancer that had been
published in 2013. In this report, the estrogen receptor (ESR1)
had defined the relation of breast cancer [1].

The breast cancer is a common cause of death in women
and may originate either hormonally [2–5] from hereditary
factors [6–9] and some other reasons [10]. Although there
are lots of methods to find breast cancer based on accurate
prediction, the surgery treatment causes patient low emotion
from losing breast. Thus the prevention and treatment early
medicinal treatment is widely accepted.

The ESR1 is a ligand-activated transcription factor that
mediates the biological effects of the steroid hormone estro-
gen [11, 12]. From the inhibition of ESR1, the hormone would
be regulated then decreased the risk for hormone breast
cancer.

The Raloxifene is an FDA approval drug for reduction in
the risk of breast cancer (http://www.cancer.gov/cancertop-
ics/druginfo/fda-raloxifene-hydrochloride). The reference
[13] had reported that the Raloxifene could target ESR1. For
the above reason, the Raloxifene was chosen as the control for
this investigation.

The computer-aided drug design (CADD) is an in silico
simulation technique used in the screening of compounds
based on the structure and biological activity. The CADD
has the advantages of both greater speed and lower cost
than the traditional drug design. The two major application
areas of CADD are structure-based drug design and ligand-
based drug design [14–17]. CADD is used to investigate drug
design application centered on structure-based drug design
and molecular dynamics.

The personalized medicine and biomedicine [18]
are a novel department knowledge which could analyze
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Table 1: ESR1 basis PLP1, PLP2 and dock score sort screened top two from TCM database.

Name Herb -PLP1 -PLP2 Dock score
S-Allylmercaptocysteine Allium sativum 49.96 49.61 182.706
5-Hydroxy-L-tryptophan Mucuna pruriens 66.74 63.42 177.541
Raloxifene core∗ 77.09 83.51 63.907
∗Control.

the mutation [19], and the cause for special disease [20]. The
traditional Chinese medicine (TCM) is defined a model case
in this department. TCM has an important diagnosis culture
in Asia, especially in China, Taiwan, Korea, and Japan. The
TCM Database@Taiwan (http://tcm.cmu.edu.tw/) [21] is
the largest traditional Chinese medicine database in the
world. Since it was established in 2011, there have been
successful discoveries of novel lead compounds from the
TCM Database@Taiwan application for cancer treatment
[22–25],memory disease prevention [26], pain relief [15], and
antivirals [27–31]. Today, the screening of TCM compounds
is possible from the application system of the website [32]
and the cloud computing platform [33].

In this research, we screen a candidate compound against
breast cancer from the TCM Database@Taiwan. The compu-
tational techniques of docking screening are used to select
ligands prior to applying molecular simulation by molecular
dynamics (MD) to investigate the variations in protein-ligand
interactions that may contribute to the evaluation of the
effects on ESR1 inhibition.

2. Materials and Methods

2.1. Data Set. A total of 61,000 TCM compounds were down-
loaded from the TCM database (http://tcm.cmu.edu.tw/).
The human ESR1 (PDB ID: 1GWQ) crystal structure was
obtained from RCSB Protein Data Bank [1, 13]. The Accelrys
Discovery Studio 2.5 (DS 2.5) was used as the molecular
simulations platform.

2.2. Disorder Protein Detection. The disorder region in pro-
tein plays an important role in drug design; thus we take
the sequence to predict the disorder region by the Database
of Protein Disorder (DisProt: http://www.disprot.org/) [34].
The prediction decides the character of protein structure;
then taking the comparisonwith the docking site could evalu-
ate the efficacy of the drug during protein-ligand interaction.

2.3. Molecular Docking. The LigandFit module [35], a
receptor-rigid docking algorithm program in Discovery
Studio 2.5 (DS 2.5), was used for docking simulations of
Raloxifene and TCM compounds to ESR1 in the CHARMm
force field [36].The docking site of ESR1 was designed on the
basis of the research [1, 13]. Through docking simulation, the
top two compounds with the highest docking scores of the
TCM compounds were selected to make the analysis of the
hydrophobic interactions by Ligplus [37, 38].

2.4. Molecular Dynamics Simulation. The ligands of can-
didate complex must be reprepared before applying MD
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Figure 1:The disorder and binding site detection.The blue curve in
the figure is the disorder disposition of each amino acid, and the red
lines are the important amino acids for docking site designed.

simulation by using SwissParam (http://swissparam.ch/) [39]
based on the reference force field [40] of GROMACS 4.5.5
[41].The ESR1, with ligands, was placed in a simulation box in
an appropriate buffer or other solution at aminimumdistance
of 1.2 Å from the complex. The solution for simulation was
based on the TIP3P water model in which sodium and
chloride ions were added to neutralize complex charges.
Based on the Steepest Descent method for 5,000 steps to
minimize the complex, the structure with the lowest energy
was transferred to MD simulation. The electrostatic interac-
tions were calculated on the basis of the particle-mesh Ewald
(PME) method [42]. The calculation with each time step was
2 fs and the numbers of steps were 5,000,000 times then the
total simulation time of MD was 10,000 ps. The equilibration
under the 100 ps constant temperature (PER ensemble) was
based on the Berendsen weak thermal coupling method. The
protocols in Gromacs used the MD data to calculate the MD
trajectories, RMSD, energy variations, and eigenvector after
MD.

3. Results and Discussion

3.1.The Detection of Disorder Protein. The disorder protein is
defined as unstructured protein whichmakes the compounds
dock to protein and stabilize the complex with difficultly
while the docking site is a disorder region. The cited refer-
ences [17, 43] indicate that the disorder regionmay have lower
side effect than the widespread domain. Thus the disorder
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Figure 2: The structure of control and candidate TCM compounds. (a) Raloxifene core, (b) S-allylmercaptocysteine, and (c) 5-hydroxy-L-
tryptophan.
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Figure 3:The docking poses of ligands. (a)The crystal structure of ESR1 and the docking site, (b) Raloxifene core, (c) S-allylmercaptocysteine,
and (d) 5-hydroxy-L-tryptophan.
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Figure 4: Ligplot illustrates the protein-ligand interactions. (a) Raloxifene core, (b) S-allylmercaptocysteine, and (c) 5-hydroxy-L-tryptophan.
The deep red color of the hydrophobic interactions presents a high frequency in all ligand interactions.
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Figure 5: Measures of the MD trajectories. (a) Complex RMSD, (b) ligand RMSD, and (c) the total energy.
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Figure 6: The variation of RMSD focus on residue of protein. This figure compares the RMSF between apo and each ligand interaction.

region can be defined as a challenge for drug design. In the
prediction, the residue with the disposition greater than 0.5
is defined as disorder region (Figure 1). In this result, all the
important amino acids of ESR1 are less than the threshold;
thus the disorder protein has a weaker effect on docking and
simulation.

3.2. Molecular Docking. Ranking the result of molecu-
lar docking by docking score, the two top TCM com-
pounds, and the control, were selected (Table 1). These TCM
compounds are S-allylmercaptocysteine and 5-hydroxy-L-
tryptophan, extract from the TCM herbs Allium sativum
and Mucuna pruriens, respectively. The top compound,
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Figure 7: The PCA-eigenvector between ligand and unbound protein. The projection to the first two PCA-eigenvectors as 𝑋-, 𝑌-axes based
on the backbone of ESR1. The comparison of eigenvector between apo (red) and ligand (blue). Each ligand is (a) Raloxifene core, (b) S-
allylmercaptocysteine, and (c) 5-hydroxy-L-tryptophan.

S-allylmercaptocysteine, is defined as an hepatoprotective
and anticancer compound [44–54] and the herb Allium
sativum has antimicrobial properties [55–57], ameliorates
tamoxifen-induced liver injury [58], and prevents cancer
[45, 59–62]. The second ranked herb, Mucuna pruriens,
has been identified as being able to reduce oxidation and
prevent Parkinson’s disease [63, 64]. As mentioned above,
the top-ranked compound could prevent or treat cancer. The
second compound with antioxidation might ease symptoms
of cancer. For the above reasons, we suggest that the selected
compounds can have influence on ESR1.

The structure of control and the candidate compounds
was selected after screening from the TCM database

(Figure 2). The docking poses presents the ligands had
interactions with different critical amino-acids in the protein.
Figure 3 indicates the selected compounds could target and
interact with amino acids around docking site.

The hydrophobic interaction can be analyzed by Ligplus
(Figure 4). This result shows that the amino acids Glu353,
Leu391, Arg394, and Phe404 can interact with all ligands
through hydrophobic interactions or hydrogen bonds, indi-
cating that these amino acids might be important in ligand-
protein binding situations.

3.3. Molecular Dynamics Simulation. The RMSD and energy
variation of a complex during MD simulation were recorded
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Figure 8: The clustering for ESR1 in MD. (a) apo, (b) Raloxifene core, (c) S-allylmercaptocysteine, and (d) 5-hydroxy-L-tryptophan.

(Figure 5). The total energy is in the range between −744 and
−750 ∗ 10

3 kJ/mol and tends to −748 ∗ 103 kJ/mol. From
this figure, if both the amplitude of complex RMSD and
energy are less; then the simulationmay become balanced. S-
allylmercaptocysteine has larger variation than other ligands
but the complex RMSD of S-allylmercaptocysteine is the low-
est. From this situation, we suggest S-allylmercaptocysteine
can still interact, and this interaction makes the complex
more stable.

The RMSF focus on each residue was analyzed, and on
the variation of the whole protein, including with the ligand
interaction (Figure 6). In this result, it can be seen that the
regions of protein-ligand interaction are similar.

The reference-identified eigenvector was used to repre-
sent the protein variation [65]. The first two eigenvectors
were selected based on PCA (principal component analysis)
calculation, and become the 𝑋- and 𝑌-axes. The comparison

with apo (unbound protein) could find protein variation of
first main character of protein (Figure 7). The upper subunit
in these figures are the first eigenvector diffusion between apo
and complex. The following is a matrix established from first
two eigenvectors. After the comparison, we find that complex
with S-allylmercaptocysteine is similar to apo then different
from other compounds. This situation may not mean an
absence variation, but the position of variation might be
smaller.

The clustering is a result of the division of data into several
groups based onRMSDvariation; thus data in the same group
will have the similar structure (position and composition)
(Figure 8). In this result, S-allylmercaptocysteine has the
least group and the largest one is in last. This situation
means the complex with S-allylmercaptocysteine will tend to
balance quickly. The largest group of apo and 5-hydroxy-L-
tryptophan is not in last and it might present this simulation
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Figure 9: The variation of Raloxifene core and ESR1 complex in MD simulation. (a) H-bond variation, (b) structure variation. The (1)–(4)
red color indicates the difference through MD.
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Figure 10: The variation of S-allylmercaptocysteine and ESR1 complex in MD simulation. (a) H-bond variation, (b) structure variation. The
(1)–(6) red color indicates the difference through MD.

for apo and 5-hydroxy-L-tryptophan is not enough. Thus
S-allylmercaptocysteine and control, Raloxifene, might have
better effect on ESR1.

After the structure variation discussion is based on eigen-
vector and clustering, we should take focus on the structure
variation during protein-ligand interaction (Figures 9 to 11).
In Figure 9(a), there is high percentage (100%) of H bond
occupancy in Glu353 which indicates that Glu353 may have
a function in the inhibition of ESR1 from Raloxifene interac-
tion. Figure 9(b) shows the variation between MD 0ns and
10 ns which present the position and composition variation

as control drug inhibit ESR1. As the variation of apo between
0 ns and 10 ns is smaller position variation, the variation
of control might become a sample to detect the efficacy of
compounds from the structure variation of simulation.

S-Allylmercaptocysteine has high H bond occupancy in
both Glu353 and Arg394, with the variation in 2 and 5 being
more variable than the control (Figure 10). This result might
present that not only S-allylmercaptocysteine the efficacy as
control, but also that the forcemight be stronger than control.

The 5-hydroxy-L-tryptophan complex interactions were
recorded (Figure 11). Besides Glu353 and Arg394, Leu346
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Figure 12: The pathway of ESR1 for compounds. (a) Unbound protein, (b) Raloxifene core, (c) S-allylmercaptocysteine, and (d) 5-hydroxy-
L-tryptophan.
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has been recorded in Figure 11(a). The structure vari-
ation of 5-hydroxy-L-tryptophan is more similar to S-
allylmercaptocysteine than control. From this result, we sug-
gest 5-hydroxy-L-tryptophan might also have the function
for the inhibition of ESR1.

From these variations found, we suggest Glu353 might
be important in inhibition and Arg394 might make the force
stronger based on the H bond and structure variation.

The pathway definition is according to the calculation of
caver 3.0 to determine the inter-path protein path during
MD simulation [66]. The pathway could help to determine
the ligand moving and the pole provided from protein after
interaction (Figure 12). In these results, we could find a path
through ESR1. We suggest the ligands inhibit ESR1 while the
interaction is in the protein.

4. Conclusion

Based on the above discussion, we can find that the top two
TCM compounds S-allylmercaptocysteine and 5-hydroxy-L-
tryptophan can have effect on ESR1 against breast cancer.
Glu353 might have important role in inhibition based on
high H bond occupancy in MD. Finally, according to the dis-
cussion from docking, interaction, and variation, we suggest
that S-allylmercaptocysteine might be the best compound
to inhibit ESR1 against breast cancer, even better than the
control.

Conflict of Interests

The authors confirm that this paper’s content has no conflict
of interests.

Authors’ Contribution

Tzu-Chieh Hung, Wen-Yuan Lee, and Kuen-Bao Chen con-
tributed equally.

Acknowledgments

The research was supported by Grants from the National
Science Council of Taiwan (NSC102-2325-B039-001,
NSC102-2221-E-468-027-), Asia University (ASIA100-CMU-
2, ASIA101-CMU-2, and 102-Asia-07), and China Medical
University Hospital (DMR-103-058, DMR-103-001, and
DMR-103-096).This study is also supported in part byTaiwan
Department of Health Clinical Trial and Research Center
of Excellence (DOH102-TD-B-111-004), Taiwan Depart-
ment of Health Cancer Research Center of Excellence
(MOHW103-TD-B-111-03), and CMU under the Aim for Top
University Plan of theMinistry of Education, Taiwan. Finally,
our gratitude goes to Dr. TimWilliams, Asia University.

References

[1] W. Toy, Y. Shen, H. Won et al., “ESR1 ligand-binding domain
mutations in hormone-resistant breast cancer,”Nature Genetics,
vol. 45, no. 12, pp. 1439–1445, 2013.

[2] J. D. Yager and N. E. Davidson, “Estrogen carcinogenesis in
breast cancer,” The New England Journal of Medicine, vol. 354,
no. 3, pp. 228–282, 2006.

[3] B. Park, K. Kim, M. Heo et al., “The changes of estro-
gen receptor-𝛽 variants expression in breast carcinogenesis:
decrease of estrogen receptor-𝛽2 expression is the key event in
breast cancer development,” Journal of Surgical Oncology, vol.
93, no. 6, pp. 504–510, 2006.

[4] D. Germain, “Estrogen carcinogenesis in breast cancer,”
Endocrinology andMetabolismClinics of North America, vol. 40,
no. 3, pp. 473–484, 2011.

[5] H. Al Kadri, S. Hassan, H. M. Al-Fozan, and A. Hajeer,
“Hormone therapy for endometriosis and surgical menopause,”
The Cochrane Database of Systematic Reviews, no. 1, Article ID
CD005997, 2009.

[6] D. Mutch, L. Denny, and M. Quinn, “Hereditary gynecologic
cancers,” International Journal of Gynaecology and Obstetrics,
vol. 124, no. 3, pp. 189–192, 2014.

[7] A. Floquet, E. Stoeckle, S. Croce et al., “Hereditary ovarian
carcinomas: clinico-biological features and treatment,” Bulletin
du Cancer, vol. 101, no. 2, pp. 167–174, 2014.

[8] M. M. Koeneman, A. J. Kruse, S. J. Sep et al., “A family
history questionnaire improves detection of women at risk for
hereditary gynecologic cancer: a pilot study,” Familial Cancer,
2014.

[9] E. de Geus, C. M. Aalfs, M. G. Verdam, H. C. de Haes, and E.
M. Smets, “Informing relatives about their hereditary or familial
cancer risk: study protocol for a randomized controlled trial,”
Trials, vol. 15, no. 1, p. 86, 2014.

[10] V. Beral, D. Bull, R. Doll, R. Peto, and G. Reeves, “Breast cancer
and breastfeeding: collaborative reanalysis of individual data
from 47 epidemiological studies in 30 countries, including 50
302 women with breast cancer and 96 973 women without the
disease,”The Lancet, vol. 360, no. 9328, pp. 187–195, 2002.

[11] C. M. Klinge, “Estrogen receptor interaction with estrogen
response elements,” Nucleic Acids Research, vol. 29, no. 14, pp.
2905–2919, 2001.

[12] D. Lopez, M. D. Sanchez, W. Shea-Eaton, and M. P. Mclean,
“Estrogen activates the high-density lipoprotein receptor gene
via binding to estrogen response elements and interaction with
sterol regulatory element binding protein-1A,” Endocrinology,
vol. 143, no. 6, pp. 2155–2168, 2002.

[13] A. Wärnmark, E. Treuter, J. Gustafsson, R. E. Hubbard, A. M.
Brzozowski, and A. C. W. Pike, “Interaction of transcriptional
intermediary factor 2 nuclear receptor box peptides with the
coactivator binding site of estrogen receptor 𝛼,” The Journal of
Biological Chemistry, vol. 277, no. 24, pp. 21862–21868, 2002.

[14] H. Huang, H. W. Yu, C. Chen et al., “Current developments of
computer-aided drug design,” Journal of the Taiwan Institute of
Chemical Engineers, vol. 41, no. 6, pp. 623–635, 2010.

[15] W. I. Tou, S. Chang, C. Lee, and C. Y. Chen, “Drug design
for neuropathic pain regulation from traditional Chinese
medicine,” Scientific Reports, vol. 3, p. 844, 2013.

[16] C. Y. Chen, “A novel integrated framework and improved
methodology of computer-aided drug design,” Current Topics
in Medicinal Chemistry, vol. 13, no. 9, pp. 965–988, 2013.

[17] C. Y. Chen and W. I. Tou, “How to design a drug for the
disordered proteins?” Drug Discovery Today, vol. 18, pp. 910–
915, 2013.

[18] W. Liao and F. Tsai, “Personalized medicine: a paradigm shift in
healthcare,” BioMedicine, vol. 3, no. 2, pp. 66–72, 2013.



BioMed Research International 11

[19] C.-C. Lee, C.-H. Tsai, L. Wan et al., “Increased incidence of
Parkinsonism among Chinese with 𝛽-glucosidase mutation in
central Taiwan,” BioMedicine, vol. 3, no. 2, pp. 92–94, 2013.

[20] I. C. Chou, W.-D. Lin, C.-H. Wang et al., “Möbius syndrome in
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