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The analysis model has been previously exploited as an alternative to the classical sparse synthesis model for designing image
reconstructionmethods. Applying a suitable analysis operator on the image of interest yields a cosparse outcomewhich enables us to
reconstruct the image from undersampled data. In this work, we introduce additional prior in the analysis context and theoretically
study the uniqueness issues in terms of analysis operators in general position and the specific 2D finite difference operator. We
establish bounds on the minimummeasurement numbers which are lower than those in cases without using analysis model prior.
Based on the idea of iterative cosupport detection (ICD), we develop a novel image reconstructionmodel and an effective algorithm,
achieving significantly better reconstruction performance. Simulation results on synthetic and practical magnetic resonance (MR)
images are also shown to illustrate our theoretical claims.

1. Introduction

Sparse sampling theory [1–3] plays a key role in a broad spec-
trum of techniques involved in signal and image processing
over the past decade. It states that an unknown signal can be
recovered from a small number of random linear measure-
ments given that the signal is sparse. Consider a sparse signal
or image, vectorized as x ∈ R𝑛, which has very few nonzero
elements in the sense that ‖x‖

0
≪ 𝑛, where ‖x‖

0
is the count

of the nonzeros in x. We expect to reconstruct x by solving
the following 𝑙

0
-norm minimization problem,

x̂ = argmin
x

‖x‖
0

subject to y = Mx,
(1)

where M ∈ R𝑚×𝑛 (𝑚 < 𝑛) denotes the measurement matrix
that produces the measurement vector y ∈ R𝑚. However,
this is an NP-hard problem which prompts us to look for
alternatives to solve it in an approximate fashion. A popular
and effective way is to rewrite (1) as the basis pursuit problem:

x̂ = argmin
x

‖x‖
1

subject to y = Mx.
(2)

As a matter of fact, this is not the general case since signals or
images do not exhibit sparsity directly but have sparse repre-
sentations in specific transform domains. Broadly speaking,
there are two data models for describing signals.The first one
is the sparse synthesis model [4, 5], wherein x is assumed
to admit sparse representation in a fixed dictionary D =

{d
𝑖
}
𝑑

𝑖=1
∈ R𝑛×𝑑. Put differently, x = Dc can be viewed as a lin-

ear combination of very few dominant atoms from D. Thus,
the reconstruction process (2) is reformulated as

ĉ = argmin
c

‖c‖
1

subject to y = MDc;

x̂ = Dĉ.

(3)

As we know, a tremendous surge of effort has been devoted
to studying the sparse synthesis model, and much progress
has been made ranging from theoretical foundations [6, 7]
to appealing applications, including denoising [8], inpainting
[9], and more. Additionally, a long series of algorithms [10–
13] together with provable guarantees [14, 15] have been put
forward.
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While the synthesis model has gained widespread atten-
tion, a similar alternative was proposed modeling signals
from an analysis perspective [16–20]. Mathematically, given
an analysis operator Ω = {𝜔

𝑗
}
𝑝

𝑗=1
∈ R𝑝×𝑛, a signal belonging

to the analysismodel is supposed to admit a sufficiently sparse
analysis representation z = Ωx ∈ R𝑝. In particular, we are
interested in cases where 𝑝 ≥ 𝑛, so that various information
within x can be captured [17]. The commonly used analysis
operators include the finite difference [21], overcomplete
wavelet transforms [22], and the curvelet transform [23].
Just in contrast to the “sparsity” in the synthesis setting, the
analysis model concentrates on the zero-valued coefficients.
A fundamental notion measuring the quantity of the zeros is
defined as cosparsity

𝑙 = 𝑝 − ‖Ωx‖
0
. (4)

The 𝑙-cosparse analyzed vector z is assumed to have 𝑙

unknown locations of the zeros, referred to as the cosupport

Λ = {𝑗 | ⟨𝜔
𝑗
, x⟩ = 0, 𝑗 ∈ {1, . . . , 𝑝}} . (5)

Recent studies have theoretically shown that the analysis
model has its own advantage over the synthesis one [17].
Moreover, adopting the analysis model leads to a collec-
tion of successful applications, such as denoising [23, 24],
inpainting [25], and medical imaging [26, 27]. Models men-
tioned above simply exploit the (co)sparsity prior that is
implicit in signals or images. However, (co)sparsity alone
is insufficient for making reasonable inferences from these
models, and the minimum measurement requirement for
reconstruction is improved limitedly. Obviously, the trade-
off between (co)sparsity and measurements can be further
improved by imposing a priori knowledge. A common way
to incorporate prior knowledge is through the use of the
signal support, which has been extensively studied in the
synthesis context [28–30]. However, relatively little research
has been devoted to imposing prior knowledge in the analysis
sense. In this work, we wish to investigate the consequences
of exploiting analysis model prior. We concentrate on image
reconstruction given the a priori cosupport knowledge.
First, we formulate the reconstruction problem in terms of
the analysis operator Ω in general position, which means
that every set of 𝑛 rows from Ω are linearly independent
[17]. In such a case, we derive the minimum number of
measurements for uniquely determining a cosparse solution
to the inverse problem y = Mx. The resulting number is
smaller than that of the standard analysis model without
using prior cosupport. Second, we dive into details of the
model associatedwith the 2Dfinite difference operatorwhose
rows show significant linear dependencies [17]. We also
provide an improved minimum measurement requirement
for guaranteeing the uniqueness given the prior cosupport.
Having a theoretical foundation for the analysis uniqueness
properties, we develop a novel image reconstruction method
based on the idea of iterative cosupport detection (ICD).
This two-stage scheme proceeds by alternatingly calling its
two key components: image reconstruction and cosupport
detection. At each iteration, the image is reconstructed

using the cosupport knowledge extracted from the previous
iteration. After the acquiring of the image estimate, one can
identify even better cosupport to be used in the next itera-
tion. Moreover, when performing the cosupport detection,
a multidirectional finite difference is considered. Therefore,
the detection and the reconstruction parts work together
enabling us to gradually obtain reliable cosupport and a
reasonable image estimate. Simulation results on synthetic
and practical magnetic resonance (MR) images demonstrate
the effectiveness and show considerable improvement of the
proposed method compared with other regularization based
methods.This consequently indicates that, through the use of
the analysis model prior, we can achieve a given reconstruc-
tion quality with fewer measurements or alternatively obtain
a better reconstruction under the samemeasurement require-
ment.

The remainder of this paper is organized as follows. In
Section 2, a detailed description of our proposed method is
given from two aspects: analysis operators in general position
and the 2D finite difference operator. Uniqueness issues are
also explored. Section 3 describes the methods used for
comparison and rules for image quality assessment. Section 4
presents simulation results and discussion which validate
our theoretical claims. Finally in Section 5, conclusions are
summarized.

2. Method

Analysismodel prior has been successfully used formany sig-
nal processing tasks but has been done with little theoretical
justification. In this section, we focus on the analysis-based
reconstruction given that the cosupport is known a priori.
The number of measurements required for guaranteeing the
unique reconstruction is proved to be essentially reduced.We
first consider the analysis operators in general position.

2.1. Analysis Operators in General Position

2.1.1. The Cosupport Is Exactly Known. Consider 𝑙-cosparse
image x ∈ R𝑛 whose cosupport isΛ and a redundant analysis
operator Ω ∈ R𝑝×𝑛 (𝑝 ≥ 𝑛) in general position; namely,
every set of 𝑛 rows from {𝜔

𝑗
}
𝑝

𝑗=1
are linearly independent [17].

The cosparse representation analysis model where x belongs
is related to the recently proposed union-of-subspaces model
[31–33]:

x ∈ ⋃

|Λ|=𝑙

W
Λ
, (6)

which is a union of all the (
𝑝

𝑙
) possible subspaces of

dimension 𝑛−𝑙. Here,W
Λ
= Null(Ω

Λ
) denotes the null-space

of the analysis operatorΩ indexed by Λ. |Λ| is the cardinality
of Λ. The rows associated with Λ, {𝜔

𝑗
}
𝑗∈Λ

, define the analysis
subspace. Remark that removing rows from Ω for which
⟨𝜔
𝑗
, x⟩ ̸= 0 leaves the subspace unchanged.
Consider the aforementioned noiseless linear inverse

problem:

y = Mx, (7)
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where M ∈ R𝑚×𝑛 and Ω are assumed to be mutually
independent. Provided that the cosupportΛ is exactly known,
the cosparse x is supposed to satisfy the linear system:

[

y
0
] = [

M
Ω
Λ

] x. (8)

The fact that (8) identifies a unique x is equivalent to the
requirement:

W
Λ
∩Null (M) = {0} . (9)

This requirement indicates that the minimum number of
measurements is:

𝑚 ≥ max
Λ

dim (W
Λ
) = 𝑛 − 𝑙. (10)

2.1.2. The Cosupport Is Unknown. Actually, the case we do
care about is that we only know the cosparsity level 𝑙, whereas
the cosupport Λ is undetermined. The uniqueness issue in
this sense has been explored in [17].

Lemma 1. Let ⋃
Λ
W
Λ
, |Λ| = 𝑙, be a union of 𝑙-cosparse

analysis subspaces induced by the analysis operator Ω. Then
the linear system y = Mx admits a unique 𝑙-cosparse solution
if and only if for any |Λ

1
|, |Λ
2
| = 𝑙

W
Λ
1
,Λ
2

∩Null (M) = {0} , (11)

where

W
Λ
1
,Λ
2

= W
Λ
1

⊕W
Λ
2

= {u | u = x
1
+ x
2
, x
1
∈ W
Λ
1

, x
2
∈ W
Λ
2

} .

(12)

Clearly, for any u ∈ W
Λ
1
,Λ
2

, we have cosupp(u) ⊇ Λ
1
∩

Λ
2
and |Λ

1
∩ Λ
2
| ≥ 2𝑙 − 𝑝. Therefore, we can conclude that

the minimum number in terms of the cosparsity level 𝑙 is

𝑚 ≥ max
Λ
1
,Λ
2

dim (W
Λ
1
,Λ
2

) = 𝑛 + 𝑝 − 2𝑙. (13)

2.1.3. The Cosupport Is Inaccurately Known. More generally,
we are considerably interested in the case where the cosup-
port is inaccurately known. In other words, a superset of the
true cosupport is available, which comes up in many applica-
tions. Even in the absence of available prior knowledge, one
can still extract useful information from the current solution
and use it subsequently.

We still assume x ∈ R𝑛 is 𝑙-cosparse with cosupport Λ.
Λ
0
is the prior cosupport containing small errors denoted by

Λ
. Then, the true cosupport of x can be expressed as

Λ = Λ
0
\ Λ


. (14)

We state the condition which enables us to guarantee the
uniqueness of the linear inverse problem (7), namely, the
minimummeasurement requirement.

Proposition 2. Assume that x ∈ ⋃
Λ
W
Λ
, |Λ| = 𝑙, is the 𝑙-

cosparse image to be reconstructed. Λ
0
is the prior cosupport

with small error Λ ⊆ Λ
0
. Given |Λ

0
| = 𝑙
0
< 𝑝 and |Λ



| =

𝑙


≪ 𝑙
0
, the minimum number of measurements for identifying

a unique solution to the linear system y = Mx is

𝑚 ≥ 𝑛 + 𝑙
0
− 2𝑙. (15)

Proof. As we have seen, the prior cosupportΛ
0
is not exactly

consistent with the true cosupport Λ of x; that is, there exists
small errorΛ inΛ. It means that we are supposed to consider
the invertibility ofM over the direct sumW

Λ
1
,Λ
2

of any two
subspacesW

Λ
1

,W
Λ
2

⊆ ⋃
Λ
W
Λ
. Assume any two 𝑙-cosparse

images x
1
∈ W
Λ
1

, x
2
∈ W
Λ
2

with corresponding cosupports
Λ
1
= Λ
0
\Λ


1
andΛ

2
= Λ
0
\Λ


2
, respectively.Note that |Λ

1
| =

|Λ
2
| = 𝑙 and let |Λ

1
| = |Λ



2
| = 𝑙
. Then, we have 𝑙 = 𝑙

0
− 𝑙
.

Consider anyu fromW
Λ
1
,Λ
2

as defined in (12).The cosupport
of u is obtained as

cosupp (u) ⊇ Λ
1
∩ Λ
2
= (Λ
0
\ Λ


1
) ∩ (Λ

0
\ Λ


2
)

= (Λ
0
∩ (Λ


1
)

𝑐

) ∩ (Λ
0
∩ (Λ


2
)

𝑐

)

= Λ
0
∩ (Λ


1
∪ Λ


2
)

𝑐

= Λ
0
\ (Λ


1
∪ Λ


2
) ,

(16)

which yields




cosupp (u)


≥ 𝑙
0
− 2𝑙


. (17)

Thus, we have

dim (W
Λ
1
,Λ
2

) ≤ 𝑛 − (𝑙
0
− 2𝑙


) = 𝑛 + 𝑙
0
− 2𝑙. (18)

Consequently, we conclude that the minimum number of
measurements

𝑚 ≥ max
Λ
1
,Λ
2

dim (W
Λ
1
,Λ
2

) = 𝑛 + 𝑙
0
− 2𝑙, (19)

which completes the proof.

Proposition 2 states that the measurement number
required for uniquely identifying the solution to (7) tends to
be smaller in the sense that the cosupport is known a priori.
As 𝑙
0
approaches 𝑝,𝑚 is equivalent to that of the case without

prior knowledge; namely, 𝑛+𝑝−2𝑙.When the prior cosupport
selected is consistent with the ground-truth, the minimum
measurement number is achieved as 𝑛 − 𝑙.

2.2. Specific 2D Finite Difference Analysis Operator. In this
subsection, we would like to investigate the family of finite
difference operators on graphs, ΩDIF (significantly related
to total variation norm minimization [21]), which has been
proven successful for sparse signal and image recovery [34–
36].We explore uniqueness issues in the sense that cosupport
knowledge is known a priori. Due to the fact that this class of
analysis operators exhibit strong linear dependencies [17], the
theoretical results derived above cannot be applied directly.
Our analysis is based upon thework [17]. For ease of notation,
we will drop the subscript DIF and simply useΩ to represent
ΩDIF hereafter when there is no ambiguity. Assume that Ω is
defined on a 2D nonoriented graph with vertices𝑉 and edges
𝐸. An edge 𝑒 = (V

1
, V
2
) connecting two vertices V

1
and V
2
can
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be regarded as a finite difference. Λ is a subset of 𝐸 and the
set of vertices connected by at least one edge in Λ is denoted
by 𝑉(Λ) which is composed of 𝐽(Λ) connected components.
A connected component is a collection of vertices connected
to one another by a walk through vertices withinΛ. Thus, the
dimension ofW

Λ
= Null(Ω

Λ
) is given by

dim (W
Λ
) = |𝑉| − |𝑉 (Λ)| + 𝐽 (Λ) , (20)

where |𝑉| − |𝑉(Λ)| denotes the number of isolated vertices
which have distinct values from all the neighbors. Suppose
that the knownpart of the cosupport is denoted byΛ

0
and the

number of the connected components is 𝐽(Λ
0
) fl 𝐽. Then, in

terms of the cosparsity level 𝑙, we present a concrete bound
for dim(W

Λ
), which reveals the minimum measurement

number.

Proposition 3. LetΩ be the 2D finite difference analysis oper-
ator that computes horizontal and vertical discrete derivatives
of an 𝑛 = 𝑁 × 𝑁 image x. The measurement matrix M is
assumed to be mutually independent from Ω. For a fixed 𝑙

and the known cosupportΛ
0
which corresponds to 𝐽 connected

components, the equation y = Mx admits at most one solution
with cosparsity 𝑙 only if

𝑚 ≥ 2𝑛 − 𝑙 − √2𝐽𝑙 + 𝐽 ≥ 2max
Λ

dim (W
Λ
) . (21)

Proposition 3 reveals that the measurements required for
uniquely determining the cosparse solution to the inverse
problem can be reduced given that somepart of the cosupport
is known. Additionally, the minimum measurement number
decreases monotonically as the number of the connected
components 𝐽 increases. When 𝐽 = 1, the minimum number
of measurements 𝑚 ≥ 2𝑛 − 𝑙 − √2𝑙 + 1, which is equivalent
to the case that no cosupport information is available. For
completeness, the proof can be found in Appendix.

2.3. Proposed Reconstruction Model and Algorithm

2.3.1. Reconstruction Model. Armed with the above-des-
cribed theoretical analyses, we are now in position to solve
the reconstruction problem regularized with cosupport prior.
More specifically, we expect to constrain the cosparsity of x
within the prior cosupport Λ

0
:

x̂ = argmin
x






(Ωx)
Λ
0





0

subject to y = Mx.
(22)

However, as previously mentioned, the 𝑙
0
-norm involved

in the combinatorial minimization program is an NP-hard
penalty and thus is not feasible to be solved for practical
applications. An effective and widely used alternative is the
𝑙
1
-relaxation:

x̂ = argmin
x






(Ωx)
Λ
0





1

subject to y = Mx,
(23)

in which the 𝑙
1
-norm enables promoting high cosparsity in

the solution. Its desirable convexity facilitates various compu-
tationally tractable algorithms, and much recent progress in
the theory of analysis 𝑙

1
-minimization has beenmade [37, 38].

In this work, we focus on the analysis 𝑙
1
-recovery which is

given in an unconstrained fashion. The objective function is
formulated as a linear combination of the data consistency
error and a modified cosparsity-inducing penalty:

x̂ = argmin
x





y −Mx



2

2
+ 𝜆T

Λ
(x) , (24)

where 𝜆 > 0 controls the influence between the fidelity term
and the regularization term:

T
Λ
(x) =

4

∑

𝑖=1






(Ω
𝑖
x)
Λ
𝑖





1

. (25)

Remark that the analysis operator we employed in our
method is the 2D finite difference operator involving four
directional components; that is, {Ω

𝑖
}
4

𝑖=1
, respectively, compute

discrete derivatives in vertical, horizontal, and two diago-
nal directions. {Λ

𝑖
}
4

𝑖=1
denote the associated four-direction

cosupport sets that are detected iteratively.

2.3.2. Algorithm. Having presented the reconstruction
model, we now turn to the question how to effectively solve
it. We propose a two-stage algorithm based on the idea
of iterative cosupport detection (ICD). The proposed ICD
allows extracting the reliable information of the underlying
solution and enables achieving a reasonable reconstruction.
This two-stage scheme proceeds by alternatingly calling
its two components: image reconstruction and cosupport
detection. In the reconstruction step, we solve a truncated
𝑙
1
-minimization problem via conjugate gradient method

using the cosupport knowledge obtained from the previous
iteration. ICD will terminate if the approximate solution is
accurate enough. Otherwise, cosupport detection will be
performed in light of this inaccurate reconstruction, thereby
yielding a better {Λ

𝑖
}
4

𝑖=1
to be used in the next iteration.

Consequently, the detection and the reconstruction parts of
the proposed ICD work together enabling us to gradually
obtain reliable cosupport and a reasonable image estimate.

It is important to note that the proposed ICD requires
reliable cosupport detection.However inmost cases, it is hard
to completely avoid false detections at each iteration. To this
end, we address ways to identify the index sets {Λ

𝑖
}
4

𝑖=1
. Actu-

ally, the analyzed vectors in each direction {Ω
𝑖
x}4
𝑖=1

are not
strictly cosparse but exhibit a strong decay. A conceptually
simple detection strategy is to obtain the cosupport in a trun-
cated manner. Without loss of generality, we assume {𝐼

𝑖
}
4

𝑖=1

as the four-direction index sets of {Ω
𝑖
x}4
𝑖=1

after sorting in an
ascending order.Then, the cosupport set in the 𝑖th direction is
created as

Λ
𝑖
= {𝐼
𝑖
(𝑘)}
𝐿

𝑘=1
, (26)

where the truncated length𝐿 is fixed and specified in advance.
Empirically, a relatively stable reconstruction can be achieved
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provided that 𝐿 is suitably scaled in a certain range.This strat-
egy is easy to implement but has one drawback; that is, the
assumption that the true cosupport is included in the inaccu-
rate prior cosupport cannot be well satisfied when 𝐿 is fixed.
To alleviate this drawback, we propose another detection
strategy which is more adaptive and effective. The cosupport
sets {Λ

𝑖
}
4

𝑖=1
are iteratively learned based on thresholding [28]:

Λ
𝑖
= {𝑗 |







(Ω
𝑖
x)
𝑗







< 𝛽
𝑖
} , (27)

where (Ω
𝑖
x)
𝑗
represents the 𝑗th element ofΩ

𝑖
x.The threshold

𝛽
𝑖
is set as

𝛽
𝑖
=





Ω
𝑖
x
∞

𝜂
𝑖

, (𝜂
𝑖
> 0) . (28)

Here, 𝜂
𝑖
is the threshold parameter selected as an exponential

function of the iteration number 𝑡:

𝜂
𝑡

𝑖
= 𝑤
𝑡−1

, (29)

where 𝑤 > 1 is a positive integer. For 𝑡 = 1, we have
𝛽
1

𝑖
= ‖Ω
𝑖
x‖
∞
, indicating that no prior cosupport knowledge

is exploited in the first iteration. In the sequel, the threshold
decreases with the increase of the iteration so that the cosup-
port size reduces gradually. However, the cosupport in each
direction is not strictly decreasing over the iteration, which
allows the current detection to include indices within the true
cosupport that are excluded from the detected cosupport in
previous iterations. This leads to an attractive self-corrected
capacity of the cosupport detection.The proposed algorithm,
referred to as ICD, is outlined as follows.

Algorithm 4 (ICD). Consider the following:

(1) Input. Consider undersampled measurements y,
cosupport detection parameter 𝑤 (or 𝐿), regulariza-
tion parameter 𝜆, and maximum iteration number
𝑡max.

(2) Iteration.While the stopping criterion is not reached,
do the following:

(i) Image Reconstruction. Solve the minimization
problem (24) for the image estimate x̂𝑡 using the
cosupport information of the previous iteration
{Λ
𝑡−1

𝑖
}
4

𝑖=1
.

(ii) Cosupport Detection. Update the cosupport
information {Λ

𝑖
}
4

𝑖=1
using the detection crite-

rion equation (27) (or (26)) based on x̂𝑡.
(iii) Consider 𝑡 = 𝑡 + 1.

(3) Output.The reconstructed image x̂ = x𝑡.

3. Evaluation

To evaluate the performance of the proposed method, we
performed simulations on both synthetic and practical MR
images. Similar to prior work on CS-MRI [34, 39], we

simulated the data acquisition by randomly sampling the 2D
discrete Fourier transform coefficients of test images accord-
ing to the patterns.Thus, themeasurementmatrix in (24) was
defined as the undersampled Fourier transform Fu.The num-
ber of compressive measurements was measured in terms
of the percentage of total number of Fourier coefficients,
namely, the sampling ratio (SR). All simulations were carried
out under MatLab R2011b running on a PC with a 3.2 GHz
processor and 4GB memory. To assess the effectiveness of
the proposed method, we compared it with other potential
reconstruction techniques, including (i) SparseMRI [39]: the
leading MR image reconstruction approach combining the
wavelets and the standard total variation (TV) regularization,
regardless of the effect of the wavelets, this approach can be
approximately viewed as the proposedmethod without using
cosupport information; thus the contribution of the integra-
tion of analysis a priori knowledge can be demonstrated;
(ii) NLTV [40]: the well-known method based on wavelet
sparsity and nonlocal TV penalty; (iii) ISD-TV [28–30]:
the method constraining the sparsity of wavelet coefficients
over the complement of the known support, which can be
regarded as incorporating prior knowledge to the sparse
synthesis model; in order to make a fair comparison, we
added a TV term; (iv) SDBS-TV [41]: another synthesis-
based method combining support knowledge and block-
sparse property in the wavelet domain.The proposedmethod
was tested using both truncated and threshold-based strate-
gies, respectively, named as ICD-TR and ICD-TH. We also
expected further enhancement by combining our method
with thewavelet penalty, named as ICD-WT,which in general
solves

x̂ = argmin
x





y − Fux






2

2
+ 𝜂
1
T
Λ
(x) + 𝜂

2
‖Ψx‖
1
, (30)

whereΨ denotes the wavelet transform operator and 𝜂
1
, 𝜂
2
>

0. Remark that threshold-based strategy is used for cosupport
detection in ICD-WT.

For quantitative evaluation, the reconstruction quality
was measured by the relative 𝑙

2
-norm error (RLNE) which

is a standard image quality metric indicating the difference
between the reconstruction x

𝑟
and the ground-truth x

𝑔

𝜁RLNE =






x
𝑟
− x
𝑔





2






x
𝑔





2

. (31)

As for practical MR images containing more fine features,
the quality of the reconstruction is quantified by two other
metrics. The first one is the high-frequency error norm
(HFEN) [42], defined as

𝜁HFEN =






LoG (x

𝑟
) − LoG (x

𝑔
)





2






LoG (x

𝑔
)





2

, (32)

where LoG is a rotationally symmetric Laplacian of Gaussian
filter capturing detailed textures. The filter kernel is of size
15 × 15 pixels and with a standard deviation of 1.5 pixels,
the same as that in [42]. The second one is the structural
similarity (SSIM) index [43], comparing local patterns of
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Table 1: RLNE results of test reconstruction methods with random undersampling scheme.

Test image Sampling ratio Method
SparseMRI NLTV ISD-TV SDBS-TV ICD-TR ICD-TH ICD-WT

Shepp Logan
RL = 10 0.2618 0.1451 0.2338 0.1267 0.0517 0.0390 0.0258
RL = 11 0.2014 0.1196 0.1852 0.0892 0.0221 0.0117 0.0109
RL = 12 0.1494 0.0873 0.1009 0.0522 0.0098 0.0042 0.0037

Brain-1

SR = 0.1 0.1773 0.1529 0.1540 0.1480 0.1362 0.1213 0.1131
SR = 0.2 0.1075 0.0801 0.0803 0.0681 0.0653 0.0601 0.0549
SR = 0.3 0.0615 0.0385 0.0426 0.0371 0.0309 0.0267 0.0257
SR = 0.4 0.0346 0.0183 0.0269 0.0178 0.0151 0.0142 0.0139
SR = 0.5 0.0224 0.0054 0.0184 0.0085 0.0052 0.0047 0.0045

Brain-2

SR = 0.1 0.2036 0.2057 0.1746 0.1681 0.1554 0.1477 0.1436
SR = 0.2 0.1396 0.1154 0.1016 0.0990 0.0932 0.0875 0.0834
SR = 0.3 0.0870 0.0710 0.0677 0.0583 0.0550 0.0514 0.0491
SR = 0.4 0.0587 0.0368 0.0447 0.0411 0.0352 0.0313 0.0302
SR = 0.5 0.0400 0.0302 0.0321 0.0249 0.0223 0.0206 0.0198

pixel intensities between x
𝑟
and x
𝑔
that have been normalized

for luminance and contrast:

𝜁SSIM = ∑

𝑖

(2𝜇
𝑟,𝑖
𝜇
𝑔,𝑖

+ 𝐶
1
) (2𝜎
𝑟𝑔,𝑖

+ 𝐶
2
)

(𝜇
2

𝑟,𝑖
+ 𝜇
2

𝑔,𝑖
+ 𝐶
1
) (𝜎
2

𝑟,𝑖
+ 𝜎
2

𝑔,𝑖
+ 𝐶
2
)

. (33)

Here, 𝜇
𝑟,𝑖
and 𝜇
𝑔,𝑖

are mean intensities at the 𝑖th local window
of x
𝑟
and x
𝑔
, while𝜎

𝑟,𝑖
and𝜎
𝑔,𝑖
are the corresponding standard

deviations. 𝜎
𝑟𝑔,𝑖

denotes the covariance and the constants 𝐶
1
,

𝐶
2
are included to avoid instability.

4. Results and Discussion

4.1. Shepp Logan Phantom. We first tested our method on an
ideal example: the Shepp Logan numerical phantom of size
256×256.The undersampling scheme we employed is the 2D
radial trajectory. Figure 1 shows the reconstruction results of
different methods using 12 radial lines (RL). Reconstruction
parameters in (24) were set as follows: 𝜆 = 5 × 10

−4 and
𝐿 = 64000 for ICD-TR and𝑤 = 2 for ICD-TH.We also tested
the proposed method using 10 and 11 radial lines.The RLNE
comparison results are presented in Table 1. The superiority
of the proposed method is clearly seen from reconstructed
images and error maps which were obtained by subtracting
the reconstructions from the original image (shown at the
same scale). The results indicate that methods without using
any prior knowledge, such as SparseMRI and NLTV, cause
serious artifacts.Methods imposing prior support knowledge
in the synthesis sense, including ISD-TV and SDBS-TV,
improve the reconstruction quality to a certain extent, but the
edges are not well preserved. The proposed ICD significantly
improves the reconstruction and is capable of suppressing
more artifacts and preserving more details. As for different
cosupport detection strategies, ICD-TH performs better than
ICD-TR since the threshold-based strategy enables correcting
the cosupport adaptively. Table 2 shows the number of true
and false detections of four directional cosupports at each
iteration using ICD-TH. It indicates that the number of false

detections in each direction decreases gradually until the
true cosupport is detected. However, the number of true
detections is not necessarily always increasing.

4.2. Practical MR Images. While encouraged by the results
on the phantom image, we conducted further simulations
on more realistic images to evaluate the practical effective-
ness of the proposed method. The CS measurements were
generated by undersampling the Fourier coefficients of the
fully sampled (ground-truth) MR images whose intensities
were normalized to a maximummagnitude of 1. The original
T1-weighted image (Brain-1) of size 256 × 256 (courtesy of
Professor N. Schuff at the UCSF School of Medicine) and the
sampling mask of 30% sampling ratio are shown in Figure 2.
The undersampling scheme we used is the variable density
random pattern which is widely used in 𝑘

𝑦
-𝑘
𝑧
plane for 3D

imaging enabling removing the aliasing interference without
degrading the image quality [39]. Reconstruction parameters
were set as 𝜆 = 5 × 10

−4, 𝐿 = 58000 for ICD-TR, and 𝑤 = 5

for ICD-TH. Figure 2 gives the reconstructed images and
error maps through different methods, and Table 3 presents
the HFEN and SSIM results. The capabilities of our method
were also demonstrated under different sampling ratios as
presented in Table 1. The reconstruction results show con-
siderable improvement of the proposed method with respect
to the subjective visual quality and quantitative indices. It
has been noted from the error maps and the HFEN and
SSIM results that the image reconstructed by our method has
more fine features and is the closest to the ground-truth. The
superior performance of ICD can be attributed to the use of
the analysis model prior, namely, the cosupport knowledge.
Additionally, we observe that the proposed ICD combining
the wavelet penalty, ICD-WT, performs slightly better than
ICD-TR and ICD-TH. However, by adding an extra penalty
term, the algorithm is slowed down, which weakens the
superiority of ICD-WT.

We also tested the proposed ICD on a T2-weighted image
(Brain-2) whichwas acquired from the Siemens scanner 3.0T,
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(a)

(b)

(c)

(d)

Figure 1: (a) (left to right) shows the original Shepp Logan phantom, the sampling mask, and the reconstructed and error images by
SparseMRI. (b) shows the reconstructions by NLTV (left) and ISD-TV (right). (c) shows the reconstructions by SDBS-TV (left) and ICD-TR
(right). (d) shows the reconstructions by ICD-TH (left) and ICD-WT (right).

SE sequence with imaging parameters: TR = 4000ms, TE =
91ms, slice thickness = 5.0mm, flip angle = 120∘, and the
field of view (FOV) = 176 × 220mm × mm. Reconstruction
parameters were set as 𝜆 = 5 × 10

−4, 𝐿 = 54000, and 𝑤 = 5.
Figure 3 presents the reconstructed images and the error

maps of different methods under 30% sampling ratio, while
Table 3 gives the HFEN and the SSIM values. RLNE results
under different sampling percentages are also given in Table 1.
It is straightforward to see that the proposed method per-
forms the best under all sampling ratios.
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Table 2: The number of true/false detections of four directional cosupports over iterations.

Direction Iteration Cosupport size True detections False detections

HorizontalΩ
1
x

1 65074 64036 1038
2 64601 64022 579
3 64272 64053 219
4 64055 64050 5
5 64054 64054 0

VerticalΩ
2
x

1 65103 64472 631
2 64849 64471 378
3 64679 64472 207
4 64473 64472 1
5 64472 64472 0

DiagonalΩ
3
x

1 64993 63705 1288
2 64374 63691 683
3 64021 63719 302
4 63721 63716 5
5 63720 63720 0

DiagonalΩ
4
x

1 64810 63689 1121
2 64371 63678 693
3 63998 63707 291
4 63706 63703 4
5 63707 63707 0

Table 3: HFEN and SSIM results of practical MR images reconstructed using different methods.

Test image Metric Method
Sparse MRI NLTV ISD-TV SDBS-TV ICD-TR ICD-TH ICD-WT

Brain-1 𝜁HFEN 0.1628 0.0902 0.0971 0.0856 0.0628 0.0514 0.0480
𝜁SSIM 0.9406 0.9740 0.9703 0.9731 0.9783 0.9851 0.9855

Brain-2 𝜁HFEN 0.1860 0.1547 0.1418 0.1198 0.1034 0.0946 0.0895
𝜁SSIM 0.8908 0.9061 0.9138 0.9288 0.9357 0.9411 0.9443

4.3. Parameter Evaluation. In this subsection, we explore
effects of the parameters involved in the proposed method.
We begin by considering the regularization parameter 𝜆,
since the selection of the optimal 𝜆-value is necessary. The
reconstructions of Brain-1 and Brain-2 by ICD-TH are per-
formed for different 𝜆-values and under different sampling
ratios.Motivated by the similar decay rates of four directional
transform coefficients, we employed the same 𝜆 in each direc-
tion. Figure 4 displays the curves of RLNEvalues as a function
of 𝜆. The selected 𝜆-values are marked with Stars. From the
curves, the optimal 𝜆-values under different sampling ratios
are almost identically selected between 10−4∼10−3.

Then, we consider effects of the cosupport detection
parameters on the performance of the proposed method.
As for ICD-TR, we are supposed to evaluate the truncated
length 𝐿. Table 4 presents the RLNE results of both Brain-1
and Brain-2 under 30% sampling ratio with varying 𝐿. It can
be observed that the proper range of 𝐿 is image-dependent.
However, the error undulates slightly when 𝐿 ranges from
52000 to 60000, corresponding to 80∼90% of the image
dimension.The iterative process makes ICD-TR less sensitive
to a few errors present in the cosupport. However with a fixed
𝐿, the true cosupport is not easy to be identified. We then

consider ICD-TH which is more effective and adaptive. The
selection of the threshold parameter 𝑤 is essential in that it
affects the convergence behavior of the reconstruction. The
RLNE between the true and the reconstructed images at each
iterationwas computed and plotted for different values of𝑤 =

2, 5, 8, 11. From the error-iteration curves shown in Figure 5,
we see that a large 𝑤 leads to fast convergence but results in
a relatively poor reconstruction. This is due to the fact that a
large 𝑤 makes the threshold decrease fast so that a number
of indices belonging to the true cosupport are excluded from
the detected cosupport. On the other hand, a small 𝑤 allows
a slowly changing threshold so that the cosupport can be cor-
rected gradually. However, the convergence rate will not be
satisfactory provided that𝑤 is too small. Based onour simula-
tion results, we set𝑤 = 2∼5 to achieve a trade-off between the
convergence rate and the reconstruction quality.

The above-mentioned parameter evaluation is based on
simulations on a large number of test images. The optimal
ranges of the parameters we provided yield good empirical
results. However, we realize that the parameters were chosen
manually to minimize the reconstruction error. In practical
applications, the ground-truth is not available. In these cases,
one can conduct parameter selection using the effective
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(b)

(c)

(d)

Figure 2: (a) (left to right) shows the original image (Brain-1), the sampling mask, and the reconstructed and error images by SparseMRI.
(b) shows the reconstructions by NLTV (left) and ISD-TV (right). (c) shows the reconstructions by SDBS-TV (left) and ICD-TR (right). (d)
shows the reconstructions by ICD-TH (left) and ICD-WT (right).

Table 4: RLNEs with varying truncated length 𝐿 in ICD-TR reconstruction.

Test image Truncated length 𝐿(×10
3

)

50 52 54 56 58 60 62 64
Brain-1 0.0413 0.0384 0.0355 0.0320 0.0309 0.0336 0.0374 0.0443
Brain-2 0.0633 0.0575 0.0550 0.0563 0.0583 0.0592 0.0612 0.0651
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(a)

(b)

(c)

(d)

Figure 3: (a) (left to right) shows the original image (Brain-2), the sampling mask, and the reconstructed and error images by SparseMRI.
(b) shows the reconstructions by NLTV (left) and ISD-TV (right). (c) shows the reconstructions by SDBS-TV (left) and ICD-TR (right). (d)
shows the reconstructions by ICD-TH (left) and ICD-WT (right).

L-curve strategy [44] or more sophisticated approaches [45,
46]. The discussion of these approaches is beyond the scope
of this paper.

We also tested our method (ICD-TH) on Brain-1 and
Brain-2 using radial and Cartesian patterns of 20% and 30%
sampling ratios. From the results in Table 5, we see that

different patternsmay affect the reconstruction quality. How-
ever, once the pattern is fixed, our method yields the best
performance.

4.4. Comparisonwith Two-Direction Case. In this subsection,
we conducted simulations on the Shepp Logan phantomwith
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Figure 4: RLNEs versus regularization parameter 𝜆 for the reconstructions of Brain-1 (a) and Brain-2 (b) under different sampling ratios.
Stars indicate the selected 𝜆-values.
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Figure 5: The plots of RLNEs versus iteration number for different choices of 𝑤 on Brain-1 (a) and Brain-2 (b).

12 radial lines, Brain-1 and Brain-2 under 30% sampling
ratio, using two-direction ICD. Table 6 presents the RLNE
comparison results, which reveals that the two-direction ICD
also performs well. However, compared with four-direction
ICD, we see that the local features of the images can be better
preserved by adding diagonal components.

4.5. Computational Complexity. The proposed method and
the methods used for comparison except NLTV were imple-
mented using a nonlinear conjugate gradient method with
backtracking line-search. In a MatLab implementation, it
took 10 s in average for the proposed ICD-TR and ICD-
TH containing only one regularization term, while it took
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Table 5: RLNEs of the reconstructed images using radial and Cartesian 𝑘-space sampling.

Test image Method Radial Cartesian

Brain-1

SparseMRI 0.1256 0.0833
NLTV 0.0882 0.0568
ISD-TV 0.0963 0.0510
SDBS-TV 0.0771 0.0424

ICD 0.0669 0.0335

Brain-2

SparseMRI 0.1434 0.0998
NLTV 0.1249 0.0843
ISD-TV 0.1138 0.0806
SDBS-TV 0.1082 0.0712

ICD 0.0937 0.0608

Table 6: Comparison results of RLNEs using two- and four-direction ICD.

Test image Directional components Method
ICD-TR ICD-TH ICD-WT

Shepp Logan Two 0.0254 0.0205 0.0169
Four 0.0098 0.0042 0.0037

Brain-1 Two 0.0388 0.0354 0.0321
Four 0.0309 0.0267 0.0257

Brain-2 Two 0.0661 0.0627 0.0607
Four 0.0550 0.0514 0.0491

more than 50 s for other methods with an additional wavelet
penalty term. However, we expect substantial reduction in
the reconstruction time with code optimization and graphics
processing unit implementation.

5. Conclusion

In this work, we have presented a cosparse analysis model
based approach to reconstruct images fromhighly undersam-
pled data using cosupport constraints.We have demonstrated
that the analysis model prior can significantly improve the
sparse sampling based image reconstruction. An effective
iterative algorithm proceeded by alternating between image
reconstruction and cosupport detection.The performance of
the proposed method was evaluated through simulations on
synthetic and practical MR images. The results indicate that
the proposedmethod yields considerably better performance
than methods without using prior knowledge and synthesis
model based methods imposing support constraints in terms
of both reconstruction accuracy and subjective visual quality.

Appendix

Proof of Proposition 3

In this part, we first prove the following two lemmas that are
the key elements for the proof of Proposition 3. Note that our
goal is to quantify the upper bound:

max
Λ

dim (W
Λ
) = max
Λ

{|𝑉| − |𝑉 (Λ)| + 𝐽 (Λ)}

= |𝑉| −min
Λ

{|𝑉 (Λ)| − 𝐽 (Λ)} .

(A.1)

To simplify the problem, we look at an equivalent quantity:

𝛼 (Λ) fl min
Λ

{|𝑉 (Λ)| − 𝐽 (Λ)} . (A.2)

Lemma A.1. Given the known part of the cosupport Λ
0
with

𝐽 connected components, then for a fixed cosparsity level 𝑙, the
value 𝛼(Λ) = min

Λ
{|𝑉(Λ)|− 𝐽(Λ)} is achieved when 𝐽(Λ) = 𝐽.

Proof. If 𝐽(Λ) > 𝐽, there exist extra connected components
out of𝑉(Λ

0
). Without loss of generality, we only consider the

case where 𝐽(Λ \ Λ
0
) = 1. Let Λ1 ⊂ Λ \ Λ

0
correspond to the

extra component. Thus, we have 𝐽(Λ) = 𝐽 + 1. Notice that
a subgraph can be shifted horizontally or vertically unless it
has vertices on all four boundaries of 𝑉. Since Λ1 and Λ

0
are

disconnected, we can shiftΛ
1 towardsΛ

0
until they first met.

Suppose 𝑡 and 𝑠 are the numbers of the vertices and the edges
coincided. Clearly, 𝑠 ≤ 𝑡 − 1. The resulting subgraph Λ

2 has
|𝑉(Λ)|−𝑡 vertices, |Λ|−𝑠 edges, and 𝐽 connected components.
Then, we add 𝑠 additional edges that are connected to Λ

2,
thereby yielding Λ

3. From this we can infer that |Λ3| = |Λ| =

𝑙, 𝐽(Λ3) = 𝐽, and





𝑉 (Λ
3

)






≤






𝑉 (Λ
2

)






+ 𝑠 = |𝑉 (Λ)| − 𝑡 + 𝑠. (A.3)

We further have that





𝑉 (Λ
3

)






− 𝐽 (Λ

3

) ≤ |𝑉 (Λ)| − 𝑡 + 𝑠 − 𝐽 (Λ) + 1

≤ |𝑉 (Λ)| − 𝐽 (Λ) .

(A.4)

Consequently, we obtain Λ
3 from Λ that satisfies |Λ

3

| = 𝑙

and 𝐽(Λ
3

) = 𝐽. However, a smaller 𝛼(Λ) is achieved, which
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completes the proof. One can consider cases in which 𝐽(Λ \

Λ
0
) > 1 in the same vein.

Lemma A.1 implies that quantifying the upper bound in
(A.1) is equivalent to quantifying the value min

|Λ|=𝑙
|𝑉(Λ)|. In

the next lemma, we provide a lower bound for |𝑉(Λ)| and
prove that the value is achieved when all the 𝐽 connected
components share the same cosparsity.

Lemma A.2. For a fixed 𝑙, the value

|𝑉 (Λ)| ≥

𝑙

2

+

𝐽

2

+ (

𝐽𝑙

2

+

𝐽
2

4

)

1/2

. (A.5)

Proof. We first denote the edge sets of the 𝐽 connected
components by Λ

𝑖
⊂ Λ with |Λ

𝑖
| = 𝑙
𝑖
(𝑖 ∈ 𝐼 = {1, . . . , 𝐽}).

Clearly, we have ∑
𝑖
𝑙
𝑖
= 𝑙. Then, we enlarge each edge set Λ

𝑖

as

Λ
𝑖
= {𝑒
↓
(V) , 𝑒
→

(V) : V ∈ 𝑉 (Λ
𝑖
)} , (A.6)

where 𝑒
↓
(V) (resp., 𝑒

→
(V)) denotes the edge extending down-

wards (resp., rightwards) from the vertex V. For any 𝑖 ∈ 𝐼,
we have |Λ

𝑖
| = 2|𝑉(Λ

𝑖
)|. According to [17, Lemma 15], the

value min
|Λ
𝑖
|=𝑙
𝑖

|𝑉(Λ
𝑖
)| occurs when 𝑉(Λ

𝑖
) is square, and the

optimal width of 𝑉(Λ
𝑖
) is given as

𝑤
𝑖
=

1

2

+ (

𝑙
𝑖

2

+

1

4

)

1/2

. (A.7)

Then, we have

2




𝑉 (Λ
𝑖
)




=






Λ
𝑖






≥ 𝑙
𝑖
+ 2𝑤
𝑖
. (A.8)

Summing the above over all 𝑖 ∈ 𝐼 yields

2 |𝑉 (Λ)| = ∑

𝑖∈𝐼

2




𝑉 (Λ
𝑖
)





≥ ∑

𝑖∈𝐼

𝑙
𝑖
+ 2∑

𝑖∈𝐼

(

1

2

+ (

𝑙
𝑖

2

+

1

4

)

1/2

)

= 𝑙 + 𝐽 + ∑

𝑖∈𝐼

(2𝑙
𝑖
+ 1)
1/2

.

(A.9)

For any 𝑗 ∈ 𝐼,

𝑙
𝑗
= 𝑙 − ∑

𝑖∈𝐼\𝑗

𝑙
𝑖
. (A.10)

Substituting (A.10) into (A.9),

2 |𝑉 (Λ)| ≥ 𝑙 + 𝐽 + ∑

𝑖∈𝐼\𝑗

(2𝑙
𝑖
+ 1)
1/2

+ (2𝑙
𝑗
+ 1)

1/2

= 𝑙 + 𝐽 + ∑

𝑖∈𝐼\𝑗

(2𝑙
𝑖
+ 1)
1/2

+ (2(𝑙 − ∑

𝑖∈𝐼\𝑗

𝑙
𝑖
) + 1)

1/2

.

(A.11)

Then for any 𝑖 ̸= 𝑗, the minimum of the right hand side of
(A.11) is achieved at 𝑙

𝑖
= 𝑙 − ∑

𝑖∈𝐼\𝑗
𝑙
𝑖
= 𝑙
𝑗
. This reveals that

all the 𝐽 connected components share the same cosparsity.
Therefore, by denoting 𝑙

𝑖
= 𝑙/𝐽 (𝑖 ∈ 𝐼) and substituting into

(A.9), we conclude that

|𝑉 (Λ)| ≥

𝑙

2

+

𝐽

2

+ (

𝐽𝑙

2

+

𝐽
2

4

)

1/2

(A.12)

as required.

Proof of Proposition 3. The proof of Proposition 3 is trivial by
applying Lemmas A.1 and A.2 to (A.1):

max
Λ

dim (W
Λ
) = |𝑉| −min

Λ

{|𝑉 (Λ)| − 𝐽 (Λ)}

= 𝑛 −min
Λ

|𝑉 (Λ)| + 𝐽

= 𝑛 −

𝑙

2

−

𝐽

2

− (

𝐽𝑙

2

+

𝐽
2

4

)

1/2

+ 𝐽

≤ 𝑛 −

𝑙

2

− √
𝐽𝑙

2

+

𝐽

2

,

(A.13)

which leads to the minimummeasurement number:

𝑚 ≥ 2𝑛 − 𝑙 − √2𝐽𝑙 + 𝐽 ≥ 2max
Λ

dim (W
Λ
) . (A.14)

The proof is then completed.
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