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ABSTRACT The gut microbiome is linked to inflammatory bowel disease (IBD) se-
verity and altered in late-stage disease. However, it is unclear how gut microbial
communities change over the course of IBD development, especially in regard to
function. To investigate microbiome-mediated disease mechanisms and discover
early biomarkers of IBD, we conducted a longitudinal metagenomic investigation in
an established mouse model of IBD, where damped transforming growth factor �

(TGF-�) signaling in T cells leads to peripheral immune activation, weight loss, and
severe colitis. IBD development is associated with abnormal gut microbiome tempo-
ral dynamics, including damped acquisition of functional diversity and significant dif-
ferences in abundance trajectories for KEGG modules such as glycosaminoglycan
degradation, cellular chemotaxis, and type III and IV secretion systems. Most differ-
ences between sick and control mice emerge when mice begin to lose weight and
heightened T cell activation is detected in peripheral blood. However, levels of lipo-
oligosaccharide transporter abundance diverge prior to immune activation, indicat-
ing that it could be a predisease indicator or microbiome-mediated disease mecha-
nism. Taxonomic structure of the gut microbiome also significantly changes in
association with IBD development, and the abundances of particular taxa, including
several species of Bacteroides, correlate with immune activation. These discoveries
were enabled by our use of generalized linear mixed-effects models to test for dif-
ferences in longitudinal profiles between healthy and diseased mice while account-
ing for the distributions of taxon and gene counts in metagenomic data. These find-
ings demonstrate that longitudinal metagenomics is useful for discovering the
potential mechanisms through which the gut microbiome becomes altered in IBD.

IMPORTANCE IBD patients harbor distinct microbial communities with functional ca-
pabilities different from those seen with healthy people. But is this cause or effect? An-
swering this question requires data on changes in gut microbial communities leading to
disease onset. By performing weekly metagenomic sequencing and mixed-effects mod-
eling on an established mouse model of IBD, we identified several functional pathways
encoded by the gut microbiome that covary with host immune status. These pathways
are novel early biomarkers that may either enable microbes to live inside an inflamed
gut or contribute to immune activation in IBD mice. Future work will validate the poten-
tial roles of these microbial pathways in host-microbe interactions and human disease.
This study was novel in its longitudinal design and focus on microbial pathways, which
provided new mechanistic insights into the role of gut microbes in IBD development.
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Inflammatory bowel disease (IBD) is an increasingly prevalent chronic autoimmune
disease in which the cells of the immune system attack intestinal tissue (1–3). Quality

of life deteriorates, and patients die in severe cases. Unfortunately, the etiology of
disease remains unclear and is likely complex (4). Discovery of the factors that contrib-
ute to IBD onset, development, and severity is needed to ensure accurate and effective
health care. Epidemiological studies and animal model experiments have identified
genetic factors (5–7) and lifestyle factors that associate with IBD, including diet (8) and
exercise (9). But these factors are not precise predictors of disease risk, severity, or
response to treatment, and many questions remain regarding disease mechanisms.
Elucidating the cryptic etiology of IBD would enable new preventative measures,
diagnostics, and therapies.

Recent work has implicated the gut microbiome in the development and severity of
IBD (10). Individuals afflicted with Crohn’s disease or ulcerative colitis, the two principal
clinical forms of IBD, harbor taxa distinct from those present in healthy controls (11–14).
Shotgun metagenomics further revealed that the abundances of several microbial
metabolic pathways are significantly altered in IBD guts (13, 15, 16). These associations
may be causal, because gut microbes can influence the immune system and intestinal
homeostasis. For example, immunosuppressive regulatory T cells (Tregs) are prevalent
in the colonic lamina propria (LP) compared to other organs. However, their numbers
are reduced in germfree or antibiotic-treated mice, suggesting that microbiota affect
colonic differentiation of peripheral Tregs (pTregs) (17, 18). A similar loss of Tregs occurs
in people with polymorphisms in IBD susceptibility genes that promote defects in Treg
responses (19). Thus, gut microbes have the potential to interact with immune cells and
this interaction can be altered due to host genetics and other risk factors in the
development of IBD.

We hypothesized that the changes in the immune status of individuals with IBD are
associated with temporal alterations in the functional capabilities of their gut micro-
biota. Understanding how the gut microbiome dynamically changes during IBD and
how these changes relate to host symptoms and immune activation could clarify which
microbiomic alterations contribute to disease onset and progression and which alter-
ations respond to disease. We are particularly interested in elucidating specific micro-
bial pathways that may induce or exacerbate immune activation and in distinguishing
these from pathways required for survival in an inflamed intestinal environment. Address-
ing these issues requires a prospective, longitudinal study of the microbiome in IBD.

Longitudinal investigations of the microbiome have tended to focus on taxonomic
rather than functional changes (20, 21). One study used 16S sequencing in the T-bet�/�

RAG2�/� ulcerative colitis (TRUC) mouse model of inflammatory disease to identify
how gut microbiome taxonomic composition changes over the course of treatment-
induced remission and then investigated how microbial pathway abundances might
change over time with ancestral state reconstruction techniques (22). Shotgun metag-
enomic sequencing provides direct insight into the functions encoded in the micro-
biome, but it has not been applied to a longitudinal investigation of IBD. As a result, our
insight into how the gut microbiome operates dynamically in association with disease
development is limited.

Mouse models of disease present an opportunity to quantify the longitudinal
covariation between gut microbiome functions and IBD development while overcom-
ing the challenges associated with a prospective human study and reducing the
extensive genetic, lifestyle, and microbiome variations among humans. We imple-
mented this approach using a well-documented IBD model (23–29), where the activity
of transforming growth factor � (TGF-�) dominant-negative receptor II is driven by the
CD4 promoter CD4-dnT�RII (30) (called DNR here). TGF-� is important for inducing
pTreg differentiation (31), and its signaling in naive T cells results in activation and
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nuclear translocation of Smad2/3 molecules and regulation of target genes, including
Foxp3 (32–34). Foxp3 then provides a positive-feedback loop by downregulating
Smad7, thereby reducing its inhibition of TGF-� signaling (35). Absence of TGF-�
signaling in T cells results in loss of Foxp3 expression and defects in the in vivo
expansion and immunosuppressive capacity of pTregs (36, 37). However, excess in-
flammation can also potently inhibit Foxp3 induction by TGF-� (38, 39), and the
presence of certain inflammatory cytokines can instead divert differentiation of Tregs
into pathogenic Th17 cells (40–45). Thus, due to the involvement of TGF-� in Treg cell
differentiation and the requirement for Treg-produced interleukin-10 (IL-10) to main-
tain intestinal homeostasis, TGF-� signaling in T cells is an important component of
intestinal immunity (46–54). Furthermore, mutations in both TGF-� and IL-10 signaling
pathways have been implicated in human IBD (55–58). As a result of the blockage of
TFG� signaling on their T cells and of the reduced number of pTregs, DNR animals
develop spontaneous colonic inflammation and IBD that is akin to Crohn’s disease (30,
59). In addition to these physiological similarities, the DNR line serves as an effective
model of human IBD because (i) human IBD is associated with mutations in SMAD3 (5,
60–62), a direct downstream target of TGF-� RII required for Foxp3 induction in the gut
(33), and (ii) DNR mice model the documented effect of Smad7 overexpression in
human IBD (63–65).

To obtain insight into how the longitudinal dynamics of the microbiome associate
with IBD onset and progression, we followed DNR and littermate wild-type (WT)
controls from weaning through severe disease. We used shotgun metagenomics to
quantify how fecal microbiome structure and function change over the course of
disease development in DNR mice and identified components of the microbiome that
both associate with and predict immune status. We focus on longitudinal changes in
biological pathways (i.e., groups of genes performing a coherent function), using
estimated abundances of KEGG modules from DNR and WT metagenomes. Our work
indicates that the microbiome may contain biomarkers of IBD development, clarifies
mechanisms through which the microbiome may contribute to disease development,
and reveals how gut microbes operate to succeed in an inflamed intestinal environ-
ment.

RESULTS

Age-matched female WT and DNR littermates were monitored longitudinally for IBD
development over a period of 9 weeks, starting at 4 weeks of age, upon being weaned
from their mother. As this is a T cell-mediated IBD model, we quantified peripheral CD4
and CD8 T cell activation by flow cytometry and measured the longitudinal change in
the CD44hi activated fraction, which includes both effector and memory T cells (see
Fig. S1 in the supplemental material). We also measured the weight of the animals over
time (Fig. 1A). As expected, WT mice gained weight and maintained a constant fraction
of activated T cells. DNR mice, conversely, stopped gaining weight and experienced a
sharp increase in CD4 T cell activation followed by a gradual increase in CD8 T cell
activation starting at 7 weeks of age (Fig. 1). These results indicate that in our facility,
the DNR mice developed signs of IBD starting around week 7 and full disease by week
9. DNR mice had to be euthanized by week 15, as they had lost more than 15% of their
maximum body weight. Similar to the T cell activation phenotype observed in the
blood after week 7 (Fig. 1B and C), the DNR animals had a larger fraction of activated
T cells in the spleen and the gut-draining mesenteric lymph node (MLN) at week 15
(Fig. S2).

We used shotgun metagenomics to assess how the functional potential of the gut
microbiome diversifies over the course of disease progression. Specifically, we collected
stool samples from parallel cohorts of DNR and WT mice weekly and performed
shotgun metagenomic sequencing of samples obtained from the mice when they were
4, 5, 6, 8, 10, 12, and 13 weeks of age (see Table S1 in the supplemental material). We
then quantified the abundance of KEGG modules encoded in each metagenome with
ShotMAP (16), which revealed 373 modules present in at least one sample. These

Longitudinal Mouse IBD Microbiome

September/October 2017 Volume 2 Issue 5 e00036-17 msystems.asm.org 3

msystems.asm.org


module abundances were then used to quantify how the within-sample diversities
(alpha-diversities) of microbiome functions differed over time in DNR and WT mice. A.
Kruskal-Wallis test performed to analyze the change in KEGG module Shannon entropy
over time (Fig. S3) found that the DNR mice were relatively stable in their functional
alpha-diversity (P � 0.47) compared to WT mice (P � 0.078). We also observed that
functional alpha-diversities differed among individuals within a line over time and that
this variation differed between lines in association with disease activation (week 7).
Specifically, the coefficient of variation (CV) of KEGG module Shannon entropy data
from a generalized linear model was higher among WT mice than DNR mice after
disease activation (P � 0.0085). We also found that the CV was higher among DNR mice
prior to activation, though this difference is reduced when the disproportionately
variable week 5 samples are removed from the analysis (P � 0.21). These results show
that the functional diversity of the mouse gut microbiome is relatively constrained early
in life but increases over the lifetimes of WT but not DNR individuals.

We then investigated how the composition of gut microbiome functions varies over
time and between cohorts (DNR mice versus WT mice) by using an abundance-
weighted beta-diversity metric (Bray-Curtis dissimilarity). At a global level, KEGG mod-
ule abundances were similar in DNR and WT mice prior to week 6 but then diverged
over time as IBD developed in the DNR mice (Fig. 2). Furthermore, the diversity of KEGG
modules found in a metagenome was significantly associated with the week that the
sample was collected within the cohort (permutational multivariate analysis of variance
[PERMANOVA] P � 0.01, R2 � 0.42), as well as with the cohort’s weekly mean activated
T cell status (pcCD4tCD44hi) (PERMANOVA P � 0.001, R2 � 0.16). Thus, there exist
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FIG 1 IBD development correlates with peripheral T cell activation in DNR mice. (A) Animal weight over time. n �
7 WT (blue) and 8 DNR (orange) mice. (B) Percentages of activated CD4 T cells among peripheral blood
mononuclear cells (PBMCs). (C) Percentages of activated CD8 T cells among PBMCs. (B and C) n � 6 WT (blue) and
6 DNR (orange) mice. Error bars are standard errors of the means.
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microbiome-encoded functional modules that differ in abundance in association with
IBD progression in DNR mice.

This temporal divergence in DNR versus WT microbiome functions was mirrored in
the taxonomic structure of the microbiome (Fig. 2). The compositions of the gut
metagenomes of the WT and DNR lines were relatively similar at early time points and
began to diverge at week 6. Additionally, the microbiomes of WT mice remained
relatively consistent over time compared to those of DNR mice, though they were not
without temporal variation. Indeed, similarly to the functional diversity analysis, the
levels of taxonomic beta-diversity of the microbiome significantly differed between the
lines over time (PERMANOVA P � 0.004, R2 � 0.46), though not in a manner that
corresponded to mean activated T cell status (PERMANOVA P � 0.118, R2 � 0.046).
Collectively, these analyses indicate that (i) the diversities and structures of the gut
microbiome differ over time in WT and DNR mice that are between 4 and 15 weeks of
age; (ii) the WT and DNR microbiomes are generally consistent with each other prior to
immune activation in DNR mice but diverge afterward; and (iii) immune activation is

FIG 2 The taxonomic and functional diversity of the gut microbiome associates with IBD development. (A) NMDS ordination plots of the
functional (left) and taxonomic (right) beta-diversity of samples from each line illustrate the significant divergence in levels of beta-diversity
between lines over time. Functional beta-diversity was measured as Bray-Curtis dissimilarity based on KEGG module abundances, while taxonomic
beta-diversity values represent the UniFrac distances of taxa detected in metagenomes. (B) The longitudinal variation of samples along selected
NMDS dimensions similarly reveals how DNR and WT lines significantly diverge over time in terms of both their functional (left) and their
taxonomic (right) beta-diversity. Smoothed (locally weighted scatterplot smoothing [LOESS]) trajectories of samples from each line over time are
plotted, where gray areas represent 95% confidence intervals.

Longitudinal Mouse IBD Microbiome

September/October 2017 Volume 2 Issue 5 e00036-17 msystems.asm.org 5

msystems.asm.org


associated with changes in the subsequent successional diversification of the gut
microbiome.

On the basis of these observations, we assessed how specific components of the
microbiome associate with disease development. A key novelty of our approach is the
use of Tweedie compound Poisson generalized linear mixed-effects models (GLMMs).
These models allow us to test for differences in temporal trends in KEGG module
abundance between DNR and WT mice while accounting for baseline differences
between mice and genotypes, as well as for DNA extraction kit effects. GLMMs enable
accurate modeling of non-normally distributed abundance data and correctly account
for multiple sources of variation (66), including the intersubject variation that is present
in repeated-measures designs such as the longitudinal sampling of individual mice in
our study. The Tweedie compound Poisson distribution, which represents a weighted
mixture of Poisson and gamma distributions, has a number of other attractive features.
Its exponential relationship between variance and mean captures the overdispersion
that is frequently present in environmental DNA sequence data, and its point mass at
zero allows one-step fitting of zero-inflated data (versus fitting a model to determine
the presence or absence of a feature before modeling nonzero components, as in
hurdle models). Additionally, the Tweedie compound Poisson distribution is a contin-
uous distribution, allowing us to use a normalized abundance measure, instead of raw
counts, as the dependent variable. We provide a more detailed description of the
models used in our analysis in Text S1 in the supplemental material.

We first looked at overall trends of abundance trajectories for DNR mice versus WT
mice as quantified by the interaction between genotype and time in the GLMM. These
analyses revealed 29 KEGG modules with significant differences in abundance trends
between DNR and WT mice (false-discovery rate [FDR] � 0.05). The interaction coeffi-
cient was positive for 26 of the significant modules (Table S2), which indicates that
those modules became increasingly abundant in DNR mice versus WT mice over time.
This set includes modules associated with UMP biosynthesis (M00051), keratin sulfate
degradation (M00079), and the type III secretion system (M00332). The three modules
with negative interaction coefficients, indicating decreasing abundance in DNR mice
versus WT mice over time (Fig. 3), are lysine biosynthesis (M00031), lipooligosaccharide
transport (M00252), and melatonin biosynthesis (M00037).

To obtain improved temporal resolution regarding the divergence of module abun-
dance in DNR mice, we extended our GLMMs to include a “hinge” at week 7, which is
when immune activation initiates in DNR mice. This segmented regression approach
has the potential to reveal modules that diverge in abundance between DNR and WT
mice either between weeks 4 and 7 or between weeks 7 and 13. Only 13 of the 29
previously identified modules exhibited a significant effect using segmented regression
(Fig. 4), likely due to a loss of power from partitioning the data into two smaller sets of
samples. However, for these 13 modules, our results clarify when the DNR and WT
abundances began to diverge (Table S3). The predominant pattern consisted of similar
module abundances prior to week 7, followed by divergence after immune activation
(11/13 modules). This pattern suggests that these modules respond to disease or play
a role in disease progression.

Lipooligosaccharide transport (M00252), which is a two-component system with an
unknown substrate in the mammalian gut, was the only module that stratified DNR and
WT mice both before and after disease onset. To further investigate the potential taxa
that may drive this particular signal, we assessed the taxonomic source of the KEGG
sequences that recruited metagenomic reads into the module. We also quantified the
distance covariance (67) between the longitudinal trajectories of the KEGG orthology
groups (KOs) that comprise the module and the trajectory seen with each observed
species. The results were mixed, with the former analysis suggesting the presence of
primarily Streptococcus contributions, while the latter identified the greatest similarity
with Lactobacillus murinus and �Candidatus Arthromitus� group trajectories (Fig. S4).
The differences in the taxonomic composition of the reference data underlying these
two approaches could account for these inconsistencies, as could the fact that the
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KEGG analysis relies on amino acid comparisons whereas the species trajectories are
determined through nucleotide comparisons. Thus, an uncharacterized lipooligosac-
charide transporter encoded in Streptococcus and other gut microbes decreases in
abundance over time at a significantly higher rate in DNR mice than in WT mice,
starting early in life before weight loss and immune activation.

The temporal changes seen with the type III secretion system (M00332) differed
between the lines uniquely before disease onset. Specifically, the module decreased in
abundance in WT mice over weeks 1 to 7, with KO K03225 primarily driving this effect.
On the other hand, this module was relatively stable in DNR mice prior to disease onset,
and several of the KOs that comprise the module increased in abundance in DNR mice
in the later weeks (Fig. 4). The discovery of a stable, rather than decreasing, abundance
of K03225 as an early indicator of IBD in DNR mice is intriguing because type III
secretion systems are used by pathogens to invade the gut community and alter the
gut environment (68, 69).

We next examined baseline differences in module abundance between DNR and WT
mice at weaning. Early differences could result from genotype-specific selection of the
gut microbiome or cage effects. Our models revealed 17 modules with significantly
different intercepts (FDR � 0.05), which indicates differences in the abundances of the
two lines at week 4 (Table S4). Eight of these modules, including several metha-
nogenesis-associated pathways, had positive intercept coefficients, meaning that they
were more abundant in DNR mice than in WT mice at week 4. Lipopolysaccharide
biosynthesis and eight other modules showed the opposite effect and were higher in

FIG 3 Summary of GLMM results from 29 modules with significant time by group interaction. (A) The quantity plotted is the predicted marginal mean (PMM)
of the slope coefficients. Significance testing was done by comparing goodness-of-fit values from full and reduced GLMM specifications, and the full model was
used to produce the PMM estimates shown here. This quantity was primarily calculated to get a succinct summary of the direction of temporal change and
does not always coincide with the interaction coefficient that is the focus of the main analysis. The estimates were obtained by running the lstrends function
from the lsmeans R package (134). (B) The underlying KO abundance trajectories of a significant module (M00031; lysine biosynthesis) that decreases in
abundance in DNR mice and increases in abundance in WT mice over time, as evidenced by a negative model slope and a positive model slope, respectively.
(C) The plot was constructed as described for panel B, except that this significant module (M00330; adhesin transport) significantly increased in abundance over
time in DNR mice whereas it did not change in abundance in WT mice. For both panel B and panel C, the shaded ribbons represent LOESS confidence bounds.
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abundance in WT mice at weaning. This early-life variation in the microbiome supports
hypotheses that suggest that preadolescent development of the microbiome can affect
health state later in life. However, these temporal relationships are complex; later
changes in abundance, as captured by the time by cohort interaction (which measures
the difference in slopes between DNR and WT mice), could reverse the pattern seen at
weaning.

To explore the temporal dynamics of specific gut taxa, we applied the same GLMM
analysis to species abundances. This analysis yielded no significant results at an FDR of
�0.05, likely due to not having the advantage of grouping components across a
higher-order variable. While species could be grouped into higher taxonomic entities,
the model assumption that members of the same group tend to covary across samples
and over time may be violated because members of the same taxonomy may compete
with or ecologically exclude one another (70). We evaluated this possibility by applying
nonparametric decomposition of variance components (71) to assess whether within-
module or within-genus dispersion decomposition patterns were significantly different
from those obtained from random permutations of the underlying data. This auxiliary
analysis found that components of functional groups covaried more than components
of randomly chosen groups whereas components of taxonomic groups did not (Fig. S5).
This observation indicates that grouping taxa would violate GLMM assumptions. Con-
sequently, we instead used a goodness-of-fit test based on functional principal-
component analysis (FPCA), which is less rigid in its assumption of linearity and capable
of borrowing information across species due to the representation of abundance
trajectories as combinations of eigenfunctions derived from the entire data set. This test
identified seven species that significantly differed in their levels of variation over time
between the DNR and WT cohorts (Fig. 5; Table 1), including greater increases in

M00031:Lysine biosynthesis, 2−aminoadipate => lysine
M00079:Keratan sulfate degradation

M00012:Glyoxylate cycle
M00334:Type VI secretion system

M00515:FlrB−FlrC (polar flagellar synthesis) two−component regulatory system
M00332:Type III secretion system

M00096:C5 isoprenoid biosynthesis, non−mevalonate pathway
M00252:Lipooligosaccharide transport system

M00417:Cytochrome o ubiquinol oxidase
M00532:Photorespiration

M00229:Arginine transport system
M00009:Citrate cycle (TCA cycle, Krebs cycle)

M00081:Pectin degradation
M00358:Coenzyme M biosynthesis

M00555:Betaine biosynthesis, choline => betaine
M00091:Phosphatidylcholine (PC) biosynthesis, PE => PC

M00259:Heme transport system
M00330:Adhesin protein transport system

M00531:Assimilatory nitrate reduction, nitrate => ammonia
M00482:DevS−DevR (redox response) two−component regulatory system

M00015:Proline biosynthesis, glutamate => proline
M00377:Reductive acetyl−CoA pathway (Wood−Ljungdahl pathway)

M00538:Toluene degradation, toluene => benzoate
M00511:PleC−PleD (cell fate control) two−component regulatory system

M00507:ChpA−ChpB/PilGH (chemosensory) two−component regulatory system
M00432:Leucine biosynthesis, 2−oxoisovalerate => 2−oxoisocaproate

M00076:Dermatan sulfate degradation
M00037:Melatonin biosynthesis, tryptophan => serotonin => melatonin

M00051:Uridine monophosphate biosynthesis, glutamine (+ PRPP) => UMP
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FIG 4 Modules with slopes significantly differing between groups showed primarily post-disease-onset
differences in analyses performed with a segmented GLMM. For each cohort, the segmented GLMM
estimate data represent two separate WT slopes (pre-week 7 and post-week 7) and two deviations from
those slopes, which represent the time by group interaction that measures how DNR slopes differ from WT
slopes. The estimates of these deviations are plotted, with asterisks marking coefficients that were
significantly nonzero, with B-H-corrected P values of �0.2.
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abundance over time within DNR microbiomes for Escherichia coli and four species from
the Bacteroides genus, which are associated with gut inflammation (10).

DISCUSSION

The results of this study represent the first shotgun metagenomic characterization
of IBD development. By using a controlled mouse model, a longitudinal study design,
and statistical modeling, we identified novel microbial biomarkers associated with IBD
onset and progression. Many of the taxa and functions that we implicated have known
roles in immune regulation and pathogenicity, making them plausible candidates for
stimulating the disease process, while others likely represent responses of the micro-
biota to changes in host physiology. Ordination and GLMM analyses enabled us to
distinguish these scenarios by identifying significant differences between DNR and WT
mice over time (from weaning through severe disease). We discovered that the
lipooligosaccharide transport and type III secretion protein abundance trajectories that
occur between weaning and immune activation differentiate DNR mice prior to im-
mune activation, making them promising early biomarkers and consistent with a
potentially causal role in IBD. Abundances of 17 modules are altered in DNR mice at
weaning and could predict IBD risk if they generalize to other mouse models and
human disease (see below). Many other modules as well as a few species have altered
abundances in DNR mice in later, more-severe stages of disease. Functional and
taxonomic diversities also show temporal differences in DNR mice that correlate with
immune profiles and/or disease progression. Most of these discoveries would have
been missed in a cross-sectional study because the disease association is a longitudinal
trend.

By using shotgun metagenomics, we were able to investigate both taxonomic and
functional characteristics of the IBD microbiome. Both types of data consistently
showed differences between DNR and WT mice. For example, beta-diversity analyses
revealed increasing divergence of both taxonomic and functional profiles between DNR

TABLE 1 Species with significantly different trajectory shapes in the FPCA-based goodness-of-fit comparisonsa

Species ID P value FDR Species name
WT area under
LOESS curve

DNR area under
LOESS curve

54642 0 0 Bacteroides sartorii 0.01992 0.07699
57185 0 0 Bacteroides xylanisolvens 0.03051 0.02506
57318 0 0 Bacteroides uniformis 0.02297 0.04506
58110 0 0 Escherichia coli O157:H43 strain T22 5.35E�4 0.007523
59684 0.0001 0.0025 Lachnospiraceae bacterium COE1 0.07203 0.04213
59708 0 0 Bacteroides rodentium 0.0136 0.01986
61442 0.0013 0.02786 Lachnospiraceae bacterium A4 0.119 0.1348
aLOESS, locally weighted scatterplot smoothing.

FIG 5 Species that showed significantly different trajectory shapes between DNR and WT groups. These
results are based on an FPCA-based goodness-of-fit comparison test that identified 7 species that were
different at an FDR of �0.05.
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and WT microbiomes over the last 4 weeks of the study. In addition, the individual taxa
and modules with genotype-specific trajectories predominantly had increased abun-
dance in DNR mice after disease onset. These similarities in the successional diversifi-
cation of species and genes support the idea that taxonomic changes in IBD have
functional consequences that are linked to immune activation. Despite such parallels,
our taxonomic and functional results differed in several important ways. Notably, the
number of species that stratified lines over time was lower than the number seen with
KEGG modules. Furthermore, most of the IBD-associated modules that we discovered
were not represented solely in singular species and would have been missed by
considering information from taxonomic analyses only. These results could have been
due to disease-associated functional redundancy, wherein a gene that is enriched in
DNRs might derive from a different species in each mouse. Other potential reasons
include (i) higher power due to grouping protein families into modules and (ii) missed
taxonomic associations due to the relatively low number of laboratory mouse-
associated microbes in the genome tree of life (72). Future work should explore how
taxa missed by reference-based quantitation vary in association with IBD in DNR mice.

Despite finding relatively few species that distinguish DNR mice, we can gain insight
into the disease process from what is known about how these taxa interact with the
host. It is striking that four of the seven species that change in abundance as IBD
develops belong to the genus Bacteroides and that three of them are more abundant
in DNR mice. Several studies have implicated Bacteroides in intestinal inflammation. For
example, the members of a subset of B. fragilis strains carry a proinflammatory
metalloprotease toxin that has been identified in 19.3% of patients with active IBD (73),
and the inoculation of animals with such strains is associated with severe colitis (10, 74).
Subsequent research showed that multiple commensal species of Bacteroides could be
incorporated into the gut microbiomes of IBD-susceptible genotypes of mice, including
mice with TGF-� susceptibility loci, to induce IBD (75). Supporting the idea that
Bacteroides species contribute to IBD, we observed a modest increase (FDR � 0.1898)
in the hemophore/metalloprotease transport system module (M00328) in DNR mice as
disease progressed. These and other mechanistic hypotheses must be tested, because
the species of Bacteroides that we identified are diverse and species within the same
genus can exhibit discordant patterns of interaction with host physiology (76).

Cross-sectional and mechanistic investigations of IBD support our finding that
disease development is linked to microbiome taxonomy and function (4, 77, 78). The
occurrence of progressive divergence of DNR and WT microbiomes as IBD worsens is
consistent with a 16S-based study using a different mouse model of IBD in which gut
microbes and imputed functions changed in association with disease status and
therapeutically induced remission (22). Additionally, studies in germfree mouse models
of IBD implicate the gut microbiome in disease development. For example, interleukin-10
(IL-10) knockout mice grown under germfree conditions do not develop colitis, whereas
conventionally raised mice do (79). Similar findings have been reported for the TRUC
mouse model (80). Furthermore, IL-10 knockout (81) and IL-2-deficient (82) mice
manifest differential levels of severity of colitis dependent on the types of taxa that
colonize their gut. Human studies of IBD have yet to investigate the disease longitu-
dinally. However, our results are consistent with microbiome case-control studies that
found significant differences between the taxonomic (11, 83–87) and functional (13, 16,
22) profiles of IBD patients and those of healthy controls, especially in cases of Crohn’s
disease. Additionally, clinical administration of antibiotics shows promise for reducing
the intestinal inflammation associated with IBD (88, 89). The longitudinal biomarkers
that we identified are promising new candidates for investigation in the context of
human disease onset and progression.

Our analyses identified several modules that implicate a pathogenic effect by the
DNR microbiome. For example, DNR mouse microbiomes show increases in the abun-
dance of adhesion protein transport modules (M00330) in association with disease,
which may help pathobiotic members of the microbiome associate with and metabo-
lize intestinal mucosa (90). Correspondingly, keratan (M00079) and dermatan (M00076)
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sulfate degradation pathways increase in abundance as disease progresses. Keratan
sulfate and dermatan sulfate are glycosaminoglycans (GAGs) that are integral to
intestinal mucosa and regulate the permeability of the gut epithelium. These sulfated
GAGs are depleted in IBD patients (91), and their metabolism by intestinal bacteria,
including Bacteroides thetaiotaomicron, contributes to intestinal colonization (92, 93).
Furthermore, Crohn’s metagenomes exhibit an increase in abundance in GAG degra-
dation pathways (16). DNR guts also have elevated levels of type III and type IV
secretion systems, which pathogenic organisms leverage to successfully invade the gut
microbiome and induce preferable ecological conditions within the gut (68, 69).
Curiously, type III secretion abundance shows the opposite effect before immune
activation (weeks 4 to 7), perhaps because of broad shifts in community composition
after week 7 or alternatively due to microbes with type III secretion systems invading
the LP and becoming less abundant in stool over time. Finally, we observed an increase
in modules associated with the biosynthesis of isoprenoids, which have been linked to
the stimulation of the mammalian immune system (94). Together, these DNR-associated
pathways support a pathogenic role of gut microbes in IBD development. Future studies
that seek to determine the existence of a microbiome-mediated etiology for IBD should
consider these potential mechanisms of disease activation.

Our identification of pathways that change in association with IBD development
generates many novel hypotheses about the mechanisms through which gut microbes
contribute or respond to disease development. Future studies can explicitly test these
hypotheses to discern the cause-and-effect relationship between the gut microbiome
and inflammatory bowel disease. Several KEGG modules with different abundance
dynamics in DNR mice versus WT mice appear to be associated with the microbiome’s
acclimation to the disease environment. For example, we observed increases in the
abundance of two-component systems (M00511, M00482) that may contribute to a
cell’s ability to manage the elevated oxidative stress that exists during active IBD (95).
We also observed increases in abundance in pathways associated with cellular che-
motaxis (M00515, M00507). This result is consistent with observations of increased cell
motility pathways in the gut microbiomes of TRUC mice suffering active colitis using
imputations from 16S data (22). This result also aligns with prior work that implicated
Toll-like receptor recognition of flagellar bacterial antigens in the development of
intestinal inflammation (96, 97). On the basis of these observations, we speculate that,
given that intestinal permeability frequently increases during IBD flare-ups, chemotaxis
pathways help microbiota scavenge the metabolic resources required to survive inside
an inflamed gut or to invade the host (98).

We also observed several biosynthetic modules that increased in abundance in
association with IBD development. For example, the modules related to the biosyn-
thesis of UMP, leucine, proline, and ammonia changed in association with disease.
These results may suggest that the metabolic preferences and needs of the organisms
that comprise the microbiome change as disease develops. Alternatively, it may be that
more T cells are entering the gut, becoming activated, and consequently consuming
the local resources, which in turn results in bacteria activating biosynthetic pathways to
survive and compete. Our finding that pathways associated with ammonia production
(M00531) increase in abundance in DNR mice is noteworthy because prior studies have
found that IBD associates with a lower pH in the intestinal lumen (99), and the
production of ammonia by bacteria may serve to buffer such pH changes. Additionally,
these pathways are utilized when bacteria metabolize proteins, amino acids, and urea,
and the increase in this pathway may indicate a preferential utilization of these
substrates by the microbiome (or, as described above, immune cells) during disease.

Furthermore, we observed increases in modules associated with choline metabo-
lism, specifically, in betaine and phosphatidylcholine biosynthesis modules. Recent
work has connected the gut microbiome’s production of these metabolites to increased
cardiovascular disease risk (100). Our finding is important because a growing number
of studies indicate that IBD patients have an increased risk of developing cardiovascular
disease, especially during flare-ups (101, 102). The mechanisms underlying this in-
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creased risk are not well resolved but may relate to a proposed explanation for the
increased cardiovascular disease risk observed in HIV-infected patients (103, 104). In this
model, changes in the relative proportions of protective and pathobiotic gut microbi-
ota, especially those capable of translocating across the gut epithelium, activate a
chronic systemic inflammation that increases cardiovascular disease risk. It is thus
tempting to speculate that, on the basis of our observations in these mouse models of
disease, IBD-associated and perhaps HIV-associated changes in the microbial metabo-
lism of choline contribute to or at least indicate the presence of this increased risk of
cardiovascular disease.

Another intriguing hypothesis emerges from our observation that levels of heme
transport genes are elevated in DNR mice as IBD develops. Bacteria use this module to
scavenge iron from the environment. Iron is a crucial component for many cellular
processes, but gut microbes seldom have access to free iron and instead sequester it
from host sources, such as heme (105, 106). Heme concentrations may be increased in
IBD, as a common feature of the disease is intestinal bleeding (107). Hence, we
hypothesize that gut microbes that can take advantage of this heme may flourish in
DNR mice. It is intriguing to further speculate that microbial sequestration of heme
contributes to IBD (e.g., through signaling to the immune system) or to iron deficiency
in IBD patients (108).

One surprising discovery was an increase in the abundance of pathways associated
with the production of benzoate (M00538) in DNR mice. Benzoate is a carboxylic acid
produced by microbial degradation of dietary aromatic compounds and is a precursor
of hippurate biosynthesis in mammals (109). Prior work suggested that hippurate may
be a useful diagnostic of Crohn’s disease given that it is found at significantly lower
levels in the urine of patients (109) and that the gut microbiome’s production of
benzoate is responsible for these differences in urinary hippurate levels (110). Our
results are inconsistent with this prior work in that they indicate that intestinal
benzoate biosynthesis levels are higher in sick animals. This difference may be due to
variations in the host species being investigated, including how benzoate is subse-
quently metabolized in the gut or by the host. Alternatively, the potential of the DNR
microbiome to make excess hippurate may not be realized given that we performed
DNA sequencing. Future mechanistic studies could measure benzoate and hippurate
levels and quantify the benzoate proteins at the RNA or protein level in DNR mice
versus WT mice.

Most of the taxonomic and functional IBD biomarkers that we identified become
increasingly abundant in DNR mice throughout the disease process. But three modules,
namely, melatonin biosynthesis (M00037), lysine biosynthesis (M00031), and lipooligo-
saccharide transport (M00252), show the opposite trajectory and decrease in abun-
dance over time in DNR mice relative to WT mice. Melatonin has a dual effect on the
immune system, acting in a stimulatory manner in early infection and in an immuno-
modulatory manner in cases of prolonged inflammation (111). The effects of melatonin
produced by gut commensals have not been studied as extensively as those of
endogenous melatonin. Traditionally, melatonin acts as a potent antioxidant, although
additional quorum signaling functions in bacteria have been recently reported (112).
The reduction in melatonin biosynthesis capacity observed in the DNR mice could have
been caused by the expansion of species that can tolerate a highly oxidative environ-
ment (113) or by microbes that utilize other strategies for neutralizing reactive oxygen
species. Without metabolite data, it is not possible to definitively say that the final
concentrations of melatonin are reduced in the disease state, since the decrease can be
offset by host production. With respect to lysine biosynthesis, this module is also
depleted in human IBD microbiomes (13), indicating that there may exist similar
mechanisms of interaction between disease context and the gut microbiome across
species. Future work should empirically test the potential role of these microbiome
functions in the development of IBD, especially in individuals that are genetically
susceptible to the disease.

Lipooligosaccharide transport is the only module to show significant differences in
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abundance trajectories both preactivation and postactivation. Intriguingly, its abun-
dance was consistently lower in DNR mice than in WT mice throughout our study, with
the largest difference occurring during weeks 4 to 7, prior to immune activation and the
manifestation of disease symptoms. This finding seems surprising initially, because
lipooligosaccharides are the major glycolipids that are produced by mucosal Gram-
negative bacteria and are known to have proinflammatory effects (114). However, the
two genes (NodI and NodJ) in the lipooligosaccharide transport system are present
across diverse prokaryotes, and the substrates of this two-component ABC transporter
have not been characterized beyond lipochitin oligosaccharide export in rhizobial
bacteria (115, 116). Determining what this system transports in the mammalian gut and
how its function changes in IBD is an exciting prospect. Regardless of the mechanism,
the consistent and presymptomatic depletion of lipooligosaccharide transport genes in
DNR mice makes this module a promising candidate biomarker for predicting and
diagnosing IBD.

We relied on a mouse model to quantify the longitudinal interaction between the
gut microbiome and disease because the extensive interindividual variations in human
genetics, lifestyle, microbiome composition, and disease status and severity can com-
plicate study design, analysis, and interpretation. We used the DNR mouse model
because it is relevant to our understanding of the mucosal immunological dysregula-
tion that occurs during human IBD and, consequently, of its interaction with the gut
microbiome. Indeed, we observed immune activation in the blood of the DNR mice that
was consistent with what has been observed in human IBD (117). The phenotype
observed in DNR mice is akin to severe Crohn’s disease, with relatively substantial immu-
nological activation and weight loss by week 12. Interpretations of the microbiome-disease
interaction in this model should take into consideration this relatively severe disease
status. Alternative mouse lines may be better models for other forms of IBD. Another
consideration is that we found some baseline differences in microbiome protein
abundances in DNR mice at weaning that may be specific to this genetic model of IBD.
Ultimately, comparisons between our results and those obtained by the integrated Human
Microbiome Project (iHMP) (118), which is longitudinally evaluating the microbiome and
immune status of IBD patients, will clarify the relevance of the findings produced by the
DNR model to human populations. Additionally, future research should use this model and
build upon our findings to clarify how TGF-�-induced differentiation and function of T cells
interact with the taxonomic structure and function of the gut microbiome.

Overall, our results indicate that the development of IBD is associated with corre-
sponding changes in the operation of the gut microbiome. Microbial taxa and KEGG
module abundances vary over time and in association with immune activation. Fur-
thermore, our results suggest that the gut microbiome may contribute to disease by
activating inflammation through metabolism of mucosa and by expressing proinflam-
matory and downregulating anti-inflammatory metabolites. Because our study relied
on the imputation of microbiome function from DNA sequences, we cannot definitively
conclude that the observed differences in the microbiome’s functional profiles manifest
as differences in the metabolites produced by the microbiome. Future research that
applies direct measurements of microbiome function should be used to validate and
expand the results presented here. Regardless, our results hold promise for our
understanding of microbiome-mediated IBD disease mechanisms and the potential of
using microbiome sequencing of patient stool to classify and potentially even predict
disease.

MATERIALS AND METHODS
Growth of mice and microbiome sampling. We bred two cohorts of DNR and WT littermate control

animals in the Gladstone Institutes mouse facility as follows. CD4-dnT�RII (DNR) animals were crossed to
the RAG1�/� background to eliminate the T cell-mediated IBD and were transferred from Yale University
to Gladstone Institutes in 2010. To initiate the experiments described in this study, DNR-RAG1�/� males
were bred with C57BL/6N female animals, and DNR-RAG1�/� progeny were again crossed to C57BL/6N
females to generate a combination of RAG1�/� and RAG1�/� DNR and WT age-matched littermate
controls. Animals were given regular chow consisting of irradiated PicoLab Rodent diet 20 (LabDiet). Only
female animals were used in this study. Four cohoused WT-RAG1�/� and five cohoused DNR-RAG1�/�
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littermates were followed longitudinally for 15 weeks, and fresh fecal samples were collected weekly and
stored at �30°C until they were subjected to microbiome processing. All mice from both cohorts were
weighed weekly. All animal experiments were conducted in accordance with guidelines set by the
Institutional Animal Care and Use Committee of the University of California, San Francisco.

Immune sampling. Tail vein blood samples were collected weekly from a parallel cohort of “bleeder”
mice (n � 6 WT, n � 6 DNR) to quantify how their immune status changed over time. These were distinct
individuals from the “pooper” mice cohort (same colony and time period) subjected to stool metag-
enomics in order to prevent repeated tail vein blood sampling from affecting the health or microbiota
of the cohort of pooper mice. Specifically, �100 �l (2 to 3 drops) of blood from tail vein was added to
30 �l of 1� heparin (500 units/ml). A 500-�l volume of 1� ACK (ammonium-chloride-potassium) lysis
buffer (Lonza) was added directly to the cells, and the mixture was incubated at room temperature for
2 to 3 min. Cells were centrifuged at 4,000 rpm for 5 min. The top layer was aspirated, and another 500 �l
of 1� ACK lysis buffer was added followed by centrifugation. Cells were resuspended in fluorescence-
activated cell sorter (FACS) buffer (phosphate-buffered saline [PBS]– 0.5% fetal bovine serum [FBS]), and,
after blocking was performed, Fc receptors with anti-CD16/CD32, single-cell suspensions were incubated
with fluorescein isothiocyanate (FITC) CD4 (GK1.5), phycoerythrin (PE) CD62L (MEL14), peridinin chloro-
phyll protein (PerCP)-Cy5.5 CD8a (53.6.72), and allophycocyanin (APC) CD44 (IM7) mouse antibodies for
30 min at 4°C. Stained cells were washed and acquired on an Accuri C6 cytometer (BD). Blood
lymphocytes were gated on CD4� or CD8� fractions, and percentages of activated/memory (CD44hi)
cells among CD4� and CD8� T cells were determined using FlowJo software (Tree Star Inc.). This cohort
was separated from those subjected to microbiome sampling to eliminate the effect that repeated
bloodletting might have on the microbiome. At 15 weeks of age, two WT mice and three DNR mice from
the group of nonbleeding animals were euthanized. Spleen and mesenteric lymph nodes were then
processed into single-cell suspensions and subjected to ACK lysis and cell surface staining as described
for peripheral blood mononuclear cells (PBMCs). The level of T cell activation was quantified and found
to highly correlate with the blood immune status of their “bleeder” littermates (see Fig. S2 and
Table S1 in the supplemental material).

Metagenome sequencing and analysis. QIAamp DNA stool minikits (Qiagen, Valencia, CA) were
used to extract DNA from stool samples collected at weeks 4, 6, 8, 10, and 12. Samples were incubated
in a water bath at an elevated temperature of 95 C to increase the lysis of bacterial cells per manufacturer
instructions. A MoBio PowerFecal DNA isolation kit (MoBio, Carlsbad, CA, USA) was used per manufac-
turer instructions to process stool samples collected at weeks 5 and 13. The kit type was accounted for
in statistical modeling to adjust for any potential differences in extraction bias between the two methods.

Purified DNA was prepared for shotgun metagenomic sequencing using the Nextera XT library
preparation method (Illumina, San Diego, CA, USA). Libraries were quality assessed using quantitative
PCR (qPCR) and a Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and subsequently sequenced
using an Illumina HiSeq 2000 sequencing system. This produced an average of 74,427,303 100-bp
paired-end sequences per sample. Metagenomic reads were quality controlled using the standard
operating procedure defined by the Human Microbiome Project Consortium (119) as implemented in
shotcleaner (120). Briefly, reads were quality trimmed using prinseq (121) and mapped against the mouse
reference genome sequence (GRCm38) using bmtagger (122). Exact-duplicate reads were collapsed, and
the subsequent high-quality data were subject to taxonomic and functional annotation. Functional
annotation of metagenomes was conducted using ShotMAP as described in reference 16, with Prodigal
(123) to call genes and RAPsearch2 (124) to identify metagenomic homologs of the KEGG database
(downloaded February 2015). Reads mapping to mammalian sequences in the KEGG database were
discarded, and the subsequent data were used to quantify the abundance of each KEGG orthology group
(KO) using the reads per kilobase of genome equivalents (RPKG) abundance statistic (125). Metagenomes
were taxonomically annotated using MIDAS as described in reference 72.

Statistical analyses and modeling. The functional and taxonomic similarities between metag-
enomic samples were assessed using nonmetric multidimensional scaling (NMDS) as implemented
through the nmds function in the labdsv R package (126). Ordinations were visualized using the ordiplot
function in the vegan R package (127). For the functional similarity analysis, the vegdist function from the
vegan R package quantified the Bray-Curtis dissimilarity based on KEGG module abundances. The
taxonomic analysis used the generalized Unifrac (128) distances (alpha � 0.5), which were obtained by
using the taxonomic tree from the Living Tree Project (129) and matching the genus and species
components of tree leaf labels to the corresponding components of the MIDAS species labels in our data.
Assessment of the significance of the clustering of samples in these ordination plots was conducted
using PERMANOVA as implemented in the Adonis function in R.

The compound Poisson generalized linear mixed-effects model implemented in the cplm package in
R (130) was used to find KEGG modules with significantly different time trends between groups while
controlling for static differences between the lines and DNA extraction procedures (Qiagen versus
MoBio). Random intercepts and slopes for both subjects and contributing KOs were used to capture
variations between subjects and between genes while focusing on the large-scale shifts over the whole
collection of abundance profiles contributing to a module. As described more thoroughly in Text S1 in
the supplemental material, the general computational procedure consisted of forming subsets of the
data with respect to each module’s relevant KO abundances and fitting a full model that described the
RPKG abundance as a function of time, group, time by group interaction, sequencing kit, and random
effects of each KO and individual. We then use two reduced models, eliminating first the interaction term
and then the group term, to obtain P values via likelihood ratio tests. This is one of the recommended
significance testing approaches for mixed models since it avoids using the approximations for the
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residual degrees of freedom that would be necessary to test significance via the t-statistic (66). To limit
the number of modules tested, the input data were run through the MinPath Algorithm (131) to select
a parsimonious set of modules based on the KOs present. The union of the individual parsimonious sets
of all of the samples was used as the final set of tested modules. The approach of testing the dynamics
of an entire module by fitting a single GLMM to a set of temporal abundances of multiple genes is
modeled on the time course gene set analysis (TcGSA) method of Hejblum et al. (132), with the
modification of using a different response distribution (the Tweedie compound Poisson distribution).
Significant modules were selected at the 0.05 FDR threshold after controlling for multiple testing via the
Benjamini-Hochberg (B-H) procedure. Species time trend differences were tested with the same ap-
proach, minus the grouping of multiple trajectories. Additional details of our modeling approach can be
found in Text S1. All of the code used in this analysis is available at the following URL: https://github
.com/slyalina/Mouse_IBD_2017_paper_supporting_code.

To differentiate functional changes occurring prior to immune activation, we fitted a second hinge
regression to the abundances of modules that were found to have a significant time by group interaction
in the main GLMM analysis. This second regression placed a break point at week 7, which represents the
point at which immune activation initiated (Fig. 1). This allowed for two sets of slopes (before and after
disease onset) and two sets of time by group interactions (representing deviations of DNR slopes from
WT before-onset and after-onset slopes).

Alterations in the species trajectory curves were additionally tested with an alternate method aimed
at highlighting differences in shape rather than slope. This method was an implementation of the
FPCA-based difference in goodness-of-fit approach described previously in reference 133. The
permutation-based P values from this analysis were B-H corrected, and species passing the 0.05 FDR
threshold were retained.

To test the hypothesis that the distribution of the between-KO/within-KO dispersion decomposition
statistics for all modules was significantly different from random grouping of functional trajectories (KOs
into modules) but was not significantly different from random grouping of taxonomic trajectories
(species into genera), we used the DISCO (71) nonparametric test, as well as the simulated null
distributions that arise when generating random groupings of KOs and species, to obtain the real
distributions of the test statistics in the two scenarios. We then performed a Kolmogorov-Smirnov test
to compare the true distributions with their simulated counterparts.

Accession number(s). The metagenomic data that were generated and analyzed in this study are
available in GenBank under BioProject number PRJNA397886.
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