
RESEARCH ARTICLE

Source apportionment of potentially toxic

elements in soils using APCS/MLR, PMF and

geostatistics in a typical industrial and mining

city in Eastern China

Cao JianfeiID
1, Li Chunfang1☯, Zhang Lixia2☯, Wu Quanyuan1*, Lv Jianshu1

1 College of Geography and Environment, Shandong Normal University, Ji’nan, China, 2 General Station of

Geological Environment Monitoring of Shandong province, Ji’nan, China

☯ These authors contributed equally to this work.

* wqy6420582@163.com

Abstract

Source apportionment of potentially toxic elements in soils is a critical step for devising soil

sustainable management strategies. However, misjudgment or imprecision can occur when

traditional statistical methods are applied to identify and apportion the sources. The main

objective of the study was to develop a robust approach composed of the absolute principal

component score/multiple linear regression (APCS/MLR) receptor model, positive matrix

factorization (PMF) receptor model and geostatistics to identify and apportion sources of

soil potentially toxic elements in typical industrial and mining city, eastern China. APCS/

MLR and PMF were applied to provide robust factors with contribution rates. The geostatis-

tics coupled with the variography and kriging methods was used to present factors derived

from these two receptor models. The results indicated that mean concentrations of As, Cd,

Cr, Cu, Hg, Ni, Pb and Zn exceeded the local background levels. Based on multivariate

receptor models and geostatistics, we determined four sources of eight potentially toxic ele-

ments including natural source (parent material), agricultural practices, pollutant emissions

(industrial, mining and traffic) and the atmospheric deposition of coal combustion, which

accounted for 68%, 12%, 12% and 9% of the observed potentially toxic element concentra-

tions, respectively. This study provides a reliable and robust approach for potentially toxic

elements source apportionment in this particular industrial and mining city with a clear

potential for future application in other regions.

Introduction

In recent years, soil potentially toxic element pollution has been a worldwide environmental

problem and has attracted much attention due to cumulative toxicity and persistence [1–3].

Especially in the eastern coastal areas of China, intensive human activities have led to the

enrichment of potentially toxic elements in soils, threatening food safety and human health

[4]. The concentration of soil potentially toxic elements is subjected to natural background
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levels and human inputs [5]. The former arises from the weathering of geological parent rocks

[1, 6]. Human input pathways include mining, waste disposal, sewage irrigation, vehicle

exhaust emissions, atmospheric deposition, fertilizer and pesticide application, among other

human activities [7, 8].

Source apportionment can contribute to determining the enrichment of potentially toxic

elements from natural sources and complex human activities, and identify the contribution

rate of each source. This analysis is crucial for devising soil sustainable management strategies

so as to prevent or reduce potentially toxic element pollution. Among the methods involved in

source apportionment, qualitative and quantitative analyses are commonly used. Multivariate

statistical analyses belong to the former, i.e., principal component analysis (PCA) and factor

analysis (FA), which have been widely used to assess pollution status and identify the sources

of potentially toxic elements in soils [9–12]. These methods can determine the most significant

factors by reducing dimensions and explaining potential sources of pollution. However, quan-

titative analysis cannot be achieved with the above methods. In this case, receptor models have

been applied to quantify the sources of soil potentially toxic elements, i.e., chemical mass bal-

ance (CMB), absolute principal component score/multiple linear regression (APCS/MLR) and

positive matrix factorization (PMF) [13–16]. CMB is a basic receptor model and requires both

the concentration of potentially toxic elements and the input of source profiles. APCS/MLR

and PMF are more efficient than CMB because they do not require source profiles [17, 18].

APCS/MLR evolved from PCA, and source contributions are obtained through carrying out

the regressions between potentially toxic element contents and APCS. PMF uses experimental

uncertainties in the data matrix and decomposes a data matrix into factor contributions and

factor profiles under the non-negative constraint [15]. Due to theoretical differences, the

results from receptor models differ, and each variable represents a source. To provide robust

factors and better interpret the sources, previous studies have commonly applied multiple

receptor models simultaneously based on the same datasets [19, 20]. These factor analysis

methods still contain shortcomings, e.g. explore pollution sources based on previous knowl-

edge, which may result in misjudgment or imprecision.

The spatial correlations between sampling points contain important information for inter-

pret the potential soil potentially toxic element pollution source. There are two main groups of

interpolation techniques: deterministic (polynomial, inverse distance weighted, and radial)

and geostatistical (ordinary kriging, simple kriging, universal kriging, probability kriging, indi-

cator kriging and disjunctive kriging) [21]. Because the geostatistical method coupled with the

variography and kriging methods could quantify the spatial autocorrelation among measured

points and account for the spatial configuration of the sample points around the prediction

location, they have been widely used to provide insights into the spatial correlations of soil

properties [22–26]. The spatial continuous variations, including structural spatial variations

and random spatial variations, are calculated in the variogram. Kriged maps can characterize

the hotspots and outlines. Previous studies have successfully used the spatial variation and spa-

tial distribution of potentially toxic elements in soils to identify risk areas, which have been

superimposed with land use maps to predict potentially toxic element pollution sources [27–

29]. However, prior studies have rarely explored the spatial variation information of factor var-

iables and the superposition information of kriged maps that form factor variables and poten-

tially toxic elements, which contain important information for source apportionment.

Therefore, this approach is expected to effectively integrate the multivariate receptor models

and geostatistics for source apportionment and reduce the misjudgment and inaccuracy error.

In our study, we chose the northern plain of Longkou in Eastern China, as a typical region,

where human activities are intensive due to the rapid development of industry and mining.

Potentially toxic elements of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in 138 surface soil samples
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were collected [30]. Based on the proposed approach composed of APCS/MLR, PMF and geos-

tatistics, our specific objectives were to (1) provide robust source factors with contribution

rates using multivariate receptor models, including APCS/MLR and PMF, (2) apply geostatis-

tics to present those source factors to provide more objective and useful information in source

apportionment, and (3) identify and apportion sources of soil potentially toxic elements in typ-

ical industrial and mining cities.

Material and methods

Study area

Longkou is a typical industrial and mining city in eastern China [31]. The research was con-

ducted in the northern plain of Longkou City (37˚34’35"N—37˚44´49"N, 120˚13´4"E—120˚40

´47"E), which covers an area of 500 km2 (Fig 1). The study areas are priority areas in which

industries have rapidly developed under the support of state policies. The multitude of emis-

sion sources have made this a typical area for verifying source apportionment models [32].

The area is characterized by mineral resource exploitation, including coal, gold mine and lead

zinc mining, and the abundant natural resources have promoted the development of prelimi-

nary industrial enterprises, such as iron-making plants, paper mills and electroplating factories

[33]. There is approximately 300 km2 of agricultural land in this area, mainly wheat and maize

planting in the west, apple and grape orchards in the east, and vegetable planting areas in the

north (Fig 2). This study area has a temperate monsoon climate with an average annual tem-

perature of 12˚C and a mean annual precipitation of 600 mm. Parent material are composed

of marine sediments in the western of study area, bordered by alluvium and moorstone in the

southeastern region (Fig 3). A water shortage problem has emerged in Longkou [31].

Untreated water from industrial activities was used to irrigate farmland over the period of a

decade until a sewage disposal apparatus was built in 2002; presently, agricultural activities use

the disposed water [31].

No specific permissions were required for these locations and activities in the field sampling

and we confirmed that the field studies did not involve any threat to endangered or protected

species.

Soil sampling and chemical analysis

A total of 138 soil samples were collected in the summer of 2017 based on the grid layout sam-

ple point method [27–29]. Sample sites were selected according to a sampling density of less

than 2 km based on Landsat images, and each sample consisted of a mixture of five subsamples

collected from five spots across an area of approximately 30 m2. Each soil sampling site was

first classified based on land use types including 33 for industrial and mining use, 34 for grain

crop use, 24 for orchard use, 12 for vegetable use, 22 for residential use, and 13 near to roads.

If the designed site was unavailable for sampling (such as if it contained a building), an alterna-

tive location was selected as close to the original as possible to find natural soils. All subsamples

were collected at a depth of 0–20 cm using a stainless-steel shovel. At each sampling site, an

approximate 1kg of the soil sample were mixed thoroughly in a polyethylene bag. After air-

drying, the collected soils samples were sieved to 2 mm, and ground to powder that could pass

through a 0.149-mm mesh for physical-chemical analysis. The geographical locations of the

sampling points were recorded by a GPS receiver, as shown in Fig 1.

In the laboratory, soil pH values were measured by a pH meter in a 1:2.5 soil–water suspen-

sion, and organic matter (SOM) contents were analyzed using oil bath-K2CrO7 titration [34].

HSO4-HNO3-HF was used to digest the soil for analyzing the As, Cd, Cr, Cu, Hg, Ni, Pb and

Zn contents. The Cr, Cu, Ni, Pb and Zn contents were analyzed using a flame atomic
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Fig 1. Geographical location of the study area with sampling sites. (The map was generated using free, open access data sources from the National Geomatics Center

of China).

https://doi.org/10.1371/journal.pone.0238513.g001
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absorption spectrophotometer (240 AA Agilent, USA), Cd contents were determined using a

graphite furnace atomic absorption spectrophotometer (AA-7000 Shimadzu, Japan), and As

and Hg concentrations were determined with an atomic fluorescence spectrophotometer

(AFS230E Haiguang Analytical Instrument Co., Beijing, China). For details on the measure-

ments, please refer to the related literature [34]. A standard reference material obtained from

the Center for National Standard Reference Material of China (http://www.biobw.com/), was

used for quality control. The recovery rate and standard reference material were examined

under strict monitoring, and the chemical analysis process followed the standard for geochem-

ical evaluation of land quality (DZ/T0295–2016) in China. The limit of recovery was 94%

~106%.

Source apportionment method

The source apportionment method framework is show in Fig 4, which integrates APCS/MLR,

PMF and geostatistics. APCS/MLR and PMF were simultaneously applied to the potentially

toxic element concentration dataset to provide more factors with contribution rates. The geos-

tatistics were applied to present those factors. The spatial variant structure of those factor vari-

ables was used to preliminarily determine which factors belonged to natural sources or

anthropogenic sources. The spatial distribution characteristics of the factors and eight poten-

tially toxic elements were mapped via ordinary kriging and were superposed on the auxiliary

environmental data (such as land use types and parent materials) to locate the potential

sources.

Fig 2. The maps of land use types in the study area. (The land used map was generated by interpreting free Landsat

images).

https://doi.org/10.1371/journal.pone.0238513.g002

Fig 3. The maps of parent materials in the study area. (The parent materials map was generated using free, open

access data sources from the Geological survey development research center of China).

https://doi.org/10.1371/journal.pone.0238513.g003
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APCS-MLR receptor model. The APCS-MLR receptor model applies two mathematical

methods, i.e., a combination of a multiple linear regression model (MLR) and the absolute

principal component scores (APCS) [35]. This model was calculated using SPSS 22.0 software

(IBM Inc., USA). The first procedure normalizes the raw data as follows:

Zij ¼
Cij �

�C
si

ð1Þ

where Zij is the content after normalization, Cij is the content of the ith sample of the jth ele-

ment, and Cj and σj represent the respective average content and standard deviation of the jth
element, respectively.

Then, a comparison sample (Z0)i with a content of 0 was inserted, and normalization was

conducted as follows:

ðZ0Þi ¼
0 � �Ci

si
¼ �

�Ci

si
ð2Þ

The APCS for the factors are estimated by subtracting the factor scores of Z0 from the factor

scores of true samples. The apportionment to Cj can be evaluated via MLR as follows:

Ci ¼ b0i þ
Xn

p¼1

ðAPCSp � bpiÞ ð3Þ

where b0i is the constant term in the MLR and bpi is the regression coefficient for the pth

source of the ith element. The adjusted score of the pth factor is APCSp, and the average contri-

bution of the pth source to Ci can be interpreted as APCSp•bpi.
Positive matrix factorization model. PMF is a method that decomposes the elemental

content matrix into a factor contribution matrix and a factor component spectrum matrix [36]

Fig 4. Source apportionment method.

https://doi.org/10.1371/journal.pone.0238513.g004
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and is performed with the US-EPA PMF 5.0 model. First, the original elemental matrix X nm

with the order n�m can be described as

Enm ¼ Xnm �
Xp

j¼1

GnpFpm ð4Þ

where G(n�p) and F(p�m) represent the matrices of the factor contribution and factor profile,

respectively, and E(n�m) is the matrix of the residual error.

Furthermore, the objective function Q is the diagnostic index of model performance, and the

Q value from the model result must be close to the reference value. Q can be expressed as follows:

Q ¼
Xm

i¼1

Xn

j¼1

ðEij=sijÞ
2

ð5Þ

where Eij is the residual error of the ith element of the jth sample, σij is the uncertainty of the ith
element of the jth sample, and all values in the above calculation process are dimensionless.

Finally, the uncertainty (U) is determined using the EPA PMF 5.0 User Guide (U.S. Environmen-

tal Protection Agency, 2014). If all elemental contents are greater than the method detection limit

(MDL), the uncertainty calculation is performed as follows:

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðErrorFraction� concentrationÞ2 þ ð0:5�MDLÞ2
q

ð6Þ

Geostatistical method. Geostatistics was used to analyze the spatial correlation of the

APCS, PMF-factors and eight potentially toxic elements and to minimize the estimation error

in source identification. Three structure variance theoretical models of three structures (spher-

ical, Gaussian and exponential) were employed to measure the degree of spatial variability.

The determination coefficient (R2) and residual sum of squares (RSS) were used to evaluate

the optimal structure variation model. The nugget value (C0), sill value (C0+C) and variable

range (A) were the main parameter of variation model. The nugget effect (C0/C0+C) was used

to distinguish between regional factors (natural factors) and nonregional factors (human fac-

tors) for heavy metal enrichments. There are three classes for the C0/C0+C values, strong spa-

tial autocorrelation (C0/C0+C� 0.25), moderate spatial autocorrelation (0.25< C0/C0+C<

0.75), and weak spatial autocorrelation (0.75� C0/C0+C) [37]. The variable range (A) repre-

sents the range of spatial autocorrelation under a certain observation scale. The estimation

process of the structure variance model was performed with GS+ 7.0 (R Development Core

Team). Ordinary kriging (OK) was used for interpolation and characterizing hotspots and out-

lines of hazardous areas, which was implemented using ArcGIS 10.1 (ESRI Inc., USA).

Results

Description of potentially toxic elements

The descriptive statistics of the soil potentially toxic element contents in the study area are

shown in Table 1. The mean soil pH value ranged from 6.26 to 7.88, with a mean value of 7.0.

The soil organic matter (SOM) content ranged from 5.46 g kg-1 to 42.22 g kg-1, with a mean

value of 24.94 g kg-1, and these values were higher than the background values [38]. Overall,

the average potentially toxic element contents in all samples were below level II of the Environ-

mental Quality Standard for Soils (EQSS) of China [39] but exceeded the corresponding back-

ground values [38]. In particular, Cd, Cu and Hg were 1.81, 1.80 and 1.63 times higher than

the background values, respectively, suggesting that the topsoil, which is affected by human
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activities, was enriched by these potentially toxic elements. Compared with the surrounding cit-

ies with developed industry and mining, such as Rizhao [27], Guangrao [28] and Ju County

[29], it was found that the average value of potentially toxic elements in soils had the above simi-

lar characteristics as in Longkou, and Cd and Hg were also considered to be the most risky. To

further evaluate the enrichment degree of potentially toxic elements, the index of geo-accumula-

tion (Igeo) was calculated using Muller’s equation [40], which indicated that the soil ranged

from not contaminated to moderately contaminated with respect to Cd, Cu, and Hg, which

were ranked as Cd>Hg>Cu, and the soil was not contaminated with the other elements.

The coefficient of variation (C.V.) is a dimensionless expression of the standard deviation and

can better reflect fluctuations in potentially toxic element contents [41]. The highest C.V. was

found for Pb followed by Cr and Cd, which indicates high variations of these metals in the soil, and

exhibited the following order: Cd> Cu> Hg> Pb> Ni> As> Zn> Cr. The skewness of the

studied potentially toxic elements exhibited the following order: Cd> Pb> Cu> Hg>

Zn>Ni>As>Cr. Overall, Cd, Pb, Cu, Hg and Zn were found to be higher than one which indicates

right handed skewness. It suggest that these soil metals may be affected by human factors [42].

Source factors of soil potentially toxic elements

The potentially toxic element contents in the soil samples were analyzed by PCA (Table 2).

The first four factors were extracted, which explained 79.60% of the total variance. The first

factor (F1) accounted for 27.15% of the total variance and showed strongly positive loadings of

Cr and Ni and a moderate loading of As. F2 explained approximately 18.94% of the total

Table 1. Descriptive statistics of potentially toxic elements in the study area (n = 138, units in mg kg-1).

Species Min Max median percentile 25 percentile 75 Mean S.D. C.V.(%) Skewness Background Igeo EQSS

As 3.63 10.26 7.98 6.73 8.97 7.96 1.47 18.51 0.34 6.30 -0.25 30

Cd 0.049 0.42 0.23 0.13 0.37 0.20 0.11 56.00 9.91 0.11 0.28 0.30

Cr 46.7 96.83 61.08 50.10 64.8 61.10 10.58 17.32 0.23 56.20 -0.46 200

Cu 20.34 50.86 35.35 21.73 43.78 35.30 16.60 47.02 6.61 19.60 0.26 100

Hg 0.025 0.064 0.048 0.038 0.057 0.049 0.02 42.86 2.55 0.03 0.12 0.50

Ni 19.18 47.6 26.62 22.91 31.79 26.59 5.26 19.78 0.38 23.50 -0.41 50

Pb 15.75 63.92 35.13 28.90 50.36 35.08 13.37 38.11 8.20 25.40 -0.12 300

Zn 53.99 104.32 77.85 60.11 91.57 77.89 14.05 18.04 1.02 56.10 -0.11 250

PH 6.26 7.88 7.00 6.68 7.38 7.00 0.35 5.00 0.37 - - -

SOM (g kg-1) 5.46 42.22 14.99 8.86. 18.25 14.94 5.04 33.73 1.44 13.00 - -

https://doi.org/10.1371/journal.pone.0238513.t001

Table 2. Factors loadings of potentially toxic elements in soils.

F1 F2 F3 F4

Cr 0.923 -0.075 0.168 -0.004

Cu -0.103 0.894 0.06 -0.098

Ni 0.916 -0.055 0.036 -0.156

Pb 0.137 -0.005 0.925 0.139

Zn 0.137 0.772 0.002 0.272

Cd 0.267 0.123 0.683 -0.483

As 0.67 0.288 0.269 0.188

Hg 0.005 0.13 0.019 0.924

Variance contribution rate/% 27.145 18.938 17.635 15.876

Accumulated Variance Contribution Rate/% 27.145 46.083 63.718 79.594

https://doi.org/10.1371/journal.pone.0238513.t002
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variation and had a highly positive loading of Cu and a moderate loading of Zn. F3 explained

17.64% of the total variance and had a highly positive loading of Pb and a moderate loading of

Cd. F4 accounted for 15.88% of the total variance and a highly positive loading of Hg.

The contributions of different factors were calculated using the APCS/MLR receptor model

(Table 3). The accuracy of APCS/MLR was assessed via the R2 and predicted/observed values.

The R2 parameters varied between 0.60 and 0.89, and the predicted/observed values ranged

from 0.91 to 1.14, indicating that the APCS-MLR model had high accuracy. F1 primarily con-

tributed to As, Cr and Ni with values of 71%, 98% and 96%, respectively. F2 dominated Cu

(29%) and Zn (38%). F3 explained the 57% of Cd and 34% of Pb variations, and the six other

potentially toxic elements had positive values. F4 explained 39% of Hg. However, the APCS

exhibited a component that was not accounted for, i.e., the intercepts of the regressions, which

ranged from -12% to 15%. The mean of the eight potentially toxic elements represented four

factors, and the contributions of the four factors to potentially toxic element pollution in the

study area were 67%, 11%, 16% and 6%.

In the PMF model, the number of optimal factors was determined to be four through train-

ing experiments, which is consistent with the APCS/MLR results. The results of the PMF

model are shown in Table 4, and the Q (robust) value was 12723.8. All potentially toxic ele-

ments in the PMF model had a high correlation, with R2> 0.51 and 0.93< Ratio (Predicted/

Observed) < 1.12. Cr, Cu, Hg, Ni and Zn had the highest correlations in F1, which dominated

the contribution and presented values ranging from 51% to 94%. Cu had the highest concen-

tration in F2 and accounted for 32%, and Zn represented 28% of the content related to F2. F3

influenced Cd (46%) and contributed to Pb with values of 28%. F4 had the strongest contribu-

tion to Hg (38%). The mean of the eight potentially toxic elements represented four factors,

and the contributions of the four factors to potentially toxic element pollution in the study

area were 68%, 12%, 12% and 9%. Overall, the grouping of potentially toxic elements from the

APCS and PMF models were similar and exhibited comparable factor contribution rates.

Spatial variant structures of factors and potentially toxic elements

To perform the statistical analysis more efficiently, the variables were log-transformed. After

data transformation, their skewness were reduced and the variable distributions approximate

the normal distribution. The different optimal variogram models of APCS, PMF-factors and

potentially toxic elements are shown in Table 4. The RSS and R2 of all the optimal variogram

optimal models varied among 0.011 and 0.071, 0.576 and 0.812, indicating that the fitting

results were satifactory. The C0/(C0+C) values of APCS1, PMF-F1, As, Cr and Ni were less

than 0.25, which showed a strong spatial auto correlation and may have been indicative of

Table 3. Contribution rate of each factor to potentially toxic elements derived from APCS/MLR and PMF.

APCS/MLR PMF

Ratio R2 F1 F2 F3 F4 Unidentified Ratio R2 F1 F2 F3 F4

As 0.91 0.60 0.71 0.13 0.08 0.20 -0.12 1.06 0.81 0.81 0.07 0.05 0.07

Cd 1.00 0.78 0.28 0.13 0.57 -0.13 0.15 1.05 0.96 0.36 0.14 0.46 0.04

Cr 1.03 0.87 0.98 -0.09 0.18 -0.01 -0.06 0.93 0.60 0.94 0.02 0.02 0.02

Cu 1.14 0.82 0.67 0.29 0.06 -0.10 0.08 0.97 0.86 0.57 0.32 0.04 0.07

Hg 0.94 0.87 0.58 0.13 0.02 0.39 -0.12 1.07 0.75 0.60 0.01 0.01 0.38

Ni 1.07 0.86 0.96 -0.05 0.04 -0.06 0.11 1.01 0.98 0.92 0.02 0.03 0.03

Pb 0.96 0.89 0.55 -0.01 0.34 0.14 -0.02 1.12 0.51 0.57 0.1 0.27 0.06

Zn 1.11 0.68 0.63 0.38 0.01 0.08 -0.10 0.98 0.73 0.63 0.28 0.07 0.02

Mean - - 0.67 0.11 0.16 0.06 -0.01 - - 0.68 0.12 0.12 0.09

https://doi.org/10.1371/journal.pone.0238513.t003
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natural factors. Other variables, with C0/(C0+C) values between 0.25 and 0.75, showed moder-

ate spatial auto correlation and may represent human activity factors. The spatial variability of

potentially toxic elements based on C0/(C0+C) was similar to the statistical results presented in

Section 3,1, which exhibit an order of Cd> Cu>Hg> Pb> Zn>Ni>As>Cr. The A of the var-

iables ranged from 4630 m to 9796 m, which was larger than the actual sampling interval and

better represented the spatial variant structure of the potentially toxic elements.

Spatial distribution characteristics of factors and potentially toxic elements

The kriged maps of APCS, PMF-factors and potentially toxic elements are shown in Figs 5 and

6, which were used to delineate the hotspots and outlines of hazardous areas. In Fig 5, the spatial

distributions of APCS were similar to the overall trend of the corresponding PMF-factor, but

the second factor had local differences, in which the spatial distribution of APCS2 had one more

hotspot than PMF-F2. The spatial distributions of potentially toxic elements and those factors

were clearly correlated, and this association was consistent with the results of the receptor model

analysis (in section 3.2). Furthermore, those kriged maps were superposed on the auxiliary envi-

ronmental data (land use types and parent materials) to locate the potential sources. As, Cr and

Ni exhibited similar spatial distribution patterns to APCS1 and PMF-F1 and were characterized

by higher values in the southeastern region, which was similar to the parent materials (Fig 3).

The outlines of higher values of APCS2, PMF-F2, Cu and Zn were in accordance with the types

of farmland (Fig 2). The common distribution characteristics of APCS3 and Pb were similar to

human activity areas, including mining districts, industrial areas and traffic areas. PMF-F3 and

Cd had higher values in the southern part close to the urban and industrial areas (Fig 2). The

higher values of APCS4, PMF-F4 and Hg covered most of the study areas.

Discussion

Identification of the potentially toxic element source in soils

Source interpretation of the first factor. Cr, Ni and As had high and positive loading val-

ues in F1 based on the APCS/MLR and PMF modeling results. The mean values of Cr, Ni, and

Table 4. Optimal variation function model of the source factors and soil potentially toxic elements.

Model Nugget(C0) Sill (C0+C) Proportion C0/(C0+C) Range (A)/m RSS R2

Lg APCS1 Exponential 0.008 0.039 0.210 6790 0.024 0.620

Lg APCS2 Spherical 0.051 0.105 0.486 7872 0.037 0.763

Lg APCS3 Exponential 0.068 0.108 0.627 6930 0.071 0.728

Lg APCS4 Exponential 0.048 0.106 0.453 5115 0.020 0.587

Lg PMF-F1 Exponential 0.012 0.005 0.240 4643 0.020 0.568

Lg PMF-F2 Spherical 0.042 0.074 0.569 9492 0.011 0.812

Lg PMF-F3 Exponential 0.055 0.076 0.720 7800 0.042 0.617

Lg PMF-F4 Exponential 0.041 0.082 0.500 5974 0.002 0.783

Lg As Exponential 0.022 0.106 0.207 8768 0.013 0.728

Lg Cd Spherical 0.073 0.105 0.700 7852 0.002 0.780

Lg Cu Spherical 0.045 0.069 0.652 9796 0.011 0.642

Lg Cr Exponential 0.033 0.282 0.117 5947 0.012 0.590

Lg Hg Exponential 0.022 0.037 0.595 7567 0.056 0.683

Lg Ni Spherical 0.011 0.085 0.129 4967 0.002 0.783

Lg Pb Exponential 0.065 0.131 0.495 7200 0.042 0.647

Lg Zn Spherical 0.032 0.098 0.327 6860 0.003 0.576

https://doi.org/10.1371/journal.pone.0238513.t004
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Fig 5. Kriged interpolation of the APCS and PMF factors. (The interpolated map plotted with the optimal ordinary kriged interpolation model).

https://doi.org/10.1371/journal.pone.0238513.g005
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Fig 6. Kriged interpolation of the concentration of potentially toxic elements. (The interpolated map plotted with the optimal ordinary kriged interpolation

model).

https://doi.org/10.1371/journal.pone.0238513.g006
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As were close to the respective background values, and the Igeo value was negative, indicating

that these three elements were less affected by human activities. F1 had a strong spatial auto-

correlation that represented a natural factor [37, 43]. Martin et al. [44] studied potentially toxic

element concentrations in topsoils in the Ebro basin and suggested that the grouping of Cr

and Ni with other potentially toxic elements by multivariate analysis was generally regarded as

the influence of natural source factors, which is consistent with the results of Nanos and Rodrı́-

guez Martin [45] for the Duero River basin, Lv et al. [27] for Ju County, Jiang et al. [46] for

Changshu and Lv and Liu [6] for Boshan.

The results of the geostatistical analysis also show that the spatial patterns of F1 were consis-

tent with the distribution of parent materials (Fig 5), with higher values in southeastern soils

originating from granite. A soil with granite parent material, with a pH that is mainly neutral

to acidic (Table 1), typically exhibits a poor toxic buffering capacity against potentially toxic

element pollutants and is more likely to be enriched [47, 48]. Therefore, we confirmed that As

Cr and Ni were classed into a lithological sources by the parent materials, and F1 represented a

natural factor.

Source interpretation of the second factor. Cu and Zn were highly related to F2 in the

APCS/MLR and PMF results, and 68% and 38% of the respective variation was explained via

PMF modeling (Table 3). The hotspots of APCS2, PMF-F2, Cu and Zn coincided with the spa-

tial distribution of agricultural land types including grain crop land, orchard land and vegeta-

ble land. Agricultural chemical fertilizers are an important source of Cu and Zn enrichment,

and phosphorus fertilizer is present in the highest amount in all inorganic fertilizers [49–52].

Cu and Zn are often used as additives in livestock diets to control scours [53].The amount of

fertilizer applied to vegetable land is 5–10 times higher than that applied to other cultivated

land [54]. Northern hotspots of F1 were shown to coincide with the vegetable boundary. A

total of 1.9 thousand tons of chemical pesticides are used on the study area each year [55]. Cu-

based fungicides (CuSO4�Cu(OH)2�Ca(OH)2�H2O) are widely used to control pests and dis-

eases, and the eastern hotspots of Cu were consistent with orchard-growing areas.

The results from previous studies conducted by Jiang et al. [47] in Jiangsu, Guan et al. [56]

in the Hexi Corridor and Hu et al. [3] in a peri-urban area of Nanjing also showed that enrich-

ment of Cu and Zn in agricultural soil were mainly associated with livestock manure, chemical

fertilizers and pesticides in agricultural soils. Therefore, we confirmed that F2 represented

agricultural practices.

Source interpretation of the third factor. F3 was strongly related to Pb and Cd and

exhibited had high spatial variability (Tables 1 and 4). The hotspots of the F3 kriged maps were

distributed in areas, including mining districts, industrial areas and urban areas. There are 65

heavy industrial enterprises and 115 light industrial enterprises in the region, including electric

power plants, paper mills, and electroplating [55]. Cd is the main raw material in the electro-

plating industry because of its anticorrosive effect on acid and is also widely used in the pro-

duction of dyes and power generation. The long-term production and operation of these

industries will lead to the enrichment of Cd in the surrounding soil. There are seven mining

areas in the study area with an annual coal output of 6.7 million tons [55]. The wastewater pro-

duced in the long-term mining process carries a certain amount of Pb into cropland [57].

Moreover, the combustion of petroleum and the use of catalysts in industrial production and

transportation are the major sources of Pb [58, 59]. In summer, F3 represented industrial,

mining and traffic emissions.

Source interpretation of the fourth factor. F4 was dominated exclusively by Hg in the

APCS/MLR and PMF modeling results. Most of the values of the kriged map were higher than

the background values, suggesting that the enrichment of Hg was related to atmospheric depo-

sition [1, 60]. Moreover, the distribution of hotspot areas was similar to that of industrial land.
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Many researchers have noted that coal burning is the most important source of Hg [61, 62].

Due to its high volatility, Hg rapidly migrates in gaseous and granular forms through dry and

wet deposition [62–65]. In the study area, most of the power for industrial activities comes

from coal combustion and oil burning, and energy-intensive industries such as the metallurgi-

cal and chemical industry account for 70% of industrial production [55]. Long-term industrial

production led to the migration of Hg through exhaust emissions, thus resulting in the enrich-

ment of Hg in soil. Therefore, we confirmed that F4 represented atmospheric deposition of

coal combustion.

Source contributions of soil potentially toxic elements

The source contributions of potentially toxic elements are presented in Table 3. In total, the

solutions of the APCS/MLR results explained approximately 101% of all the sources, and PMF

resolved 100% of the sources contributing to potentially toxic elements. In the APCS/MLR

results, 67% of the potentially toxic elements originated from soil parent material, 11% of the

potentially toxic elements originated agricultural practices, 16% of the potentially toxic ele-

ments originated from industrial, mining and traffic emissions, and only 6% of the total poten-

tially toxic element contents were attributed to atmospheric deposition. In the PMF results,

the largest source was from soil parent material (68%), followed by industrial, mining and traf-

fic emissions (12%), agricultural practices (12%) and atmospheric deposition (9%). By com-

paring the results of the two models, the difference in the source contributions ranged from

1% to 4%, indicating that the source apportionment results were robust.

Regarding the potentially toxic elements, PMF provided more rational source contributions

than the APCS/MLR results because APCS/MLR had negative and unidentified contributions.

Based on the PMF modeling, As, Cr and Ni were mainly affected by soil parent material with

contributions greater than 81%. Cu and Zn were dominated by soil parent material with con-

tributions of 57.0% and 63%, respectively, but agricultural practices also accounted for 32% of

Cu and 28% of Zn. Cd was mainly explained by soil industrial, mining and traffic emissions,

with a value of 46% and soil parent material also accounted for 36% of Cd. Pb was controlled

by soil parent material and industrial, mining and traffic emissions, with values of 57% and

27%. The Zn concentration (63%) was associated with parent materials, and it was also influ-

enced by agricultural practices (28%). Hg was explained by soil parent material and atmo-

spheric deposition from coal combustion, with values of 60% and 38%.

At the Chinese scale, Hg dramatically declined due to strict control of atmospheric Hg

emission in China since 2010 [66]. Moreover, inputs of all the heavy metals from fertilizers

decreased, because of the stricter fertilizer management and modernized fertilizer production

technologies [66, 67]. Heavy metals are more likely to be enriched from fertilizers and sewage

irrigation sources in North China, where water is scarce, than in the South China [67]. In prov-

inces with high GDP (Guangdong, Jiangsu, Henan, and Shandong provinces), industrial and

traffic activities sources contributed more heavy metals in soil, mainly Pb and Cd [68, 69]. In

general, the source of soil potentially toxic element in the study area is similar to that in China

as a whole. The law of the People’s Republic of China on the prevention and control of soil pol-

lution was came into effect on January 1, 2019, it constitute a new comprehensive control sys-

tem of soil pollution. In the future, local governments can develop more effective soil pollution

control strategies based on studies of the quantitative sources of potentially toxic element.

Conclusions

This study provides a reliable and robust approach for potentially toxic elements source appor-

tionment in this particular industrial and mining city with a clear potential. A robust approach
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composed of APCS/MLR and PMF with geostatistics was proposed to identify the apportion

sources of soil potentially toxic elements in the typical industrial and mining city of Longkou

in Eastern China.

According to the local background levels of potentially toxic element contents, Cr, Cu, Ni,

Pb, Zn, Cd, As and Hg had different levels of accumulation. Based on different theoretical

foundations, APCS/MLR and PMF provided similar four factors. The representation of the

results derived from the multivariate receptor models by geostatistics made the source appor-

tionment analysis more robust and accurate because the representation information was corre-

lated with the auxiliary environment data (land use types and parent materials). Spatial

variation analysis revealed that the first factor was dominated by natural sources and the other

factors were affected by anthropogenic sources. The spatial distribution of the factors and

potentially toxic elements located the potential sources, including the natural sources caused

by parent materials, agricultural practices, pollutant emissions (industrial, mining and traffic)

and atmosphere deposition of coal combustion. Although PMF and APCS/MLR had similar

source contributions for potentially toxic elements, PMF with positive values was more precise

for source apportionment than APCS/MLR. Based on PMF, a total of eight potentially toxic

elements explained 68%, 12%, 12% and 9% of the observed potentially toxic element concen-

trations. In addition, this research idea can be applied to other research areas.
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